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Abstract: This paper discusses the linear multistep method for solving fuzzy 

differential equations. The Hukuhara technique will be used to convert the fuzzy 

differential equations into a system of ordinary differential equations. To solve first-

order fuzzy differential equations, the Milne-Simpson method is used. The solutions 

are compared with Runge-Kutta method. Numerical examples are given, and 

numerical solutions are displayed to present the accuracy of the method.   
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1. Introduction 

In recent years, the field of fuzzy differential equations (FDEs) has gained in popularity. The theory 

of fuzzy derivative was initially developed by Dubois & Prade, then followed by Chang & Zadeh, who 

used the extension principle in their technique [1]. Dubois and Prade employs the derivative in the case 

of fuzzy-set-valued functions in which each [ , ]t a b is associated with a fuzzy integer [2]. Puri & 

Ralescu was the first to introduce such derivatives, which were derived from the Hukuhara derivative 

for real-valued functions [3]. This derivative is the source of the most widely used and explored FDEs 

theory. The problem with this form of differential equations is that the solutions grow in diameter over 

time. This implies that as time goes on, the process becomes increasingly vague. Bede & Gal improved 

on Puri's concept of derivatives in such a manner that the diameter of the solutions of FDEs does not 

have to increase [4]. That is to say; the process can get less vague over time.  

The second form of FDEs theory employs fuzzy sets of functions rather than fuzzy-set-valued 

functions. Fuzzy sets of functions will be considered as fuzzy functions. Hüllermeier introduced their 

theoretical foundation as differential inclusions theory and fuzzy differential inclusions theory [5]. 

Because it separates the functions of the support of fuzzy sets of functions, there is no concept of a 
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fuzzy function's derivative in this type of FDEs and the derivative used is the same as for standard 

functions. 

When there are unknown parameters or starting conditions, the solution of FDEs is critical. This 

uncertainty can be expressed as a fuzzy number. The numerical method can be utilized to solve the 

problem when the variables contain uncertainty information. To solve FDEs using numerical methods, 

the stable approach is created. It is difficult to find a precise solution for fuzzy initial value problems 

(FIVPs). FIVP shows up when the modeling of these issues was defective or not clear and its nature is 

beneath vulnerability [6]. FIVPs do not have a derivative of a fuzzy –number-valued function, and so, 

the numerical solutions of a FDE are difficult to be obtained. As a result, their numerical technique has 

to be considered. 

The FIVP is written as follows 

'( ) ( , ( ),y t f t y t                𝐸𝑞. 1 

  
0 0( )y t y ,  

0[ , ]t t T  

Milne – Simpson method is one of the methods in the linear multistep method (LMM). LMM is 

one of the important methods for solving numerical solution of FDEs. This multistep approach uses 

approximation at several previous mesh locations to derive the approximation at the following locations 

[7]. Meanwhile, the one-step method or single-step method refers to a value of the dependent variable 

at one mesh location that is required to compute the value at the next mesh location. As a result, as 

compared to single-step procedures, the multistep method tries to increase efficiency and more accurate 

outcomes. Generally, multistep method is more accurate and efficient compared to single-step method 

[8], [9], [10]. 

The general LMM equation is as follows: 

            
0 0

i i

k n k k n k

k k

y h f  

 

                         𝐸𝑞. 2                                                  

where 𝛼𝑘 and 𝛽𝑘 are constant, assume 0k   and 0k k   . 

There are two parts to the multistep method: 

i. when the 0k    implicit multistep method 

ii. when the 0k    explicit multistep method 

In the Milne-Simpson method, the explicit multistep method called Milne's method is used as a predictor 

to an implicit multistep method called Simpson's method. 

The objectives of this study are to transform the FDEs into the system of ordinary differential 

equations (ODEs) by using the Hukuhara approach. Then, solve the first-order FDEs by using the Milne 

– Simpson multistep method and compare the solution with the Runge – Kutta (RK) method. 

2. Research Methodology 

The focus of this study is to solve the first order FDEs using Hukuhara approach. Then, the problem 

will be solved by using Milne-Simpson method. 

2.1 Hukuhara Approach 

To find a precise solution to the fuzzy initial value problem, Hukuhara differentiability (H-

derivative) is applied. The concept of Hukuhara in Definition 1 and 2 as presented in [11]. 
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Definition 1 

Let , .x yE  If  zE  such that ,x y z  .then z  is called the Hukuhara differentiability of x  and ,y  

it is denoted by .y!  Hukuhara differentiability is represented by the symbol " "!  and note that 

( 1) .x y x y  !  

Definition 2 

Let :f E  be a fuzzy function. Then, f is differentiable 
0t   if 

0'( )f t E such that  

0 0

0

( ) ( )

h

f t h f t
lim

h

 !
 and 0 0

0

( ) ( )

h

f t f t
li

h

h
m



!
           𝐸𝑞. 3 

 

exist and are equivalent to 
0'( ).f t  

Here the limits are taken in the metric space ( , ),AE  since we have defined 

1

0 0( ( ) ( ))h f t f t h ! and 1

0 0( ( ) ( ))h f ht f t  !             𝐸𝑞. 4 

where represent for Hadamard product (component-wise multiplication for matrices). 

Consider FIVP in Eq. 1 and let ( ) [ ( ), ( )]y t y t y t , and consider ( )y t  is Hukuhara differentiable, 

Then, 

   '( ) [ '( ), '( )]y t y t y t                𝐸𝑞. 5 

and 

     , ( ) , ( ), ( ) , , ( ), ( )f t y t f t y t y t f t y t y t 
 

             𝐸𝑞. 6 

Therefore, FIVP may be written in the first order ODE system, 

 '( ) , ( ), ( )y t f t y t y t , 

 '( ) , ( ), ( )y t f t y t y t , 

0 0( ) ,y t y  

           
0 0( )y t y                  𝐸𝑞. 7 

This has a unique solution ( , )y y . 

The parametric form of Eq. 7 is given by 

 '( ; ) , ( ; ), ( ; )y t r f t y t r y t r , 

 '( ; ) , ( ; ), ( ; )y t r f t y t r y t r , 

0 0( ; ) ( ),y t r y r  

              
0 0( ; ) ( ),y t r y r  for  0,1r .               𝐸𝑞. 8        

 

2.2 Milne-Simpson Methods 

The Milne-Simpson method is a well-known corrector-predictor approach. Milne's method 

functions as a predictor, whereas Simpson's method functions as a corrector.  

The general formula of Milne's method is written as follow 

                 
1 3 1 2

4 4
2 2

3 3
n n n n ny y h f f f   

 
    

 
             𝐸𝑞. 9 

and the general formula of Simpson's method is written as follow 

        1 1 1 14
3

n n n n n

h
y y f f f                   𝐸𝑞. 10 

2.3 Fuzzy Formulation of Milne-Simpson Method 
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In this study, Milne – Simpson method will be transformed to fuzzy terms using the Hukukara 

approach as defined in Section 2.1. The fuzzy formulation of Milne – Simpson method will then be 

used to solve the problems of FDEs. For t  as a positive integer, approximate the solution of FIVP in 

Eq. 1. 

Step 1 

Let   0T t
h

N


 , 

Step 2 

The Runge-Kutta method is used to find the two starting points after the initial is obtained from the 

FIVP. 

0 0
( ; )y t r y    1 1

( ; )y t r y    2 2
( ; )y t r y  

0 0
( ; )y t r y    1 1( ; )y t r y    2 2

( ; )y t r y  

 

By using Runge-Kutta method 

   1 1 11
, ( ), ( )K h f t y r y r  

  1
2 1 11

, ( ), ( )
2 2

h K
K h f t y r y r

 
   

 
 

  2
3 2 22

, ( ), ( )
2 2

h K
K h f t y r y r

 
   

 
 

   4 3 33
, ( ), ( )K h f t h y r y r h    

   1 2 3 41

1
2 2

6i i
y y K K K K


      

 1 1 11
, ( ), ( )K h f t y r y r  

1
2 1 11

, ( ), ( )
2 2

h K
K h f t y r y r

 
   

 
 

2
3 2 22

, ( ), ( )
2 2

h K
K h f t y r y r

 
   

 
 

 4 3 33
, ( ), ( )K h f t h y r y r h    

 1 2 3 41

1
2 2

6
i iy y K K K K                         

Step 3        

Let 3n   

Step 4 

Let 
1 1nt t nh    

Step 5 

Let the Milne-Simpson formula,  
( )

1 3 1 2

4 4
2 2

3 3

P

n n n n n
y y h f f f

   

 
    

 
 

        ( )

1 1 1 1
4

3

C

n n n n n

h
y y f f f

   
            

( )

1 1 1 14
3

C

n n n n n

h
y y f f f        

Step 6 

Algorithm is completed and ( ; ), ( ; )n ny t r y t r 
 

 approximate to  ( ; ), ( ; )n nY t r Y t r 
 

. 

The results of the Milne-Simpson approach will be compared to the equivalent order Runge-Kutta 

method. The absolute error can be calculated by using formula 

    
( ) ( )i i

exact approximatey y ,                         𝐸𝑞. 14 

where ( )i

exacty  is the value of exact solution and 
( )i

approximatey  is the value of approximate solution which 

refer to the numerical solution by Milne-Simpson method and Runge-Kutta method. 

( )

1 3 1 2

4 4
2 2

3 3

P

n n n n n
y y h f f f

   

 
    

 

𝐸𝑞. 11 

 𝐸𝑞. 12 

𝐸𝑞. 13 
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3. Results and Discussion 

This research focus on Milne-Simpson method to solve FDEs using Hukuhara approach where the 

solution is generated numerically using MATLAB. Two sets of first-order FDEs problems are 

numerically tested using constant step size of 0.1h  . The results will be compared with existing RK 

method of order four. 

3.1 Test Problem (a) Source: Ma et al [12] 

The FIVP 

           'y t y t                                        𝐸𝑞. 15 

with the initial conditions 

              0 0.75 0.25 , )1.125 25( 0.1y r r   .            𝐸𝑞. 16 

Exact solution at 1t   is given by 

           1; 0.75 0.25 , 1.125 0. ,[( 25) ( )1 ]Y r r e r e     0 1r  .                𝐸𝑞. 17 
 

Table 1 and 2 show the result of exact solution and approximate solution between Milne-Simpson (MS) 

and fourth order Runge-Kutta (RK4) method for Test Problem (a) using same step size. Absolute error 

between these two methods is obtained. The figures illustrate the graph for error of MS, and RK4 

method. 

Table 1: Numerical result of lower bound of MS and RK4 methods for solving Test Problem (a) for 0.1h   

at 1t  . 

𝑅 Exact Solution 
Numerical Results Absolute Error 

MS RK4 MS RK4 

0.0 2.0387113713 2.0387111371 2.0387098081 2.34207𝑒 − 07 1.56324𝑒 − 06 

0.1 2.1066684171 2.1066681750 2.1066668017 2.42014𝑒 − 07 1.61535𝑒 − 06 

0.2 2.1746254628 2.1746252129 2.1746237953 2.49821𝑒 − 07 1.66746𝑒 − 06 

0.3 2.2425825085 2.2425822509 2.2425807889 2.57628𝑒 − 07 1.71957𝑒 − 06 

0.4 2.3105395542 2.3105392888 2.3105377825 2.65435𝑒 − 07 1.77168𝑒 − 06 

0.5 2.3784965999 2.3784963267 2.3784947761 2.73242𝑒 − 07 1.82378𝑒 − 06 

0.6 2.4464536456 2.4464533646 2.4464517697 2.81049𝑒 − 07 1.87589𝑒 − 06 

0.7 2.5144106913 2.5144104025 2.5144087633 2.88855𝑒 − 07 1.92800𝑒 − 06 

0.8 2.5823677370 2.5823674404 2.5823657569 2.96662𝑒 − 07 1.98011𝑒 − 06 

0.9 2.6503247827 2.6503244783 2.6503227505 3.04469𝑒 − 07 2.03222𝑒 − 06 

1.0 2.7182818285 2.7182818285 2.7182797441 3.12276𝑒 − 07 2.05207𝑒 − 06 
 

Table 2: Numerical result of upper bound of MS and RK4 methods for solving Test Problem (a) for 0.1h   

at 1t  . 

𝑅 Exact Solution 
Numerical Results Absolute Error 

MS RK4 MS RK4 

0.0 3.0580670570 3.0580667057 3.0580647122 3.51311𝑒 − 07 2.34486𝑒 − 07 

0.1 3.0240885342 3.0240881868 3.0240862154 3.47407𝑒 − 07 2.31881𝑒 − 06 

0.2 2.9901100113 2.9901096678 2.9901077185 3.43504𝑒 − 07 2.29276𝑒 − 06 

0.3 2.9561314884 2.9561311488 2.9561292217 3.39600𝑒 − 07 2.26670𝑒 − 06 

0.4 2.9221529656 2.9221526299 2.9221507249 3.35697𝑒 − 07 2.24065𝑒 − 06 

0.5 2.8881744427 2.8881741109 2.8881722281 3.31793𝑒 − 07 2.21459𝑒 − 06 

0.6 2.8541959199 2.8541955920 2.8541937313 3.27890𝑒 − 07 2.18854𝑒 − 06 

0.7 2.8202173970 2.8202170730 2.8202152345 3.23987𝑒 − 07 2.16249𝑒 − 06 

0.8 2.7862388742 2.7862385541 2.7862367377 3.20083𝑒 − 07 2.13643𝑒 − 06 

0.9 2.7522603513 2.7522600351 2.7522582409 3.16180𝑒 − 07 2.11038𝑒 − 06 
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1.0 2.7182818285 2.7182815162 2.7182797441 3.12276𝑒 − 07 2.04207𝑒 − 06 

 

 
Figure 1: Error lower bound of MS and RK4 

solution for Test Problem (a) for 𝒉 = 𝟎. 𝟏 at 1t   

 
Figure 2: Error upper bound of MS and RK4 

solution for Test Problem (a) for 𝒉 = 𝟎. 𝟏 at 1t   

Table 1 shows the numerical results of lower bound of MS and RK4 and Table 2 represents the 

numerical results of upper bound of MS and RK4 for solving Test Problem (a) by using ℎ = 0.1. The 

results are compared and it show that the results give a better accuracy for MS method than RK4 

method. The absolute error show that the MS method gives a better accuracy as the absolute error is 

much smaller than RK4 method. 

Figure 1 and 2 show the comparison between error of MS and RK4. The graphs obtained shown 

that MS and RK4 method has a difference numerical approximations. The results can be proven from 

Table 1 and 2.  

3.2 Test Problem (b) Source: Ghazanfari [13] 

The FIVP 

         'y t ty t ,                          𝐸𝑞. 18 

with the initial conditions 

      5(1.01 0 )0 ,1. 0.1.1y re er              𝐸𝑞. 19 

Exact solution at 1t   is given by 

               
2 21 1

2 21; 1.01 0.1 , 1.5 0.1
t t

Y r r e e r e e
 

   
 

,  0 1r  .                  𝐸𝑞. 20 

 

Table 3 and 4 show the result of exact solution and approximate solution between MS and RK4 method 

for Test Problem (b) using same step size. Absolute error between these two methods is obtained. Figure 

3 and 4 illustrates the graph for error of MS, and RK4 method. 

Table 3: Numerical result of lower bound of MS and RK4 methods for solving Test Problem (b) for 0.1h   

at 1t  . 

𝑅 Exact Solution 
Numerical Results Absolute Error 

MS RK4 MS RK4 

0.0 1.6652084834 1.6652122016 1.6652082171 3.71821𝑒 − 06 2.66283𝑒 − 07 

0.1 1.6923913017 1.6923950806 1.6923910311 3.77891𝑒 − 06 2.70630𝑒 − 07 
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0.2 1.7195741200 1.7195779596 1.7195738450 3.83960𝑒 − 06 2.74977𝑒 − 07 

0.3 1.7467569383 1.7467608386 1.7467566589 3.90030𝑒 − 06 2.79324𝑒 − 07 

0.4 1.7739397565 1.7739437175 1.7739394729 3.96099𝑒 − 06 2.83670𝑒 − 07 

0.5 1.8011225748 1.8011265965 1.8011222868 4.02169𝑒 − 06 2.88017𝑒 − 07 

0.6 1.8283053931 1.8283094755 1.8283051008 4.08238𝑒 − 06 2.92364𝑒 − 07 

0.7 1.8554882114 1.8554923545 1.8554879147 4.14308𝑒 − 06 2.96711𝑒 − 07 

0.8 1.8826710297 1.8826752335 1.8826707286 4.20378𝑒 − 06 3.01058𝑒 − 07 

0.9 1.9098538480 1.9098581124 1.9098535426 4.26447𝑒 − 06 3.05404𝑒 − 07 

1.0 1.9370366663 1.9370409914 1.9370363565 4.32517𝑒 − 06 3.09751𝑒 − 07 
 

Table 4: Numerical result of upper bound of MS and RK4 methods for solving Test Problem (b) for 

0.1h   at 1t  . 

𝑅 Exact Solution 
Numerical Results Absolute Error 

MS RK4 MS RK4 

0.0 2.4730819061 2.4730874281 2.4730815106 5.52209𝑒 − 06 3.95470e − 07 

0.1 2.5002647243 2.5002703071 2.5002643245 5.58279𝑒 − 06 3.99817e − 07 

0.2 2.5274475426 2.5274531861 2.5274471385 5.64348𝑒 − 06 4.04164e − 07 

0.3 2.5546303609 2.5546360651 2.5546299524 5.70418𝑒 − 06 4.08510e − 07 

0.4 2.5818131792 2.5818189441 2.5818127663 5.76488𝑒 − 06 4.12857e − 07 

0.5 2.6089959975 2.6090018230 2.6089955803 5.82557𝑒 − 06 4.17204e − 07 

0.6 2.6361788158 2.6361847020 2.6361783942 5.88627𝑒 − 06 4.21551e − 07 

0.7 2.6633616340 2.6633675810 2.6633612081 5.94696𝑒 − 06 4.25898e − 07 

0.8 2.6905444523 2.6905504600 2.6905440221 6.00766𝑒 − 06 4.30244e − 07 

0.9 2.7177272706 2.7177333390 2.7177268360 6.06836𝑒 − 06 4.34591e − 07 

1.0 2.7449100889 2.7449162179 2.7449096500 6.12905𝑒 − 06 4.38938e − 07 

 

 

Figure 3: Error lower bound of MS and RK4 

solution for Test Problem (b) for 𝒉 = 𝟎. 𝟏 at 1t   

 

Figure 4: Error upper bound of MS and RK4 

solution for Test Problem (b) for 𝒉 = 𝟎. 𝟏 at 1t   

Table 3 shows the numerical results of lower bound of MS and RK4 and Table 4 represents the 

numerical results of lower bound of MS and RK4 for solving Test Problem (b) by using ℎ = 0.1. The 

results are compared and it show that the results give a better accuracy for MS method than RK4 

method. The absolute error shows that the RK4 give a better result as the absolute error is much smaller 

than MS. 
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Figure 3 and 4 show the comparison between error of MS and RK4. The graphs obtained by using 

Matlab 2018. As shown in the figure, MS and RK4 method has a differences numerical approximations. 

The results can be proven from Table 3 and 4.  

4. Conclusion 

In this paper, MS method is proposed. It can be said that the proposed method is suitable in solving 

first order FDEs. The numerical approximation of the solution is then compared with RK4 method and 

the result shows that MS method is comparable to RK4 method. The absolute error for MS method is 

smaller compared to RK4 method. It can be concluded that MS method is more accurate in solving first 

order FDEs using Hukuhara approach compared to RK4. 
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