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Abstract: Fibonacci sequence is commonly found in everyday lives either in nature 

such as animals and plants or in the infrastructure itself that occurs naturally which 

somehow, people are not aware of how important nature is and do not recognize the 

beauty that nature had offered to them. This project focuses on the Fibonacci sequence 

and the Golden Ratio to analyze the violet flower’s petals and create a visual design 

of the violet flower’s petals and delves into the mathematical patterns found in violet 

flowers. In this project, MATLAB software was used to create a simulation of a violet 

flower’s petals to analyze the flower in three different characteristics, which are the 

number of the petals, the size of the pistil and the colour of the flower. Therefore, the 

most realistic visual design of a violet flower would be chosen, and the Fibonacci 

sequence and Golden Ratio would be analyzed. Therefore, referring to a professional 

who has more knowledge in MATLAB and adding some leaves are some suggestions 

that can be recommended for future work in order to achieve a better result. 
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1. Introduction 

Art can be defined as any creative human action or its outcome. Painting and sculpture are two of 

the most well-known visual arts [1]. Clothing, fabrics for clothing, and upholstery; machine-made 

carpets and rugs; furniture; ornamental glassware, porcelain, and faience; and metal artefacts, including 

accessories, are examples of decorative applied art objects that are used to improve everyday living and 

house interiors. However, the pattern on violet the flower’s petals can also be an art that everyone should 

be aware of because of its natural beauty. 

Violets are one of the brightest small flowers in the garden. True violets are not the same as African 

violets, which are endemic to east Africa. Our native violets are native to the temperate regions of the 

Northern Hemisphere and, depending on the species, can bloom from spring through summer. The 

genus Viola has over 400 different species of violet plants. The numerous violet plant kinds ensure that 
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there is a sweet little Viola suitable for practically any gardening purpose [2]. However, the emphasis 

of the study will be on the patterns of violet flower and how they relate to the Fibonacci series, golden 

mean, and fractal evidence. 

The flowers of the vast majority of the species are strongly zygomorphic with bilateral symmetry 

and solitary, however they do produce cymes on occasion. The blooms have five petals: four are 

upswept or fan-shaped, with two on each side, and one broad, lobed lower petal pointing downward. 

This petal is barely differentiated and may be somewhat or much shorter than the others. Many species 

are distinguished by the form and arrangement of their petals. For example, some species have a "spur" 

on the end of each petal, but the majority have a spur on the bottom petal [3]. 

1.1 Fibonacci Sequence 

      The Fibonacci sequence appears so frequently in the natural world. The spacing of joints in human 

fingers, the arrangement of seeds in sunflowers and the spiral of a nautilus shell as well as peacock’s 

feather are all examples of its proportions. The number of petals on flowers is another clear example of 

where the Fibonacci sequence can be found in nature. Most flowers have three petals (like lilies and 

irises), five (parnassia, rose hips) or eight (cosmea), 13 (some daisies), 21 (chicory), 34, 55 (like lilies 

and irises), or 89 (asteraceae) petals. Although the spiral has been used in imaginative ways, many of 

these designs have focused on numbers and rectilinear shapes [4]. 

1.2 Golden Ratio 

      The Golden Ratio can help decide where to put our material and helps create a composition that will 

draw the eyes to the important elements of the photo. The Golden Ratio sometimes called “divine 

proportion” is best approximated by the Fibonacci numbers. The Golden Ratio is about 1.618, and is 

represented by the Greek letter phi, Φ. The petal of a violet flower is a great visual image of the Golden 

Ratio in terms of makeup and appearance. Similarly, the ratio of any two consecutive Fibonacci 

numbers converges to rough values of 1.618 or 0.618. This diagram illustrates the connection between 

Fibonacci numbers and the golden ratio. Ancient Egyptians utilised this Golden Ratio in the 

construction of their enormous pyramids [5]. 

1.3 Fibonacci Sequence on Velvet Flower’s Petals 

Fibonacci numbers can be found in the flower realm as well. The central component of the flower, 

known as the pistil, follows the Fibonacci pattern in the same way that the petals do. In reality, pistils 

follow the Fibonacci sequence far more closely. The curving pattern they generate using the Fibonacci 

sequence creates a gorgeous and detailed design that genuinely resembles a work of art. Leaves of 

flowers, cactus, and other succulents' leaves also follow the Fibonacci sequence and are organised in 

both left-handed and right-handed spirals. The veins in the leaves also follow Fibonacci and branch out 

in an outward orientation. Their alignment is also in the shape of two Fibonacci numbers.  After a 

specific spiral turn (1, 2, 3, 4, or 5) there will be a leaf aligned in the direction of the original leaf, and 

the pattern will continue [6]. 

There are several examples of Fibonacci sequence in the food we eat, such as pineapples, artichokes 

pinecones, apples, bananas, lettuce, cauliflower, and broccoli. Famous examples include the lily, which 

has three petals, buttercups, which have five, the chicory's 21, and the daisy's 34. Observing the 

geometry of plants, flowers, or fruit reveals the presence of recurring structures and forms. The 

Fibonacci sequence, for example, is important in phyllotaxis, which is the study of the arrangement of 

leaves, branches, flowers, or seeds in plants with the goal of showing the occurrence of regular patterns. 

Surprising mathematical regularities govern the different combinations of natural elements: D'arcy 

Thompson discovered that the plant kingdom has an odd affinity for specific numbers and spiral 

geometries, and that these numbers and geometries are tightly related [4]. 
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Throughout this study, there are some contributions that could be achieved by conducting this 

research. Firstly, the art industry can use the violet flower to design anything such as outfits, carpets, 

ceramics, paintings, etc. From this, people will start to see the true beauty of the violet flower that is 

being ignored throughout time. Thus, this study will discuss the mathematical pattern in violet flower’s 

petals by using MATLAB software. Besides, people can learn about the Fibonacci sequence and the 

golden ratio found on the violet flower’s petals. Therefore, people and the art industry itself will gain 

benefit from the research. 

 

2. Methodology 

2.1 Fibonacci Sequence 

      A closer look at the numbers that make up the Fibonacci sequence reveals a plethora of intriguing 

patterns and mathematical features. Although Fibonacci does not specify these patterns in his book, the 

following are a few that have been discovered after years of studying the numbers in the sequence. 

Because they share no factors, any two consecutive Fibonacci numbers are compared prime. For 

instance: 

5, 8, 13, 21, 34 

1 ∙ 5 = 5 

2 ∙ 2 ∙ 2 = 8 

1 ∙ 13 = 13 

7 ∙ 3 = 21 

2 ∙ 17 = 34 

      When we add ten Fibonacci numbers together, we will always obtain a number divisible by eleven. 

For instance: 

1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 = 143 

143

11
= 13 

89 + 144 + 233 + 377 + 610 + 987 + 1597 + 2584 + 4181 + 6675 = 17567 

17567

11
= 1597 

      Every third Fibonacci number is divisible by two, or F3. Every fourth Fibonacci number is divisible 

by three, or F4. Every fifth Fibonacci number is divisible by five, or F5. Every sixth Fibonacci number 

is divisible by eight, or F6, and the pattern continues. With the exception of the fourth Fibonacci number, 

Fibonacci numbers in composite-number locations are always composite numbers. In other words, if n 

is not a prime, neither will the n-th Fibonacci number [7]. 

𝐹6 = 8 

𝐹9 = 34 

𝐹16 = 987 

     Finding the value of a Fibonacci number based on its location in the sequence can be time-consuming 

and difficult, especially if the number is further down the sequence. The fifth Fibonacci number is not 
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difficult to find. Locating the fifty-first phrase is significantly more difficult because it necessitates 

finding and adding the previous forty-nine terms. Jacques-Philippe-Marie Binet, a French 

mathematician, discovered a formula in 1843 that could calculate any Fibonacci number without having 

to find any of the previous numbers in the sequence. The golden ratio, 
1+√5

2
  and its inverse are used in 

this formula to calculate the n-th Fibonacci number [7].  

𝐹𝑛 =
1

√5
[∅𝑛 − (−

1

∅
)

𝑛
] =

1

√5
[(

1+√5

2
)

𝑛

− (
1−√5

2
)

𝑛

]                          Eq. 1 

Because the Fibonacci sequence is a second-degree linear, homogeneous recurrence relation, 

the following formula can be derived: 

Recurrence relation: 𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−2 

Initial conditions:     𝑓0 = 0, 𝑓1 = 1 

Assume that 𝑓𝑛 = 𝑟𝑛 is a solution, 

Then 𝑟𝑛 = 𝑟𝑛−1 + 𝑟𝑛−2      →     𝑟2 = 𝑟 + 1    →     𝑟2 − 𝑟 − 1 = 0 

Using the quadratic formula to solve this equation results in 𝑟1 =
1+√5

2
, 𝑟2 =

1−√5

2
 

𝑓𝑛 = 𝛼1𝑟1
𝑛 + 𝛼2𝑟2

𝑛     →     𝑓𝑛 = 𝛼1 (
1+√5

2
)

𝑛

+ 𝛼2 (
1−√5

2
)

𝑛

                                 Eq. 2 

𝑓0 = 𝛼1 + 𝛼2 = 0 

𝑓1 = 𝛼1 (
1 + √5

2
) + 𝛼2 (

1 − √5

2
) = 1 

𝛼1 = −𝛼2          and          𝛼2 = −
1

√5
 

𝑓𝑛 =
1

√5
(

1 + √5

2
)

𝑛

−
1

√5
(

1 − √5

2
)
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2
∙

1 + √5

1 + √5
=

1 − 5

2 + 2√5
= −

2

1 + √5
= −

1

∅
 

∴ 𝑓𝑛 =
1

√5
[∅𝑛 − (−

1

∅
)

𝑛

] 

2.2 Golden Ratio 

      We divide the image into three unequal pieces using the Golden Ratio, then use the lines and 

intersections to create the image. The golden ratio is computed by splitting a line segment so that the 

longer portion (L) is proportionate to the shorter section (S), and the longer portion is proportional to 

the entire line segment. The formula 𝐿 + 𝑆 =
𝐿+𝑆

𝐿
 can be used to express this relationship in general. 

Then, 𝑥 = 1 +
1

𝑥
. Finally, using the quadratic equation to solve for 8 yields the numerical value for the 

golden ratio, which is commonly represented by the Greek letter phi.  

∅ =
𝐿

𝑆
= 𝑥 =

1+√5

2
= 1.6180339887 …                             Eq. 3 
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      Because the ratio is 1: 0.618: 1 therefore the width of the first and third vertical columns will be 1 

while the width of the center vertical column will be 0.618. Likewise, with the horizontal rows: the 

height of the first and third horizontal rows will be 1, and the width of the center row will be 0.618.  

When powers of phi are examined, Fibonacci numbers become even more intimately tied to the 

golden ratio. First, ∅2 is written in terms of ∅, which after simplification yields ∅2 = ∅ + 1. Each 

successive power of phi can then be written in terms of factors of previous powers of phi. The result of 

each power is a multiple of ∅ plus a constant. It turns out that the phi coefficient and the constant are 

both Fibonacci numbers in the same order [7]. 

∅3 = ∅ ∙ ∅2 = ∅(∅ + 1) = ∅2 + ∅ = (∅ + 1) + ∅ = 2∅ + 1 

∅4 = ∅2 ∙ ∅2 = 3∅ + 2 

∅5 = ∅3 ∙ ∅2 = 5∅ + 3 

∅6 = ∅3 ∙ ∅3 = 8∅ + 5 

2.3 Developing a design using MATLAB 

      MATLAB is a computer language that engineers and scientists use to study and build systems and 

products that change the world. The MATLAB language, a matrix-based language that allows the most 

natural expression of computational mathematics, is at the heart of MATLAB. It combines computing, 

visualization, and a programming environment into one package. MATLAB is also a modern 

programming language environment, with advanced data structures, built-in editing and debugging 

tools, and object-oriented programming capabilities. Because of these features, MATLAB is an 

outstanding teaching and research tool [8]. In this research, the design for the Fibonacci sequence and 

the Golden Ratio was developed by using MATLAB software. Then, we analyze the comparison within 

three characteristics which are the number of the petals, the size of the pistil and the color of the flower 

to find the suitable visual design of a violet’s flower petals.  

3. Results and Discussion 

      In this research, the objectives are to analyze the Fibonacci sequence and the Golden Ratio on violet 

flower’s petals and to create a visual design of the violet flower. The method was conducted using 

MATLAB software to create the design with different colours, number of petals and size of the pistil 

for the violet flower. Figure 1 shows the coding of violet the flower: 

 

Figure 1: Coding of a Violet Flower 

The number of n is set to 1000 because it returns the product of all positive integers less than or 

equal to n, where n is a nonnegative integer value. The value must be in a positive integer in order to 
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create a non-inverted image. The size of the pistil, the number of petals and the color of the violet flower 

are selected to analyze to create a realistic image of violet flower’s petals. Based on Figure 2, 3 and 4, 

the results for each characteristic are recorded as an image has shown. 

 

 

 

 

 

 

 

Figure 2: The Image of Violet Flower with Different Number of Petal 

Based on the Figure 2, as the variable of the number of petals in the coding increase, the number of 

the petals in the visual image also increases. The number of petals changes in the coding according to 

the number in the Fibonacci sequence which are 3, 5 and 8. Since the actual number of petals in violet 

flower is 5, therefore the image shown with number of petals 3 and 8 is unrealistic and did not illustrate 

the real violet flower in real life. The number of petals of a flower follows the Fibonacci sequence 

consistently. Phi emerges in petals as a result of Darwinian processes selecting the optimal packing 

arrangement; each petal is placed at 0.618034 per turn (out of a 360° circle), providing for the best 

potential exposure to sunlight and other elements. From the image shown in this figure, it shows that 

the image of violet flower with the petal number of 5 is the best suit to create a realistic visual image of 

violet flower.       

 

 

Figure 3: The Image of Violet Flower with Different Size of Pistils 

Based on the Figure 3, as the variable of the size of pistil in the coding increase, size of the 

pistil of the flower in the visual image also increases. The central component of the flower, known as 

the pistil, follows the Fibonacci pattern in the same way that the petals do. The size of pistil used in this 

coding are 5, 20 and 40. The variable used in the first image shows that the size of pistil is too big while 

the third image shows that the size of the pistil is too small. Therefore, the second image shows the 

most realistic image to represent the actual image of violet flower in real life. In reality, pistils follow 

the Fibonacci sequence far more closely. The curving pattern they generate using the Fibonacci 

sequence creates a gorgeous and detailed design that genuinely resembles a work of art. From the image 

shown in this figure, it shows that the image of violet flower with the size of pistil 20 is the best suit to 

create a realistic visual image of violet flower. 
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Figure 4: The Image of Violet Flower with Different Colour Code 

Based on the Figure 4, as the colour code variable in the coding change, the colour of the violet 

flower in the visual image also changes. The colour code used for violet flower are [138, 43, 226] and 

[75, 0, 130] and the colour code used for red flower are [193, 90, 99] and [175, 54, 60] while the colour 

code used for yellow flower are [231, 199, 31] and [224, 163, 46]. Since the actual violet flower’s colour 

is violet, therefore the red and yellow colour of violet flowers are unrealistic to be compared with real 

life violet flower. From the image shown among these three figures, it shows that the image of violet 

flower with the violet colour code is the best suit to create a realistic visual image of violet flower. 

 

  

  

Figure 4.11 Visual Image of Violet Flower in Different Angle 

       

Based on the results in above figures, there are three analysis that have been discussed which are 

the number of petals, the size of the pistil and the colour of the violet flower petals. From the result, we 

can see that the Fibonacci sequence and the Golden Ratio has applied in order to get the result. The 
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formula of phi which is ∅=(1+√5)/2=1.6180339887 has been used to calculate the Golden Ratio of the 

flower. As for the final result, the number of petals which is 5, the size of the pistil which is 20 and the 

violet colour code have been chosen as the final result of the analysis since it has the most realistic 

visual image to represent an actual violet flower. 

4. Conclusion 

     This research project studies the Fibonacci sequence ad the Golden Ratio. As in this project, we 

analysed the petals using MATLAB software to produce graphical results. To obtain the visual design, 

a Fibonacci sequence and Golden Ratio has applied in the coding. With this coding, we can help the art 

industry to create a violet flower’s petals for people to see how beautiful the nature is. Thus, we created 

the analysis by some characteristics which are the number of petals, the size of the pistil and the colour 

of the flower to choose the perfect design of a violet flower’s petals. 
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