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Abstract: Vaccination becomes one of the crucial roles in lessening the impact of 

this virus on society. Since not much research proposed the model that considers 

vaccination for the newer infectious disease, COVID-19, this study is to propose a 

Susceptible-Infected-Recovered (SIR) model to describe the spread of the COVID-

19 pandemic with the effects of vaccination. To investigate this impact, it is worth 

making a comparison between the models without and with vaccination effort in 

studying the models. In this study, the analytical solutions are derived with the aid of 

stability analysis. The solutions consist of both numerical and graphical approaches 

using Maple and MATLAB software. The steady-states, associated eigenvalues, and 

reproduction number of 𝑅0 and 𝑅𝑣 are calculated, and it showed that disease-free 

equilibrium and the endemic equilibrium could not exist together. The infection rate 

and the reproductions numbers are vital factors in the emergence of an epidemic, and 

this epidemic can be controlled with vaccination. These results concluded that the 

effect of vaccination is significant in mitigating this virus from spreading 

unboundedly. 
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1. Introduction  

Vaccination is one of the important ways to avoid any disease and help maintain our body in good 

health. According to Understanding How Vaccines Work [1], the vaccine helps create immunity to 

protect our bodies from infection without causing harmful side effects. It contains antigens that are 

obtained from part or all of a certain virus or bacterial structure turned off or weakened. Antigens in 

vaccines act to stimulate the immune system of the body to form immunity against infection of specific 

diseases. The technology makes vaccine administration more practical and less painful. 

According to Asita [2], the current pandemic, COVID-19, is a coronavirus known as SARS-CoV-

2. Starting in Wuhan, China, in December 2019, then spread globally, COVID-19 is a contagious 

infection that can spread when an infected person coughs or sneezes then infect others through droplets 

of saliva or nasal discharge. This infection is similar to other influenza infections, and complications 
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are worse for people who have a weak immune system. Standard Operating Procedure (SOP), such as 

social distancing and wearing a face mask, has been introduced in the Transmission of SARS-COV-2: 

Implications for infection prevention precautions (2020) [3], and Movement Control Order (MCO) is 

also implemented in every country to reduce the COVID-19 infection [4]. However, not all countries’ 

success following the SOP and implementation of MCO has caused other waves of COVID-19 cases. 

Vaccination seems like the country’s best way to curb the spread of COVID-19 [5]. The prime minister 

is the first to take the vaccination in Malaysia since the vaccination program started in February 2021, 

aimed to achieve herd immunity against COVID-19 among its citizens and non-citizens residing in the 

country, targeting over 26 million residents [6]. Herd immunity is protection from infectious disease, 

and the higher population gets vaccinated, the tougher the virus can infect each other [7]. 

Mathematical modelling is an important alternative to an abstract model that describes the behavior 

of a system using mathematical language. Mathematical modelling could be used to study infectious 

diseases to predict the future of an outbreak and measure the level of uncertainty in these forecasts [8]. 

In mathematical modelling, an epidemic model such as the SIR model has been widely used for studying 

and investigating a spread of disease with a compartment of susceptible (S), infected (I) and recovered 

(R). The model can be modified to study any infectious disease by adding suitable compartments and 

parameters. 

This research studies the assumption of the SIR model to describe the spread of COVID-19, mainly 

discussed in Chauhan et al. [9], where the model considered vaccination effects. The disease-free 

equilibrium point and endemic equilibrium point of the model are discussed. The local stability analysis 

of the model is determined by the associated eigenvalues and the basic reproduction number, where the 

reproduction number is explicitly linked to the vaccination effort. 

2. Methodology 

We investigate the effects of vaccinations on a population using the SIR model approach. The work 

has also been discussed in Chauhan et al. [9]. However, we work out a more detailed analysis of the 

eigenvalues and the corresponding threshold conditions for the model without vaccination and with 

vaccination. 

2.1 SIR Model without Vaccination 

This model is considering a model without vaccination and the total population density is assumed 

as 𝑅(𝑡) + 𝑆(𝑡) + 𝐼(𝑡) = 1 [9]. The mathematical modelling is written as 

𝑑𝑆

𝑑𝑡
= 𝜇 − 𝛽𝐼𝑆 − 𝜇𝑆,                 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝛾𝐼 − 𝜇𝐼,                  

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅,                                                                                    𝐸𝑞. 1 

where 𝜇 is the natural birth and death rate, 𝛽 is the effective contact rate between susceptible and 

infected individuals, and 𝛾 is the recovery rate of infected individuals. Consider the reduced model  

𝑑𝑆

𝑑𝑡
= 𝜇 − 𝛽𝐼𝑆 − 𝜇𝑆,                   

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝛾𝐼 − 𝜇𝐼,                                                                          𝐸𝑞. 2 
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where 𝑅(𝑡) is not considered since the value can be derived from the total population density that is 

𝑅(𝑡)  = 1−𝑆(𝑡) − 𝐼(𝑡).  

 

 

2.1.1 Stability Analysis of SIR Model without Vaccination 

For stability analysis of the model, Maple software is used to find the solutions. Firstly, we need 

to find the equilibrium point by letting Eq. 2 equal to zero and it is resulting in two equilibrium points 

that stand for disease-free equilibrium and endemic equilibrium. The following are the solutions 

obtained for each equilibrium 

i. Disease-free equilibrium: (𝑆, 𝐼) = (1,0), 

ii. Endemic equilibrium: (𝑆, 𝐼) = (𝛾 +  𝜇 𝛽 , 𝜇(𝛽 − 𝛾 − 𝜇)𝛽(𝛾 +  𝜇)).  

These solutions will become the steady-state for the system of equations in stability analysis. The 

Jacobian of the system for Eq. 2 is 

𝐽 = [−𝛽𝐼 − 𝜇 − 𝛽𝑆 𝛽𝐼 𝛽𝑆 − 𝛾 − 𝜇 ].                                                           𝐸𝑞. 3 

i. Disease-free equilibrium 

By substituting the steady-state of disease-free equilibrium into Eq. 3, we get the yields of the 

Jacobian for the disease-free equilibrium is 

 𝐽 = [−𝜇 − 𝛽 0 𝛽 − 𝛾 − 𝜇 ].                                                                  𝐸𝑞. 4 

From Eq. 4, the determinant is −𝜇(𝛽 − 𝛾 − 𝜇) and the trace is 𝛽 − 𝛾 − 2𝜇. To determine the stability 

of the equilibrium point, the eigenvalues solved from −(𝜇 +  𝜆)(𝛽 − 𝛾 − 𝜇 − 𝜆) are 

𝜆1 = −𝜇, 𝜆2  =  𝛽 − 𝛾 − 𝜇.                                                        𝐸𝑞. 5 

All eigenvalues with negative real parts and 𝛽 < 𝛾 + 𝜇 are said to be stable. From the determination 

and trace, we have 𝛽 − 𝛾 − 𝜇 same as the result of eigenvalues, 𝜆2 and it can be assumed as 

reproduction number, 𝑅0. This endemic equilibrium exists if  

𝛽 − 𝛾 − 𝜇 >  0 → 𝑅0 > 1.                                                             𝐸𝑞. 6 

Assume that 𝑅0 =
𝛽

𝛾+𝜇
 where 𝑅0 is the reproduction number of the disease-free equilibrium for the SIR 

model without vaccination. 

ii. Endemic equilibrium 

By substituting the steady-state point of endemic equilibrium into Eq. 3, we obtain the Jacobian 

matrix as 

𝐽 =  [−
𝜇(𝛽 − 𝛾 − 𝜇)

𝛾 +  𝜇
− 𝜇 − 𝛾 − 𝜇 

𝜇(𝛽 − 𝛾 − 𝜇)

𝛾 +  𝜇
 0 ] .                                                   𝐸𝑞. 7 

From Eq. 7, the determinant is 𝜇(𝛽 − 𝛾 − 𝜇) and the trace is −
𝜇(𝛽 −𝛾 −𝜇)

𝛾 + 𝜇
− 𝜇 which resulting 

eigenvalues 



Zainizam et al., Enhanced Knowledge in Sciences and Technology Vol. 2 No. 1 (2022) p. 231-240    

 

234 
 

𝜆3,4 =
1

2
[−

𝜇𝛽

𝛾 + 𝜇
± √

𝛽2𝜇2

(𝜇 + 𝛾)2
− 4𝜇(𝛽 − 𝛾 − 𝜇)].                                        𝐸𝑞. 8 

By substituting 𝑅0 into 𝜆3,4, the eigenvalues become 

𝜆3,4 =
1

2
[−𝜇𝑅0 ± √𝜇𝑅0 − 4𝜇(𝛽 − 𝛾 − 𝜇)]                                                    𝐸𝑞.  9 

The endemic equilibrium point exists only when the reproduction number is 𝑅0 > 1. 

2.2 SIR Model with Vaccination  

This model is considering a model with vaccination and he total population density is assumed as 

𝑅(𝑡) + 𝑆(𝑡) +  𝐼(𝑡) + 𝑉 (𝑡) =1 [9]. The mathematical modelling is as follows 

𝑑𝑆

𝑑𝑡
= (1 − 𝑝)𝜇 − 𝛽𝐼𝑆 − 𝜇𝑆, 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝛾𝐼 − 𝜇𝐼,                

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅,                            

𝑑𝑉

𝑑𝑡
= 𝑝𝜇 − 𝜇𝑉,                                                                                𝐸𝑞. 10 

and the reduced model is 

𝑑𝑆

𝑑𝑡
= 𝜇 − 𝛽𝐼𝑆 − 𝜇𝑆,              

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝛾𝐼 − 𝜇𝐼,               

𝑑𝑉

𝑑𝑡
= 𝑝𝜇 − 𝜇𝑉.                                                                                𝐸𝑞. 11 

𝑅(𝑡) was assumed as the total population density, 𝑅(𝑡) = 1− 𝑆(𝑡) − 𝐼(𝑡) − 𝑉(𝑡). 

2.2.1 Stability Analysis of SIR Model with Vaccination 

Maple software was used to conduct the stability analysis of the model. Firstly, let Eq. 11 equal to 

zero to find the equilibrium point. There are two equilibriums for this model, which are disease-free 

equilibrium and endemic equilibrium. The solutions obtained for each equilibrium that used as steady-

states for the system of equations are as follows 

i. Disease free equilibrium: (𝑆, 𝐼, 𝑉) = (1,0, 𝑝)  

ii. Endemic equilibrium: (𝑆, 𝐼, 𝑉) =  (𝛾 +  𝜇 𝛽 , 𝜇(𝛽 − 𝛾 − 𝜇) 𝛽(𝛾 +  𝜇) , 𝑝)   

 

Therefore, the Jacobian of the system for Eq. 11 is 

𝐽 = [−𝛽𝑖 − 𝜇 − 𝛽𝑠 0 𝛽𝑖  𝛽𝑠 − 𝛾 − 𝜇 0 0 0 − 𝜇 ]                                                 𝐸𝑞. 12 

i. Disease free equilibrium 

By substituting the steady-state point of disease-free equilibrium into Eq. 12, we get the Jacobian 

matrix for the disease-free equilibrium is 
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𝐽 =  [−𝜇 − 𝛽(1 − 𝑝) 0 0  𝛽(1 − 𝑝) − 𝛾 − 𝜇 0 0 0 − 𝜇 ].                                              𝐸𝑞. 13 

From Eq. 13, the determinant is 𝜇(𝛽 − 𝛾 − 𝜇) and the trace is −𝜇(𝛽 − 𝛾 − 𝜇)𝛾 + 𝜇 −μ. To determine 

the stability of the equilibrium point, the eigenvalues from solving −(𝜇 + 𝜆)2(𝛽𝑝 − 𝛽 + 𝛾 + 𝜆 + 𝜇) is 

𝜆1 = −𝜇, 𝜆2 = −𝜇, 𝜆3 = 𝛽(1 − 𝑝)  − 𝛾 − 𝜇.                          𝐸𝑞. 14 

To reach stability, the eigenvalues of 𝜆1 and 𝜆2 should have negative real parts where 𝛽(1 − 𝑝) < 𝛾 +

𝜇. By looking at the determination and trace, we have 𝛽(1 − 𝑝) − 𝛾 − 𝜇 same as the result of 

eigenvalues, 𝜆3 where it can be assumed as 𝑅𝑣. 𝑅𝑣 is defined as new reproduction in the model as 

vaccination is introduced.  

𝛽(1 − 𝑝) − 𝛾 − 𝜇 < 0 → 𝑅𝑣 < 1.                                               𝐸𝑞. 15 

By substituting 𝑅0 into 𝑅𝑣, the new reproduction number is 𝑅𝑣 = 𝑅0(1 − 𝑝). The endemic equilibrium 

point exists only when 𝑅𝑣 < 1. 

ii. Endemic equilibrium 

By substituting the steady-state point of endemic equilibrium into Eq. 12, we get the yields of the 

Jacobian for the disease-free equilibrium is 

 𝐽 =  [−𝛽𝑖 − 𝜇 − 𝛽𝑠 0 𝛽𝑖  𝛽𝑠 − 𝛾 − 𝜇 0 0 0 − 𝜇 ].                                               𝐸𝑞. 16 

From the Eq. 16, the determinant is 𝜇(𝛽𝑝 − 𝛽 +  𝛾 +  𝜇) and the trace is −
𝜇(𝛽𝑝 −𝛽 + 𝛾 + 𝜇

𝛾+𝜇
− 2𝜇 which 

resulting eigenvalues 

  𝜆4  =  −𝜇, 𝜆5,6 =  −
𝜇𝛽(1 − 𝑝)

𝛾 + 𝜇
± √

𝜇2𝛽2(1 − 𝑝)2

(𝛾 + 𝜇)2
− 4𝜇[𝛽(1 − 𝑝) − 𝛾 − 𝜇].               𝐸𝑞. 17 

By substituting 𝑅𝑣 into 𝜆5,6, the eigenvalues become 

   𝜆5,6  =  −𝜇𝑅𝑣  ± √𝜇2𝑅𝑣
2  − 4𝜇(𝛾 +  𝜇)(𝑅𝑣  − 1).                                     𝐸𝑞. 18 

The endemic equilibrium exists if 𝜆4 is the negative real part and the reproduction number, 𝑅𝑣  satisfy 

the condition 𝑅𝑣 <  1. 

3. Results and Discussion 

We derive the eigenvalues and reproduction number for the equilibrium of both models based on the 

results from the stability analysis. MATLAB software is used to simulate the time series plot of both 

models. Next, the value of vaccination rate in the SIR model with vaccination is observed to see how 

the vaccination affects the populations. 

3.1 SIR Model without Vaccination 

For the model without vaccination (Eq.2), the parameters are 𝛽 = 1.98 and 𝜇 = 𝛾 = 0.5 [9]. To find 

stability, the values of 𝛽 by considering the cases  𝛽 > 𝛾 + 𝜇 and 𝛽 < 𝛾 + 𝜇 , we have suggested to use 

𝛽 = 0.9, 1.98. Meanwhile, 𝛽 = 0.9 represent the case 𝛽 < 𝛾 + 𝜇 and 𝛽 =1.98, 2, 2.5, 3.5 represent the 

case 𝛽 > 𝛾 + 𝜇 are used to produce the time series plot for the susceptible and infected populations in 

Figure 3.1. The initial conditions for each population are 𝑆(0) = 0.65 and 𝐼(0) = 0.1 [9]. 

Table 3.1 shows when 𝛽 = 1.98, the disease-free equilibrium is unstable node because there is a 

mixture of negative and positive real numbers of eigenvalues. We get 𝑅0 = 1.98 and endemic 

equilibrium is considered stable since it satisfies the condition 𝑅0 > 1 and the eigenvalues are stable 
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spiral. When 𝛽 = 0.9, the disease-free equilibrium is stable but endemic equilibrium is not stable since 

the 𝑅0 = 0.9 is lower than 1. 

Table 3.1: The stability of SIR model (Eq. 2) without vaccination 

Effective Contact 

Rate, β 
Equilibrium Eigenvalues Stability 

1.98 Disease-free 𝜆1 = −0.5 Unstable node for 

  𝜆2 =0.98 case 𝛽 > 𝛾 + 𝜇 

 Endemic 𝜆3,4 = −0.495±0.4949𝑖 
Stable spiral for 

case 𝛽 > 𝛾 + 𝜇 

0.9 Disease-free 𝜆1 = −0.5 Stable node for 

  𝜆2 = −0.1 case 𝛽 < 𝛾 + 𝜇 

 Endemic 𝜆3 =0.0922 Unstable node for 

  𝜆4 = −0.5422 case 𝛽 < 𝛾 + 𝜇 

 

 

Figure 3.1: SIR model (Eq. 2) without vaccination using different values of effective contact rate, 𝛽 > 1 

From Figure 3.1, the susceptible population, 𝑆, decreases and the infected population, 𝐼, increases 

as the infection rate increases. Referring to Figure 3.1(d) when 𝛽 = 3.5, the susceptible population 

becomes lower than the infected population compared to Figures 3.1(a), (b) and (c) where the infected 

population gradually increases, and the susceptible population decreases but still higher than the 

infected population. Figure 3.2 shows that the susceptible population is increasing over time. The 



Zainizam et al., Enhanced Knowledge in Sciences and Technology Vol. 2 No. 1 (2022) p. 231-240 
 

237 
 

infected population is decreasing to zero where it describes there is no more infected population when 

disease-free equilibrium is stable. 

 

Figure 3.2: SIR model (Eq. 2) without vaccination when the effective contact rate, 𝛽 = 0.9 

3.2 SIR Model with Vaccination 

The cases of 𝛽 >  
𝛾 + 𝜇

1 −𝑝 
 and 𝛽 <  

𝛾 + 𝜇

1 −𝑝 
  are considered for this model (Eq. 11). The parameters 

suggested are 𝛽 =3.5 and 𝜇 = 𝛾 =0.5 [9]. Based on the cases, we used 𝛽 = 2, 3.5 to find the stability. 

The time series plot for the susceptible, infected, and vaccinated population are stimulated in Figure 3.3 

by using the values of 𝛽 = 1.5, 2 represent the case 𝛽 <  
𝛾 + 𝜇

1 −𝑝 
 and 𝛽 =3.5, 5 represent the case 𝛽 >

 
𝛾 + 𝜇

1 −𝑝 
. The initial conditions for each population are 𝑆(0) =0.65, 𝐼(0) = 0.1 and 𝑉(0) = 0.2 [9]. 

Table 3.2: The stability of SIR model (Eq. 11) with vaccination 

Effective Contact 

Rate, β 
Equilibrium Eigenvalues Stability 

3.5 Disease-free 𝜆1 = −0.5 Unstable node for 

  𝜆2 = −0.5 case 𝛽 >  
𝛾 + 𝜇

1 −𝑝 
 

  𝜆3 = 0.4  

 Endemic 𝜆4 = −0.5 Stable for 

  𝜆5,6 = −0.35−0.2784𝑖 case 𝛽 >  
𝛾 + 𝜇

1 −𝑝 
 

2 Disease-free 𝜆1 = −0.5 Stable node for 

  𝜆2 = −0.5 case 𝛽 <  
𝛾 + 𝜇

1 −𝑝 
 

  𝜆3 = −0.2  

 Endemic 𝜆4 = −0.5 Unstable node for 

  𝜆5 = −0.5742 case: 𝛽 <  
𝛾 + 𝜇

1 −𝑝 
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  𝜆6 =0.1742  

 

From Table 3.2 when 𝛽 = 3.5, the eigenvalues of disease-free equilibrium resulting a mixture of 

positive and negative real numbers. This means the disease-free equilibrium is an unstable node. The 

calculation new reproduction number, 𝑅𝑣 when 𝑅0 = 1.98 resulting 𝑅𝑣 =0.792. Since 𝑅𝑣 < 1 and 

eigenvalues resulting a stable node and stable spiral, the endemic equilibrium is stable. When 𝛽 = 2, 

we get all eigenvalues are negative real numbers and allow the disease-free equilibrium to exist. 

Calculating the 𝑅𝑣  when 𝑅0 = 0.9 will be resulting 𝑅𝑣 = 0.36 and satisfy the condition 𝑅𝑣 < 1 but the 

endemic equilibrium cannot exist since the eigenvalues have a mixture of negative and positive real 

numbers to become unstable node. 

Figures 3.3(a) and (b) represent the graph when 𝛽 < 
𝛾 + 𝜇

1 −𝑝 
 while Figure 3.3(c) and (d) represent the 

graph when 𝛽 > 
𝛾 + 𝜇

1 −𝑝 
. The figure showed that the infected population keeps increasing as values of 𝛽 

become higher even when the vaccination rate was introduced. The susceptible population declines to 

more than half of its level and the infected population decreases. 

 

Figure 3.3: SIR model (Eq. 11) with vaccination using different values of effective contact rate, 𝛽 

3.2.1 Vaccination Effects to the Population 

The value of vaccination rate, 𝑝 are then assumed to other values to see how the vaccination can 

affect the population when endemic equilibrium exists. The new values are assumed based on the total 

population where then we are suggesting the values is 𝑝 < 1. By using parameters of 𝛽 = 3.5 and 𝑝 = 

0, 0.2, 0.4, 0.6, the time series plot is produced in Figure 3.4. 

Referring to Figure 3.4, the susceptible population keeps decreasing even though the vaccination 

rate has changed. Figures 3.4(a), (b) and (c) show that the infected population increases but in Figure 

3.4(a), the susceptible and infected population moves to half of its level since there is no vaccination 
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effort. Meanwhile, Figures 3.4(d) show that the infected population declines lower than the initial 

values.  

 

Figure 3.4: SIR model (Eq. 11) with vaccination using different values of vaccination rate, p 

4. Conclusion 

Both with and without vaccination models to describe the spread of COVID-19 by considering 

vaccination have been discussed in this study. For the SIR model without vaccination, the stability for 

disease-free equilibrium is unstable saddle point when 𝛽 > 𝛾 + 𝜇. Meanwhile, 𝑅0 > 1 and all stable 

node eigenvalues allow endemic equilibrium to exist. Next, for the SIR model with vaccination, there 

is one eigenvalue that is an unstable node for diseases-free equilibrium when 𝛽 >
𝛾 + 𝜇

1 −𝑝 
 while endemic 

equilibrium is considered stable since 𝑅𝑣 < 1. But when the case changed to 𝛽 <  𝛾 + 𝜇, all eigenvalues 

of disease-free equilibrium in the SIR model without vaccination resulting stable node. The endemic 

equilibrium in the SIR model without vaccination is not stable since the 𝑅0 < 1. For SIR model with 

vaccination, when 𝑅𝑣 > 1, the endemic equilibrium is unstable. However, the disease-free equilibrium 

is stable since the 𝛽 <
𝛾 + 𝜇

1 −𝑝 
. It can be concluded that the disease-free equilibrium and endemic 

equilibrium cannot be exist together when the case 𝛽 > 𝛾 + 𝜇 or 𝛽 < 𝛾 + 𝜇 and case 𝛽 >
𝛾 + 𝜇

1 −𝑝 
 or 𝛽 <

𝛾 + 𝜇

1 −𝑝 
.  

In the comparison of simulation, the SIR model without vaccination showed that a higher effective 

contact rate between susceptible and infected individuals could make the susceptible population decline 

until lower than the infected population as the infection is introduced. For the SIR model with 

vaccination, the induce of vaccination and higher effective contact rate causes the susceptible 

population to decrease and the infected population to increase. Based on the observations on vaccination 

rate for endemic equilibrium, the higher the vaccination rate, the higher the possibility to overcome 

infectious diseases. 
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As a conclusion, we may conclude that the infection rate and reproduction number are extremely 

crucial factors in the occurrence of an epidemic and that this epidemic can be prevented through 

vaccination. Furthermore, the SIR model with vaccination can be extended by introducing new 

parameters such as targeted individuals to be vaccinated to see if it can affect the reproduction number 

and the possibility of the disease-free equilibrium and endemic equilibrium can exist together. 
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