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Abstract It has been proved that nanofluids improve the thermal conduction and 

convection heat transfer capabilities of base liquids. Nanofluids are a novel type of 

heat transfer fluid that consists of both a base fluid and nanoparticles. As there has 

been a surge of interest in studying nanofluid flows in the last few years, this research 

is regarding a study on the nanofluids flow over stretching sheets with boundary 

conditions. In this research, the governing equations are transformed from partial 

differential equations into a set of nonlinear ordinary differential equations using 

similarity variables. Afterward, Runge-Kutta-Fehlberg method (RKF45) is adapted 

to solve a set of similarity equations that approach the boundary conditions. Five 

parameters influence the transport of momentum, energy, and concentration of 

nanoparticles in their respective boundary layers which are the parameters of 

Brownian motion Nb, thermophoresis Nt, Prandtl number Pr, Lewis number Le, and 

convection Bi. The impacts of all the parameters on boundary layers for thermal and 

concentration are depicted graphically. Nb, Nt, and Bi heating all contribute to the 

thickening of the thermal boundary layer. The concentration layer thickens as Bi 

enhances, but as Le increases, the concentration layer becomes thinner. The impact 

of Lewis number on the temperature distribution is minor but Nb, Nt, and Bi causes 

the local temperature to rise. 
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1. Introduction 

       Today's scientists and engineers are creating a large variety of nanoscale materials to take 

advantage of their exceptional properties, such as higher strength, lighter weight, better light spectrum 

regulation, and higher chemical reactivity compared to their larger-scale counterparts [1]. Nanofluids 

take the spotlight as it offers intriguing new possibilities for improving heat transfer effectiveness in 

comparison to pure liquids and it is considered as the future generation of heat transfer fluids. 
Nanofluids are colloidal suspensions of nanometre-sized particles, called nanoparticles in a base fluid 

[2]. Examples of nanoparticles used in nanofluids are created from metals, oxides, carbides, or carbon 
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nanotubes while typical base fluids include water, ethylene glycol and oil [3]. The fluid flow over a 

stretching surface has numerous uses for example in extrusion, wire drawing, metal spinning and hot 

rolling [4]. Crane [5] first introduced the idea of a stretching sheet and developed a closed form solution 

for viscous fluid flow over a stretching surface. Later, it was generalised to a three-dimensional case 

[6]. Aziz [7] suggested the use of convective boundary conditions for the first time in analysing the 

Blasius flow as the convective surface boundary condition appeared to be more appropriate than the 

steady surface boundary condition.  

       After that, various studies finished with the steady surface boundary condition were reconsidered 

with the convective surface boundary condition. Using Runge-Kutta method with shooting technique 

to aid the issue numerically, it is discovered that increasing the values of buoyancy variables induces 

an elevation in the velocity distribution while decreasing the micro-rotation, thermal, and nanoparticle 

concentration in the study of Rehman et al., [8]. Next, it is prevailed that when the porous parameter is 

enhanced, the dimensionless velocity drops while temperature and concentration increase in Williamson 

nanofluid over a stretching cylinder by Ibrahim & Negera [9]. While Hayat et al., [10] studied the effect 

of electrically conducting second-grade nanofluid flow across intensify heated stretching sheet. The 

formulation of the problem incorporates Brownian movement, viscous dissipation, and thermophoretic 

features. When the flowing stream and wedge travel in opposite directions, numerical evidence shows 

the presence of a non-unique solution. Moreover, another method used is the Keller box approach by 

Faisal et al., [11] to explain the hydromagnetic nanofluid flow due to an unstable bi-directional 

stretching surface that was not equally heated. In an industrial process, enhancing heating or cooling 

can save energy, save time, increase temperature, and extend the equipment's working life. A great deal 

of work has been done to obtain a better understanding of heat transfer performance to apply it to the 

process of increasing the effectiveness of heat transfer.  

Hence, this research is a study on the nanofluids flow over stretching sheets with boundary 

conditions. The objective for this research is to study the influence of a convective boundary condition 

on boundary layer flow, heat transfer and nanoparticle fraction over a stretching sheet.  

2. Mathematical Formulation 

Consider a stable state of two-dimensional flow of nanofluid boundary layer (x, y) through a 

stretching sheet with linear velocity contradistinction of distance x i.e. 𝑈𝑤 = 𝑎𝑥 where a is a real 

positive number for stretching sheet and x is the coordination from the position when sheet velocity is 

zero as displayed in Figure 1 below. The sheet surface temperature,  𝑇𝑤 is the consequence of a 

convection heating process with a temperature  𝑇𝑓 and a heat transfer coefficient h while uniform 

nanofluid volume fraction at the outer side of the sheet is 𝐶𝑤. Next, the steady temperature and the 

constant nanofluid volume fraction distant from the outer side of the sheet are 𝑇∞ and 𝐶∞. For this 

problem, the Boungiorno [12] model is modified to follow the continuity, momentum, energy, and 

volume fraction equations [13]. 
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In x and y directions, u .and v are for velocities, 𝜌 is the fluid pressure, 𝜌𝑓 is a density of base fluid, 

T is local temperature,.𝑣 stands for kinematic viscosity of basic fluid, 𝛼 represents the thermal 

conduction of fluid, while 𝐷𝐵 and 𝐷𝑇 are Brownian diffusion and thermophoresis diffusion factor 

respectively. Moreover, 𝜏 = (𝜌𝑐)𝑝/(𝜌𝑐)𝑓 is the ratio of the heat capacity of nanoparticles to the heat 

capacity of fluid. The boundary conditions are stated as:  

𝑦 = 0,  𝑢 = 𝑎𝑥, 𝑣 = 0,  −𝑘
𝜕𝑇

𝜕𝑦
= ℎ(𝑇𝑓 − 𝑇),  𝐶 = 𝐶𝑤. 

𝑦 → ∞,  𝑢 = 0,  𝑣 = 0,  𝑇 = 𝑇∞,  𝐶 = 𝐶∞.    

 

A simpler dimensionless form is introduced 
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1
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where η is similarity factor, and ψ as stream function clarified as 𝑢 =  
𝜕𝜓

𝜕𝑦
  and 𝑣 = −

𝜕𝜓

𝜕𝑥
, that satisfies 

Eq. 1. While Eq. 2 to Eq 5 is reduced to the following ordinary differential equations by using boundary 

layer estimations and similarity values Eq. 8 as follows: 

𝑓′′′ + 𝑓𝑓′′ − 𝑓′2
= 0,         
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𝑁𝑏
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approach to the inquiry boundary conditions 

𝑓(0) = 0, 𝑓′(0) = 1, 𝜃′(0) = −𝐵𝑖[1 − 𝜃(0)], 𝜙(0) = 1,  

𝑓′(∞) = 0, 𝜃(∞) = 0, 𝜙(∞) = 0,      

where primes symbolize derivative with respect to η. Further, Brownian motion denotes as Nb, 

thermophoresis Nt, Prandtl number Pr, Lewis number Le and convection Bi which are defined as 
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.  

Due to the pressure effects, heat transport is not exist caused of nanoparticle concentration gradients 

when Nb = 0. The reduced Nusselt number Nur is calculated using the dimensionless temperature on 

sheet surface 𝜃′(0)  

Figure 1: Geometry of problem 
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𝑁𝑢𝑟 = 𝑅𝑒𝑥
−1/2 𝑁𝑢 = −𝜃′(0), 

where, 

𝑁𝑢 =
𝑞𝑤𝑥

𝑘(𝑇𝑤−𝑇∞)
,   𝑅𝑒𝑥 =

𝑢𝑤(𝑥)𝑥

𝑣
, 

where  𝑞𝑤 is the surface thermal flux and 𝑞𝑚 is the surface mass flux. 

3. Results and Discussion 

After transforming the partial differential equations to the first order ordinary differential equations 

by utilising the similarity variables has been proven, then Runge-Kutta Fehlberg method or RKF45 is 

adapted to obtain the numerical results by using Maple software. Results are presented graphically to 

give more understanding of the subject following the inquiry and has been compared with the results 

obtained by Makinde and Aziz [14]. Comparisons demonstrate that for each value of the relevant 

parameters, there is a high level of agreement. Therefore, it showed that the present results are accurate. 

3.1  Temperature profiles 

Figure 2 illustrate the impact of Brownian motion and thermophoresis parameters on the 

temperature distribution. When both Nt and Nb are set to 0.1, the line graph starts at below which 

indicates a low temperature. As there is an increment in the values for Nb and Nt to 0.2,0.3 and 0.5, a 

gradual slope is shown suggesting a decrement in the reduced Nusselt number. It has been discovered 

that as Nt and Nb levels rise, so does the temperature, thus leading to quicker random mobility of 

nanoparticles in fluid flow and further resulting in the thickening of thermal boundary layer. 

As noticed in Figure 3, the influence of Lewis number on temperature distribution is visible when 

near the sheet as the slopes start to assimilate further away from the sheet. When the values are set from 

lower to higher for Le which are 5,10,15, and 20, the graph shows a decrement in the temperature. Also, 

there will be a significant reduction for thickness in the boundary layer where there is an escalation in 

Lewis number. 

 

Figure 4 depicts the effect of the Biot number on the thermal boundary layer. Apparently, thermal 

expansion infiltrates further into the quiescent fluid due to higher surface temperatures result from more 

convection which are set to 0.1, 1.0, 5.0 and 10. Next is the temperature profiles shown in Figure 5 

demonstrate that when the Prandtl number escalates, the thickness of the thermal boundary layer 

Eq. 16 

Figure 2: Effect of Nt and Nb on temperature        

                 Le = 5, Pr = 5, Bi = 0.1  

Figure 3: Effect of Le on temperature  

                 Nt = Nb = 0.1, Pr = 5, Bi = 0.1 
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becomes thinner as the slopes progressively elevate. As a result, the reduced Nusselt number, which is 

proportionate to the preliminary curve, is increasing.  

 

3.2  Concentration profiles 

Figure 6 depicts the nanoparticle concentration corresponding to Figure 2. The concentration 

profiles, unlike the temperature profiles, are very marginally impacted when there is an increment for 

Brownian motion and thermophoresis. A contrast for Figure 3 and 7 reveals that the Lewis number has 

a large influence on the concentration distribution as shown in Figure 7 but only has minimal impact 

on the temperature profile shown in Figure 3. A greater Lewis indicates a decrease Brownian diffusion 

coefficient 𝐷𝐵 , relate to Eq. 14 for a basic fluid of a specific kinematic viscosity v, which must result 

in a reduced penetration deepness for the concentration boundary layer [3]. 

The thermal penetration depth increases when the convection heating of the sheet increases, as seen 

in Figure 8. Due to the concentration profile being influenced by the temperature field, a greater 

convection is expected to facilitate deeper into concentration. This prediction is achieved in Figure 8, 

which forecasts larger concentrations with increasing Biot numbers. Figure 9 is the influence of Prandtl 

number on concentration profiles, but we can barely see any changes in concentration graph for the 

input of difference values Pr for  values 1, 2, 5, and 10. 

 

Figure 4: Effect of Bi on temperature 

                Nt = Nb = 0.1, Pr = Le = 5 

Figure 5: Effect of Pr on temperature 

              Nt = Nb = Bi = 0.1, Le = 5 

Figure 6: Effect of Nt and Nb on concentration 

                Le = 5, Pr = 5, Bi = 0.1 

Figure 7: Effect of Le on concentration  

                Nt = Nb = 0.1, Pr = 5, Bi = 0.1 
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Theinfluence Brownian motion and thermophoresis on the local Nusselt number against the 

convection Bi is shown in Figure 10. The degree of convective heating upon the sheet surface intense 

as the variable Bi grows, resulting in a rising transfer of heat from one place to another (lower surface 

to top surface) by the movement of nanofluids. This leads the pattern of the graph for local Nusselt 

number grows as the convection rises thus resulting in thickening the thermal boundary layer. 

 

 

4. Conclusion 

In this study, nanofluids flow over a stretching sheet is considered. The derivation of governing 

equations from partial derivative equations to a set of nonlinear ordinary derivative equations through 

similarity variables has been proven. Numerical solutions are obtained by employing the Runge-Kutta 

Fehlberg method in attempts to reproduce the results by Makinde and Aziz. Results are depicted visually 

to illustrate the influence of the five parameters. Comparisons demonstrate that for each value of the 

relevant parameters, there is a high level of agreement. Therefore, it showed that the current results are 

reliable. Five parameters influence the transport of momentum, energy, and concentration of 

nanoparticles in their respective boundary layers which are the parameters of Brownian motion Nb, 

thermophoresis Nt, Prandtl number Pr, Lewis number Le, and the Biot number. Based on the results, 

Brownian motion, thermophoresis, and convective heating all contribute to the thickening of the thermal 

boundary layer. The concentration layer thickens as Bi increases, but as Le increases, the concentration 

layer becomes thinner. Although the influence on the temperature distribution cause by Lewis number 

is minor, the local temperature rises as Brownian motion, thermophoresis, and convective heating all 

enhance. Moreover, local Nusselt number is spotted to grow while convection rises.  

 

 

Figure 10: Local Nusselt number graph for 

different values Bi 

Figure 8: Effect of Bi on concentration 

                Nt = Nb = 0.1, Pr = Le = 5 

Figure 9: Effect of Pr on concentration  

                Nt = Nb = Bi = 0.1, Le = 5 
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