Artificial Neural Network and Savitzky Golay Derivative in Predicting Blood Hemoglobin Using Near-Infrared Spectrum
Keywords:
Blood hemoglobin prediction, Savitzky Golay pre-processing, Artificial neural network, Near-infraredAbstract
Monitoring blood hemoglobin level is essential to diagnose anaemia disease. This study aims to evaluate the capability of an artificial neural network (ANN) and Savitzky Golay (SG) pre-processing in predicting the blood hemoglobin level based on the near-infrared spectrum. The effects of the hidden neuron number and different SG pre-processing strategies were examined and discussed. ANN coupled with first order SG derivative and five hidden neurons achieved better prediction performance with root mean square error of prediction of 0.3517 g/dL and Rp2 of 0.9849 compared to the previous studies. Results depict that ANN that coupled with first order SG derivative could improve near-infrared spectroscopic analysis in predicting blood hemoglobin level, and the proposed nonlinear model outperforms linear models without variable selections. This finding suggests that the modelling strategy is promising in establishing a better relationship between the blood hemoglobin and near-infrared spectral data.Downloads
Download data is not yet available.
Downloads
Published
31-12-2018
How to Cite
Mohd Idrus, M. N. E., Chia, K. S., Sim, H. M., & Gamal Al-kaf, H. A. (2018). Artificial Neural Network and Savitzky Golay Derivative in Predicting Blood Hemoglobin Using Near-Infrared Spectrum. International Journal of Integrated Engineering, 10(8). Retrieved from https://publisher.uthm.edu.my/ojs/index.php/ijie/article/view/2302
Issue
Section
Articles
License
Open access licenses
Open Access is by licensing the content with a Creative Commons (CC) license.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.