Numerical Optimization for Source-Drain Channel Resistance of AlGaN/GaN HEMTS
Keywords:
PCF scattering, multi sub-band, channel resistanceAbstract
A numerical model for the source-drain channel resistance based high electron mobility transistors has been developed that is capable to predict accurately the effects of polarization Coulomb Field Scattering (PCF), multi sub-band on source-drain channel resistance. Salient features of the model are incorporated of fully and partially occupied sub-bands in the interface quantum well, combined with a self-consistent solution of the Schrödinger and Poisson equations. In addition, to develop the model, accurate two-dimensional electron gas mobility and modified wave function in barrier AlGaN have been used. According to the numerical calculations, the effect of multi sub-band and PCF scattering on the increase of source-drain channel resistance is 35% and 65%, respectively, with the effect of PCF being almost twice as high as multi sub-band. The calculated model results are in very good agreement with existing experimental data for high electron mobility transistors device.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Open access licenses
Open Access is by licensing the content with a Creative Commons (CC) license.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.