Finite Element Modelling for Fracture of Multilayer Fibrous Networks
Keywords:
Fibrous networks, multilayer, fractureAbstract
Tissue engineering involves three-dimensional scaffolds to support cell culture activities and provide mechanical support. One of the potential scaffolds used in tissue engineering is an electrospun scaffold consisting fibres ranging from nano- to micrometer scales deposited on layer stack. The finite element models have been used to study the in-plane deformation of two-dimensional single layer fibrous networks and without considers out-of-plane deformation. While the existing study focuses on two-dimensional study, the out-of-plane deformation of layer structured of electrospun scaffolds through the scaffolds thickness has not been studied. In this study, three-dimensional finite element model was constructed to investigate the fracture of multilayer fibrous networks. The three-dimensional results were compared with the fracture on two-dimensional single layer fibrous network. The result shows that these two models had identical fracture behaviour and similar deformation at the crack-tip region, where the fibres are rearranged and reoriented with similar stress distribution. The work here concludes that two-dimensional single layer fibrous network model is a simple yet effective model for the study of homogeneous fibrous networks.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Open access licenses
Open Access is by licensing the content with a Creative Commons (CC) license.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.