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Abstract: For this study, the artery is considered as a prestressed thin-walled elastic 

stenosed tube, moreover the blood is treated as an incompressible Newtonian fluid 

with variable viscosity. Here, the solitary wave propagation in this composite medium 

has been investigated by using the reductive perturbation method. A set of various 

orders of nonlinear differential equations are obtained by introducing the reductive 

perturbation method into the dimensionless equations (tube and fluid). Then, the 

various orders of differential equations are solved to get the forced Korteweg-de 

Vries-Burgers (FKdVB) equation with variable coefficient. The evolution equation 

is solved analytically. The result revealed that when the blood flows in a stenosed 

tube, the wave amplitude decreases over time corresponding to the viscous effect of 

fluid and the stenosis. Conversely, when blood flows in a tube without stenosis, the 

wave structure is an increasing shock wave profile propagates to the right. In addition, 

by discarding the stenotic effect, the solution of fluid pressure shows an increasing 

shock wave profile propagates to the right when the time increases. The fluid pressure 

function reached minimum value in the center of stenosis due to the existence of 

stenosis. The wave speed variation is presented when different value of stenotic 

effects is under consideration. 

 

Keywords: Stenosed Tube, Newtonian Fluid With Variable Viscosity, Reductive 

Perturbation Method, Fkdvb Equation With Variable Coefficient 

 

1. Introduction 

A circulatory system is known as the cardiovascular system that includes the heart and blood vessels 

and contains about 11 pints (5 liters) of blood [1]. In the arteries system, the total volume of blood held 

is around 10% to 15% [2]. The blood flow in the human body was found by William Harvey [3]. Blood 

exhibits Newtonian behaviour in most arteries, and the viscosity can be considered constant [4]. In 

addition, Faivre recorded that the human body also consists of pressure in the blood [5]. In 1808, 

Thomas Young was the first who derive the speed of pulse waves in an elastic tube containing an 

incompressible liquid [6].  
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Since Thomas Young discovered this pulse wave speed, the nonlinear propagating of waves in a 

tube filled fluid became a popular research target globally. The related studies have been done by 

Malflient and Ndayirinde [7], Bakirtas and Demiray [8], Tay [9], and Il’íchev, Shargatov, and Fu [10]. 

From these studies, researchers focused on the solitary waves in a inviscid fluid-filled thin elastic tube 

by using tanh method or reductive perturbation method to achieve the governing equation. 

Some studies related to the mathematical model for arterial blood flow have been done. Bakirtas 

and Antar [11], Tay, Ong and Mohamad [12], Demiray [13], Nikolova [14], Goh and Choy [15] and 

Yang, Song and Yang [16] obtained the KdV equation through the reductive perturbation method. 

Bakirtas and Antar [11] treated the artery as an elastic, stenosed, and thin-walled long tube, while the 

blood considered to be an incompressible inviscid fluid. Yang, Song and Yang [16] considered the 

artery as an elastic deformable tube and blood is treated as inviscid fluid. However, the other researchers 

studied the propagation of wave in a bumped prestressed thin elastic wall with Newtonian fluid. 

Furthermore, Gao and Zhang [17] reviewed a thin elastic tube with viscous fluid by using a new model 

of the multiscale analysis and perturbation method to obtain a Boussinesq equation. Besides, Ali, 

Hussain, Anwar and Inc [18] study the blood flow in an artery with stenosis by using numerical method, 

named finite difference method. Kumar and Choy [19] explored the solitary wave modulation in an 

elastic tube with variable radius with inviscid fluid by implement the reductive perturbation method to 

get the Nonlinear Schrodinger (NLS) equation with variable coefficient. Bi, Zhang, Liu and Liu [20] 

studied the propagation of nonlinear blood flow in artery by using radial basis function method to obtain 

the higher order of nonlinear Schrödinger equation. 

From those literature reviews, researchers concluded that the study of wave propagation in the 

stenosed elastic tube with variation viscosity of a Newtonian fluid is worthy to carry out because it can 

detect the abnormal arteries in the human body through the changes of characteristics of nonlinear 

waves during propagation [21]. Therefore, for present research, the artery is assumed as a prestressed 

elastic tube with thin wall with symmetrical stenosis and treating the blood as an incompressible 

Newtonian fluid with variable viscosity. Besides, the propagation of solitary waves in this medium is 

investigated by applying the reductive perturbation method. There are three objectives that are 

concerned in this study. Firstly, to derive the nonlinear partial differential equation for wave propagation 

in a Newtonian fluid with variable viscosity filled in the prestressed thin-walled stenosed elastic tube 

by using reductive perturbation method. Next, determine the progressive wave solution for nonlinear 

partial differential equation. Then, analyse the solution of progressive wave on the variation of wave 

speed, fluid pressure function and the radial displacement in the presence and absence of the stenosis, 

respectively. 

2. Basic Equations and Methods 

2.1 Equation of Tube 

The artery is a tube with three layers of tissues: intima, tunica media, and adventitia. For the present 

study, the artery is identified as a elastic tube with stenosed wall. The mathematical model for this study 

is illustrated as in Figure 1, where r0 represents the deformed radius at the coordinate system’s origin, 

z* is the axial coordinate after static deformation, f(z*) is a function that characterizes the axially 

symmetric bump on the surface of the arterial wall and u* is a dynamical radial displacement. The 

equation of motion of the tube in the radial direction as in the Eq. 1 [13], where μ is the shear modulus, 

H is the thickness of tube material, R* (z*) is the radius of circular cross-section tube, r* (z*) characterizes 

the variable radius after this static deformation, Σ is the strain energy density function of the membrane, 

λ1 is the stretch ratios along the meridional curves, λz is an initial axial stretch ratio in the arteries 

direction, λ2 is the stretch ratios along the circumferential curves, Pr
* is the radial fluid reaction forces 

on the initial surface of the tube, ρ0 is the mass density of the membrane material, t* is the time 
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parameter, and Λ is defined by [1 + (𝑟∗′
+

𝜕𝑢∗

𝜕𝑧∗)
2

]

1

2

. The tube's equation of motion in the redial direction 

is as follows: 
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Figure 1: The geometry of the tube [13]. 

 

2.3 Equations of fluids 

The blood flow inside the artery is assumed to be an incompressible Newtonian fluid with variable 

viscosity. Because it can violate the non-slip condition at the boundary by vanishing the viscosity on 

the wall of artery, its maximum value can be reached at the artery’s center, which satisfies the 

assumption for the flow problems in large arteries [13]. The incompressible Newtonian fluid with 

variable coefficient whose axially symmetric motion in the cylindrical polar coordinates can be 

expressed as [13]: 
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where 𝑉𝑟
∗ and 𝑉𝑧

∗ are the radial components and the axial velocity components of the fluid body, 

respectively. 𝜌𝑓 is the mass density of the fluid, 𝑣 is the kinematical viscosity of the fluid at the tube’s 

center and 𝑦(𝑟) is the variation of viscosity, 𝑃𝑟
∗ is the fluid reaction force density and 𝑟𝑓 = 𝑟∗(𝑧∗) + 𝑢∗. 

2.4 Nondimensionalized Equations 

The dimensionless quantities are used to obtain the equations of tube and fluid without dimension 

from their dimensional equations. Thus, the following dimensionless quantities are introduced [22]: 
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where 𝑐0 is a Moens-Korteweg wave speed, 𝑅0 known as initial reference radius, 𝜆𝜃 = 𝑟0/𝑅0 is defined 

as the initial stretch ratio. 

Utilizing Eq. 7 into the Eq. 1 – Eq. 6 and using the chain rule, the non-dimensional equations are 

achieved as below: 
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3. Long wave approximation 

This study examined small-but-finite amplitude solitary waves propagation in a prestressed thin-

walled elastic stenosed tube filled with the incompressible Newtonian fluid with variable viscosity. 

Then, the reductive perturbation method will be used. The stretched coordinates are introduced for the 

boundary-value problem [22]: 

𝜉 = 𝜀
1
2(𝑧 − 𝑐𝑡),      𝜏 = 𝜀

1
2𝑧,                                                                                                                  𝐸𝑞. 14 
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where ε denotes a small parameter measuring the weakness of nonlinearity and dispersion, and c is the 

scale parameter to be determined from the solution. G(z) and g(z) must be of orders 5/2 to consider the 

stenosis’s effect in the nonlinear differential equations. Thus, G and g are assumed to have the following 

form [18]: 

𝐺(𝜉, 𝜏) = 𝜀𝐺(𝜏),     𝑔(𝜉, 𝜏) = 𝜀𝑔(𝜏).                                                                                                          𝐸𝑞. 15 

Eq. 16 is the type of differential relations. It introduces all the equations of tube and fluid in 

dimensionless form. 
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For the long wave limit, it considered that the field variables are expanded into asymptotic series of ε 
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By introducing Eq. 16 and Eq. 17 into Eq. 9 until Eq. 13 yield the following various order of nonlinear 

differential equations. 
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with boundary conditions 
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Thus, the viscosity is assumed as the order of 𝜀
1

2, then 𝑣 = 𝜀
1

2𝑣. 

The expressions of Pr(1) and Pr(2) with the radial displacement, u must know to complete the equations. 
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The coefficients of 𝛾0, 𝛾1, 𝛾2, 𝛽0, 𝛽1 and  𝛽2 are defined as below 
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3.1 Solution of the Field Equations 

At this stage, the solutions for the various order of differential equations Eq. 19 – Eq. 22 are 

determined in order to obtain the governing equation for the corresponding mathematical model. From 

the solution of Eq. 19 and Eq. 23 under the boundary conditions Eq. 20, one can get 
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where c is known as phase velocity in the long wave approximation, and the following condition is 

obtained 
2

1 2c    and ( , )U   is known as unknown function that governing equation will be 

determined afterward. 

Using the solution of Eq. 26 into the Eqs. 21 – 23 and by eliminating the 𝑢2, then, the following 

governing equation is achieved: forced Kortweg-de Vries Burger (FKdVB) equation with variable 

coefficient.  

   
2 3

1 2 3 42 3
,                                                                   .27

U U U U U
U Eq      

    

    
    

      

where the coefficients are defined by 
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      

      

 
  



 
         

 
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3.2 Progressive Waves Solution 

The analytical solution to the FKdVB problem with variable coefficients was investigated in this 

section. To begin, consider a new dependent variable, V as follow [22]:  

               1 1
0

, , , 1 2 .                                      .29U V s ds V g G Eq


                    

Introducing Eq. 29 into Eq. 27 yields 

     
2 3

11
1 2 3 42 3

1

0.                                .30
2

V V V V V
V g G Eq 

      
     

      
        

        

Then, introduce the coordinate transformation as follow 

          1 1 1 4
0

,     2 .                                                   .31g s G s s ds Eq


                  

By introducing Eq. 31 into Eq. 30, the FKdVB equation with variable coefficient reduces to the KdVB 

equation 

     2 2 3 3

1 2 3 0.                                                         .32V V V V V Eq                    
 

The solution of the KdVB equation is given by [22] 

  2 2

1 2 1 33 25 sech 2tanh ,                                                                                .33V a Eq       
 

where the term a is known as a constant and   is a phase function defined by 

  2 310 .                                                                                                                  .34a Eq        

Inserting Eq. 28, Eq. 28, Eq. 33 and Eq. 34 into Eq. 29, the analytical solution of the evolution equation 

Eq. 27 is obtained as  

     
2

2 12

1 1 3 1

3 1
sech 2tanh ,                                                       .35

25 2

a
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   

where 
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
 

The fluid pressure, 𝑝1 is obtained by substituting the Eq. 35 into Eq. 26, one can get 

          2 2

1 1 1 1 2 1 3 1 13 25 sech 2tanh 2 2 .                       .37p a g G Eq                
 

The wave speed is given by, 

   2 1 1
2

1 1

3
1 .                                                        .38
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d
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3.3 Numerical Results and Discussion 

The strain energy density function, 𝛴 and the coefficients of 𝛾0, 𝛾1, 𝛾2, 𝛽0, 𝛽1 and  𝛽2 are given by 

[18]. Demiray [18] stated that using the value of material constant, 𝛼 = 1.948 and the value of axial 

stretch of the artery and circumferential stretch 𝜆𝑧 = 𝜆𝜃 = 1.6, can get 𝛾0 = 49.183, 𝛾1 = 326.844, 𝛾2 = 

1176.561, 𝛽0 = 78.692, 𝛽1 = 296.105, 𝛽2 = 991.496, c = 15.391, 𝜇1 = 4.911, 𝜇2 = 0.0325, 𝜇3 = 0.043, 

provided m = 0.1 and v = 1. The coefficient of 𝜇4(𝜏) and 𝜇(𝜏) can be obtained through specifying the 

functions 𝐺(𝜏) and 𝑔(𝜏) which characterize the stenosis’s shape in the deformed and undeformed states. 

Then, set 𝐺(𝜏) = 0, 𝑔(𝜏) = 𝑠𝑒𝑐ℎ (𝛿𝜏) and a = 1. 

 

  

Figure 2: BVP: Radial displacement U versus space 𝜏 for a different time at 𝛿 = 0.01 in the presence 

of stenosis (i) and the absence of stenosis (ii), respectively. 

 

  

Figure 3: BVP: Fluid pressure function versus space 𝜏 for different time 𝜉 at 𝛿 = 0.01 in the presence 

of stenosis (i) and the absence of stenosis (ii), respectively.  
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Figure 4: The wave speed, 𝑣𝑝 for different 𝛿  

Figure 2 illustrates the results for the radial displacement U in the existence of stenosis (the solution 

of the FKdVB equation with variable coefficient) and the absence of stenosis (the solution of the KdVB 

equation with variable coefficient), respectively. Figure 2(i) shows that the amplitude of the bell-shaped 

wave decreases as time increases. At space 𝜏 = 0, the differences between two lines plotted for the 

values of U from the top are 5.17 × 10-4, 5.04 × 10-4, 3.61 × 10-4 and 2.12 × 10-4. The difference between 

two lines becomes smaller and smaller from the top. Figure 2(ii) shown an increasing shock wave profile 

where this shock wave profile propagates towards right as time increases. From these two figures, it is 

observed that the solution of FKdVB equation with variable coefficient gives a solitary wave, but the 

solution of the KdVB equation gives a shock wave profile. Hence, it can be concluded that the variable 

viscosity in fluid plays an important role to determine the blood flow characteristic. The solution of the 

fluid pressure function with space 𝜏 in the presence of stenosis and absence of stenosis are plotted in 

Figures 3(i) and 3(ii), respectively. The inverse solitary wave profile as in Figure 3(i) is because of 

variable viscosity and stenosis. Besides, due to the presence of stenosis, the fluid pressure function 

reached a minimal value at the stenosis's core. By discarding the stenotic effect, an increasing shock 

wave profile propagates to the right as time increases, as seen in Figure 3(ii). Next, the effects of the 

severity of the stenosis on the wave speed has been presented in Figure 4. Figure 4 shows the wave 

speed of the FKdVB equation increases with space 𝜏 till a terminal velocity. Besides, it shows as 𝛿 

increases, the wave speed increases faster. As seen in Eq. 38, due to the presence of stenosis, the wave 

speed fluctuates along the tube axis. 

4. Conclusion 

In conclusion, the propagation of solitary wave in a stenosed thin elastic tube filled Newtonian fluid 

with variable viscosity is studied by using the reductive perturbation method. The evolution equation 

for current research is the forced Korteweg-de Vries-Burgers (FKdVB) equation with variable 

coefficient. From the graphical outputs, it is concluded that in the absence of stenosis, the radial 

displacement and fluid pressure function show increasing shock wave profile propagates to the right by 

preserving their form as time increases. On the other hand, in the presence of stenosis, radial 

displacement shows bell-shape wave, but fluid pressure function shows inverse bell-shaped wave. All 

these amplitudes of waves decrease as time increases. From graphical output of wave speed, it shows 

an increasing wave speed until a terminal velocity 1 is achieved. 
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