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Abstract: The study developed a pest monitoring system for agriculture using deep 

learning, pi camera and environmental sensors. The developed system can 

continuously monitor and calculate the number of pest insects stick on the yellow 

sticky papers. The detected pest insects were counted using image processing and 

deep learning model, specifically, the You Only Look Once (YOLO), with an average 

accuracy of 52.3% and computation time of 8-10 minutes per picture. The 

environmental information of temperature and humidity were also gathered in the 

study site, where fruit plants were grown as the main crop. The tests revealed that 

humidity has the strongest correlation with the number of pest insects. As conclusion, 

the developed system can effectively collect the insect counts automatically, which 

provides useful information for efficient pest control in crop cultivation processes. 

 

Keywords: Deep learning, You Only Look Once (YOLO), Agriculture 

 

1. Introduction 

Pest management is an important aspect of effective crop management. Pests are unwanted 

organisms that harm plants in some way. Pest activity and density should be closely monitored for 

effective pest control [1]. The sticky paper trap is one of the simplest and cheapest ways to monitor pest 

insect populations in agriculture [2]. A sticky paper trap attracts insects by sticking a sheet of sticky 

paper to coloured cardboard. Inspection of the sticky paper traps may reveal information about insect 

density and species. 

Counting small insects on sticky paper in controlled lighting conditions takes time and is subject to 

human error [3].  The image processing technique can be used to simplify the process of counting pests 

in this regard.  Temperature, relative humidity, and light intensity all affect insect activity in the 

greenhouse [4]. Using artificial light sources, whiteflies can be easily trapped [5]. 

However, processing the images of sticky papers manually is tedious for large plantations, requiring 

constant monitoring of insect pest populations and environmental conditions [6]. The frequency of 

insect pest outbreaks can be predicted and prevented by integrating low-cost embedded systems, such 

as wireless imaging nodes, with the Internet of Things (IoT) [7]. Wireless images systems with multiple 
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sensor nodes can be created by these systems use image processing to count insects on sticky paper trap 

images and collect environmental data. 

Pest monitoring is important in agriculture to keep plants safe. Pests damage plants by eating and 

nesting in plant parts. Its existence is not always obvious. A manual system is used by most farmers. 

Human labour is required to manually check temperature, humidity, and light intensity in the 

greenhouse at specific times. Manual practice, it seems, takes a lot of time, effort, and dedication, 24-

hour human attention is required to monitor the health of essential plants like vegetables and flowers. 

This study develops a pest monitoring system using image processing and deep learning. Image 

processing is used to automatically detect and count insects on sticky paper traps. This developed 

system could help crop management by collecting quantitative pest and environmental data. This 

method eliminates the need for tedious manual counting and allows for rapid evaluation of insect pests 

and environmental details. Pest monitoring requires fewer workers than manual inspection. By reducing 

pest-related crop losses and improving low-risk food production, environmental factors can reduce the 

risk of pest-related crop losses and improve low-risk food production. 

 

2. Materials and Methods 

The materials and methods section, otherwise known as methodology, presents the methods used 

to conduct the study. This includes the explanation on the development of the insect pest monitoring 

device, data collection and insect pest identification. 

2.1 Research Methodology 

This presents the flowchart of the pest monitoring system. First, assemble of the insect pest 

monitoring device. Then, data collection and remote server of the monitoring. After that, image 

processing method being used. Insect pest detection using the deep learning model of You Only Look 

Once (YOLO) and multiple linear regression (MLR). Study the relationship between environment and 

number of pests. 

2.2 Development of the Insect Pest Monitoring Device 

An insect pest monitoring system's as shown in Figure 1 include the hardware and software are 

divided into two categories. For example, a sticky paper trap as part of the insect pest monitoring 

system's hardware module. The box contains the Raspberry Pi 4b and an external power supply. Place 

the device in insect nesting areas and connect it to a Wi-Fi network to collect data. The software 

module's code includes functions for image capture, image processing, pest insect identification and 

counting. 

 

Figure 1: Pest Monitoring Device 
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2.3 Data Collection 

This system collects data using a camera and multiple environmental sensors. Each observation 

period will be divided into two 7-day sections. 8 cm in front of an A4 sticky paper trap (21.0 cmx 29.7 

cm). Photo taken with daylight white balance for automatic colour correction. Every hour from 12:00 

to 7:00 p.m., photos are taken. Night images are avoided as they may influence insect pests' decisions 

and actions. Since most insects are more active during the day, there appears to be little increase in 

insect pest numbers at night. For data collection using the DHT22 sensor, the temperature and humidity 

sensors are sent every 10 minutes from 12:00 PM to 7:00 PM for 7 days. 

2.4 Remote Server 

The RaspController is used to monitor the pest insect, temperature, and humidity in real-time. 

RaspController is a software programme that allows remote management of the Raspberry Pi. Features 

like managing files, using GPIO ports, sending commands via the terminal, viewing pictures from a 

connected camera, and reading data from sensors have been added. Finally, wiring diagrams, pinouts, 

and other information ensure proper use of the Raspberry Pi. This app is available on the Google Play 

Store and the Apple AppStore. 

2.5 Image Processing 

The internet is used to send the captured images and information to a distant location. The images 

are first scaled to 32 x 32 pixels for use with YOLO insect pest detection software. After the resized 

images have been manually annotated, the images are divided into two groups: the training set and the 

testing set. The MATLAB toolbox was used to resize and label the images. The acquired dataset will 

then be used to identify insect pests using the YOLO algorithm. 

2.6 Insect Pest Detection Using YOLO 

The insect pest counting, and identification system was created using YOLO. The steps are as 

follows: pest insect identification, coarse counting of pest insects, feature extraction and pest detection 

using YOLOv2 algorithm.  

2.7 Performance Analysis 

The performance of coarse counting and fine counting using the YOLO is evaluated using the 

following derived indices [4]:  

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝐼

𝑇𝐼 + 𝐹𝐼
 

 

Eq.1 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝐼

𝑇𝐼 + 𝐹𝑁𝐼
 

 

Eq.2 

 

 
𝐹1 = 2 𝑥 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Eq.3 

 

Where,  

𝑇𝐼 = 𝑡𝑟𝑢𝑒 𝑖𝑛𝑠𝑒𝑐𝑡 

𝑇𝑁𝐼 = 𝑡𝑟𝑢𝑒 𝑛𝑜𝑛 − 𝑖𝑛𝑠𝑒𝑐𝑡 

𝐹𝐼 = 𝑓𝑎𝑙𝑠𝑒 𝑖𝑛𝑠𝑒𝑐𝑡 
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𝐹𝑁𝐼 = 𝑓𝑎𝑙𝑠𝑒 𝑛𝑜𝑛 − 𝑖𝑛𝑠𝑒𝑐𝑡 

 

3. Results and Discussion 

The experiment's results are presented here. Plants were used to test the insect capture method on 

yellow sticky paper. We compare YOLO-based pest detection and precision counting to component 

labelling. Then comes counting performance. YOLO models are created using machine learning and 

MATLAB 2021a. Find the prediction model using Multi Linear Regression between actual and forecast 

pest count related to environmental parameters. 

3.1 Parameters determined from pest count using Multiple Linear Regression (MLR) method  

The data for this experiment was collected between 12 p.m. and 7 p.m. on seven days from June 

8th to 14th, 2021. The data were chosen to identify insect pests based on temperature and humidity. A 

manual inspection of sticky paper trap images was performed to further analyse the system's data. Table 

1 shows the results of the manual inspection. The data for pest count and environmental parameters 

were collected on 14/6/2021 between 12 and 7 p.m. to calculate the MSE between the actual and 

predicted pest count using the MLR model. 

Table 1: Pest count and environment sensor data for time (12 – 7 PM) on 14/6/2021 

Date Time Temperature Humidity No of Pest 

14/6/2021 12:00 33.1 70.10% 34 

14/6/2021 13:00 31.2 70.10% 36 

14/6/2021 14:00 31.5 70.20% 39 

14/6/2021 15:00 31.8 71.00% 42 

14/6/2021 16:00 30.7 72.40% 45 

14/6/2021 17:00 31.5 75.70% 49 

14/6/2021 18:00 30.8 75.60% 50 

14/6/2021 19:00 30.6 77.20% 50 

     

SUMMARY OUTPUT        

         

Regression Statistics        

Multiple R 0.953438        

R Square 0.909043        

Adjusted R 

Square 

0.87266        

Standard 

Error 

2.276459        

Observations 8        

         

ANOVA         

 df SS MS F Significance 

F 

   

Regression 2 258.9637 129.4818 24.98556 0.002495    

Residual 5 25.91134 5.182268      

Total 7 284.875          

         

 Coefficients Standard 

Error 

t Stat P-value Lower 95% Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept -24.0833 60.00721 -0.40134 0.704747 -178.337 130.1701 -178.337 130.1701 

Temperature -1.86837 1.302701 -1.43422 0.210967 -5.21707 1.480334 -5.21707 1.480334 

Humidity 172.935 35.96578 4.808319 0.004848 80.48197 265.388 80.48197 265.388 
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Figure 2: Summary of multiple linear regression model of training data by time 

From Figure 2, the relationship between the number of pest and the input variables of temperature and 

humidity can be modelled as: 

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑠𝑡 =  

−24.0833 − 1.86837(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 172.935(𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦) 

(Eq.4) 

 

 Table 2: Multiple Linear Regression model of training data by time  

Date Time Actual Forecast Error 
Error 

square 

14/6/2021 12:00 34 35.30 -1.3 1.69 

14/6/2021 13:00 36 38.85 -2.85 8.12 

14/6/2021 14:00 39 38.46 0.54 0.29 

14/6/2021 15:00 42 39.29 2.71 7.34 

14/6/2021 16:00 45 43.76 1.24 1.54 

14/6/2021 17:00 49 47.97 1.03 1.06 

14/6/2021 18:00 50 49.11 0.89 0.79 

14/6/2021 19:00 50 52.25 -2.25 5.06 

Table 2 shows the predicted pest numbers using the prediction model in Eq.4 for the data in Table 

1. The MSE was 3.24. On June 12, 2021, 12-7pm, the collected pest count and environment sensor data 

were used as testing data and fitted into the prediction model in Eq.4. Table 2 summarises the prediction 

values with an MSE of 1.18. 

Table 3: Pest count and Environment sensor data for time (12 – 7 PM) on 12/6/2021 

Date Time Temperature Humidity No of Pest 

12/6/2021 12:00 32.9 68.80% 27 

12/6/2021 13:00 33.1 67.90% 27 

12/6/2021 14:00 33.1 66.20% 27 

12/6/2021 15:00 33.5 66.20% 28 

12/6/2021 16:00 33.8 67.60% 29 

12/6/2021 17:00 33.4 65.30% 29 

12/6/2021 18:00 33.6 64.80% 29 

12/6/2021 19:00 32.5 68.90% 30 

The results in Tables 1 and Table 3 are for data collected at different times on the same day. Using 

the data in Table 4, a prediction model for data collected on multiple days was developed. The data for 

pest count and environmental parameters were chosen from 7 PM on 8/6/2021 to 12/6/2021 to calculate 

the MSE between actual and forecasted pest count using the MLR model. 

Table 4: Pest count and Environment sensor data for time 7 PM on (8/6/2021 to 12/6/2021) 

Date Time Temperature Humidity No of Pest 

8/6/2021 19:00 32.9 64.20% 6 

9/6/2021 19:00 32.9 64.50% 9 

10/6/2021 19:00 34.5 67.00% 20 

11/6/2021 19:00 32.5 70.00% 27 

12/6/2021 19:00 32.5 68.90% 30 

13/6/2021 19:00 31.5 68.10% 33 
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14/6/2021 19:00 30.6 77.20% 50 

SUMMARY OUTPUT        

         

Regression Statistics        

Multiple R 0.945944        

R Square 0.89481        

Adjusted R 
Square 0.842215        

Standard Error 5.980353        

Observations 7        

         

ANOVA         

  df SS MS F 
Significance 

F    

Regression 2 1216.942 608.4708 17.01321 0.011065    

Residual 4 143.0585 35.76462      

Total 6 1360          

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept -128.664 134.2181 -0.95862 0.392037 -501.313 243.9854 -501.313 243.9854 

Temperature -1.49222 2.804464 -0.53209 0.622846 -9.27866 6.29422 -9.27866 6.29422 

Humidity  294.8483 78.15111 3.772797 0.019557 77.86603 511.8306 77.86603 511.8306 

Figure 3: Summary of multiple linear regression model of training data by date 

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑛𝑜 𝑜𝑓 𝑝𝑒𝑠𝑡 =  

 −128.664 − 1.49222(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) + 294.8483(𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦) 

(Eq.5) 

 

 

Table 5: Multiple Linear Regression model of training data by date 

Date Time Actual Forecast Error Error square 

8/6/2021 19:00 6 11.53 -5.53 30.58 

9/6/2021 19:00 9 12.42 -3.42 11.69 

10/6/2021 19:00 20 17.40 2.6 6.76 

11/6/2021 19:00 27 29.23 -2.23 4.97 

12/6/2021 19:00 30 25.98 4.02 16.16 

13/6/2021 19:00 33 25.12 7.88 62.09 

14/6/2021 19:00 50 53.29 -3.29 10.82 

Table 5 shows the predicted results using the data in Table 4, with an MSE of 20.44. Then, the data 

from 3 PM on 8/6/2021 to 12/6/2021 were chosen as testing data (Table 6) and fitted into the prediction 

in Equation Eq.5, yielding an MSE of 38.94. 
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Table 6: Pest count and Environment sensor data for time 3 PM on (8/6/2021 to 12/6/2021) 

Date Time Temperature Humidity  No of Pest 

8/6/2021 15:00 33.8 60.40% 2 

9/6/2021 15:00 34.9 62.80% 8 

10/6/2021 15:00 34.8 61.70% 14 

11/6/2021 15:00 34.6 62.80% 23 

12/6/2021 15:00 33.5 66.20% 28 

13/6/2021 15:00 34 63.80% 31 

14/6/2021 15:00 31.8 71.00% 42 

The MLR model had an adjusted R-squared of 0.8727 (Figure 2) and 0.8422 (Figure 3), indicating 

good predictive performance. As shown in Eq.4 and 5, increasing humidity increases pest numbers. 

3.2 Analysis of the environmental parameters with insect pest count 

The time for the number of pests, the value of humidity, and the temperature have been simplified 

from 10 minutes to 1 hour, as shown in Table 7. The result for this analysis uses the pest count and 

environmental data for time (12 -7 PM) on 14/6/2021 and time at 7 PM on (8/6/2021 to 14/6/2021) 

shown in Table 4. 

 

 
Table 7: Pest count and Environment sensor data for time (12 -7 PM) on 14/6/2021 

Date Time Temperature Humidity  No of Pest 

14/6/2021 12:00 33.1 70.10% 34 

14/6/2021 13:00 31.2 70.10% 36 

14/6/2021 14:00 31.5 70.20% 39 

14/6/2021 15:00 31.8 71.00% 42 

14/6/2021 16:00 30.7 72.40% 45 

14/6/2021 17:00 31.5 75.70% 49 

14/6/2021 18:00 30.8 75.60% 50 

14/6/2021 19:00 30.6 77.20% 50 

 The two samples had a normalised change rate (Δ) in insect count, temperature, and humidity. The 

time-measured data from the sensors could be combined to get data on changes in each environmental 

parameter. The data show a correlation between environmental variations and insect count, as shown in 

Figures 4 and 5. 

Table 8: Statistical analysis of the environmental parameters (8/6/2021 – 14/6/2021) 

Parameter Parameter mean Range 
Correlation with insect pest 

count 

 
By 

Time 

By 

Date 
By Time By Date 

By 

Time 
By Date Mean 

Temperature 

(ᵒC) 
31.4 32.4 33.1 - 30.6 64.2 - 77.2 -0.69 -0.72 -0.7 

Humidity (%) 72.7 68.6 70.1 - 77.2 64.2 - 77.2 0.93 0.94 0.93 
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Tables 8 show significant differences in average temperature and humidity between time periods 

by time and date. As shown in Figures 4 and 5, the temperature and humidity of the time period data 

change in real-time. 

 

Figure 4: Environmental parameter and insect pest count normalized data by time plot 

 

 

 

Figure 5: Environmental parameter and insect pest count normalized data by date plot 

The first phase has seen a significant difference in humidity and temperature. As shown in Table 8, 

this event caused an increase in insect pest numbers. Similarly, between 11/6 and 14/6, humidity 

increased, increasing insect pests. The method can reveal links between insect pest counts and 

environmental conditions. As a result, more observations of their relationships will be made, with the 

goal of providing a more detailed analysis of the observed patterns. 

3.3 Performance of Training loss function YOLO v2 

YOLOv2 are two current object detection methods. In this case, Yolov2ObjectDetector is used to 

find pests. The addition of scale detection to the YOLO version2 object detector helps identify small 

objects. The YOLO v2 can detect pests in crops. To begin the YOLO segmentation process, it must first 
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create a ground truth of information. Image Labeler: Create the bounding box for the pest in a picture. 

Construct bounding boxes for all images currently stored in the database. After constructing the 

bounding boxes, we will load the network layers. Set the classifier, minimum batch size, starting learns 

rate, maximum epochs and checkpoint route parameters. The network has been trained for x iterations. 

 

Figure 6: Loss function in YOLO V2 with ResNet-50 

 

Figure 7: Data of the graph loss function in YOLO v2 

As shown in Figure 6, the average network loss decreases as the number of iterations increases. The 

network's performance improved as the prediction error decreased. After 20 iterations, the average loss 

of improved YOLO v2 was 0.1028 and did not drop further, indicating that training was complete. 

3.4 Accuracy and Inference time of YOLO v2 

The chosen train sets from the 90% standard set. It does not reduce train images, but rather sends 

them to the YOLO neural network, which produces the standard model (Ms). Then we use the remaining 

10% of the original data to test the standard model. Finally, we perform a single picture degradation 

operation on the test sets before adding them to the standard model for processing (Ms). Table 4-8 

shows the results of the standard model's deteriorated test sets. 

Table 9: Evaluation of training and testing dataset by YOLO v2 algorithm 

Evaluation Training data Testing data 

Number of anchors 9 

Recall 0.053 0.0333 

Precision 1 1 

Average IoU (%) 0.8518 0.9249 

mAP (%) 5 3 
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Figure 8: Precision-Recall (PR) curves of training data 

 

 

Figure 9: Accuracy of the pest detection of training data using YOLO v2 

Table 10: Summary of pest counting of training data using bounding box detection 

Training data Overall accuracy Precision Recall 

YOLO v2 52.3 1 0.54 

 

Figure 10: Precision-Recall (PR) curves of testing data 
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Figure 11: Accuracy of the pest detection of testing data using YOLO v2 

Table 11: Summary of pest counting of testing data using bounding box detection 

Testing data Overall accuracy Precision Recall 

YOLO v2 0.506 1 0.5 

Figures 9 and 10 show the results of detecting the training and testing sets of pest images. Table 10 

shows that while 52.3% of insects in the training database are correctly classified, 23 out of 50 instances 

in the ground truth are incorrectly classified. In the testing data, 50.6 percent of insects are detected 

(Table 11), but only 15 of 30 in the ground truth. The network found 15 insects not shown in the 

reference images. The weighted classification accuracy is also computed as a function of TP and total 

insect count. A lack of hand-drawn labels resulted in rejects due to reduced crossings over unions, but 

this study revealed that the quality of the ground truth needed to be improved. However, the total 

number of insects on the traps was manually counted. 

3.5 Comparison of training and testing data using YOLO v2 

Table 12: Comparison of two machine learning method to find the accuracy of pest detection 

YOLO v2 Accuracy 

Training data 52.3 

Testing data 50.6 

Table 12 compares the accuracy of YOLO v2 insect pest detection between training and testing 

data. But comparing the table result to our suggested method is unfair. The results cannot be compared 

due to the different frameworks, datasets, and training settings. As shown in the table, the training data 

has better accuracy than the testing data for YOLO v2 object detection. 

 

4. Conclusion 

Insect pest monitoring using an integrated imaging and environmental sensor network was 

presented. This study surpasses the use of only wireless cameras by combining them with environmental 

sensors to gather more potentially useful information for various insect pest monitoring applications. 

This study's major contribution is the creation of an automated, integrated system for collecting insect 

pests and environmental data for plant growth. This method eliminates the need for tedious manual 

counting, allowing for rapid evaluation of insect pests and environmental data. In an uncontrolled 

agricultural environment, it is possible to study the impact of environmental conditions on insect pest 

presence and activity statistically. 

This study proposed an IoT and machine learning approach for remote pest monitoring and 

automated insect identification. The YOLO v2 object detection automatically identified the insect. This 

system uses a four-layer Internet of Things architecture to remotely trap insects. This study used various 

insect image datasets to assess a machine learning technique for insect identification. 
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