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Abstract: In this study, the artery is treated as an isotropic, incompressible, thin-

walled elastic tube while the blood is assumed as an incompressible inviscid fluid. 

Inviscid fluid refers to the nonviscous fluid, that is the viscosity of the fluid is equal 

to zero. Under the assumption of long wave approximation, the reductive perturbation 

method is adopted to obtain a set of nonlinear differential equations with various 

orders. By solving these various orders of differential equations, various orders of 

differential equations are reduced to a nonlinear evolution equation which is called 

Korteweg-de Vries (KdV) equation. Next, the KdV equation is solved analytically. 

The graphical outputs have been presented and discussed. It is found that the solution 

of the KdV equation is in the form of an envelope traveling solitary waves which 

propagate to the right along the tube. This study is restricted to the propagation of 

harmonic waves in the inviscid fluid. Therefore, the fluid velocity and fluid pressure 

maintained the shape of the wave without deformation when the harmonic waves 

propagated along the tube. 

  

Keywords: Thin-Walled Elastic Tube, Inviscid Fluid, Kdv Equation, Reductive 
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1. Introduction  

In 1808, Thomas Young is the first person who discovered the pulse waves’ speed in human arteries. 

According to Demiray [1], the researchers considered the artery with different types of tubes while the 

blood was assumed as different types of fluids. Fu and Il’chev [2] had examined the propagation of the 

solitary wave in fluid-filled membrane tubes. They have come out with the conclusion that there appear 

four types of solitary waves that will be existed with speeds close to those given by the linear dispersion 

relation, no matter the fluid is in the condition of initially stationary or not. The solitary wave solutions 

are obtained by ignoring the higher-order terms that persist for the full equations system. Il’ichew, 

Shargatov, and Fu [3] had focused on the nonlinear wave propagation in the fluid-filled hyperelastic 

membrane tube. The reductive perturbation method has been used and the evolution equation, 

Korteweg-de Vries (KdV) equation is obtained. In their studies, they found that the wave amplitude is 
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a decreasing function of the speed. They also concluded that when the speed is greater, then the solitary 

waves are spectrally stable. According to Goh and Choy [4], the weakly nonlinear wave is investigated 

in their study by considering the artery as a thin-walled, prestressed elastic tube with stenosis while the 

blood is considered as a Newtonian fluid. In their studies, by using the reductive perturbation method, 

the nonlinear evolution equation was simplified and reduced to the Korteweg-de Vries Burgers (KdVB) 

equation with variable coefficients. Progressive wave solution for the Korteweg-de Vries Burgers 

KdVB equation is obtained by using the hyperbolic tangent method. The wave trajectory in terms of its 

waveform and amplitude is changing when the stenosis in the tube and the viscosity of fluid exists. 

Therefore, the axial velocity and the amplitude of wave trajectory will increase when the severity of 

stenosis and level of a viscosity increased.  

Moreover, according to Elgarayhi et al. [5], they have been studied the propagation of pressure 

waves in the nonlinear form in fluid-filled elastic tube. During their investigation, the reductive 

perturbation method is applied and KdV equation is obtained. The effect of the tube with the final inner 

radius on the basic properties of the soliton waves was investigated. Then, Alasakani, Tantravahi, and 

Kumar [6] investigate the methods for reducing an input dataset into a developed mathematical model 

to simulate blood flow through the human artery. The inputs to the parameters are from the 

physiological information on blood and the anatomical data on arteries. Statistical testing procedures 

are used to identify significant differences in the independent variables with the values of the dependent 

variables where the independent variables here are indicated by the model parameters while the values 

of the dependent variables are computed using the developed mathematical models. According to 

Wilcox Bunonyo, and Amos [7], lipid concentration effect on blood flow through an inclined arteries 

channel with the magnetic field is studied. After using the perturbation method, the nonlinear ordinary 

differential equations are solved analytically. Therefore, the height of stenosis, angle of inclination, 

length of the stenosis, and rate of the pulse will affect blood flow profile and lipid concentration profile.  

As pointed out by Paquerot and Remoissenet [8], the blood viscosity is negligible in some 

applications, for example, parameters appropriate to biological investigation in main arteries. Hence, 

for the problems of flow in large blood vessels, blood is treated as an incompressible inviscid fluid as a 

first approximation. The artery is treated as an isotropic, incompressible, thin-walled elastic tube, the 

propagation of pressure waves in this medium is investigated by employing the reductive perturbation 

method. In this present research, after introducing the reductive perturbation method into the equations 

of tube and fluid, a set of various order of differential equations is obtained. The various order of 

equations obtained will then be reduced to the Korteweg-de Vries (KdV) equation. The progressive 

wave solution is implemented to the KdV equation. Next, graphical outputs for the progressive wave 

solution are presented. Lastly, a discussion about the physical interpretation related to the results 

obtained is presented. This paper is organized as follows: In Section 2, we introduce the basic equations 

that govern the model. In Section 3, the long wave approximation is adopted. In Section 4, the solution 

of the field equations is discussed. In Section 5, a progressive wave solution is implemented. In Section 

6, the results and the discussion are given. Lastly, in Section 7, a conclusion is made.   

2. Basic Equations 

The mathematical model for blood in an elastic tube filled with inviscid fluid is studied. Therefore, 

this study begins by introducing the equations of tube and fluid by [5].  

2.1 Equation of Tube 

The artery is set as an isotropic, incompressible, thin-walled elastic tube. Figure 1 illustrated the 

geometry with a constant radius. The equation of radial motion of the tube is given by [5] 
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Eq. 1 

where 𝜇 denotes the shear modulus of the tube material,  Σ denotes the strain energy density function, 

𝑢∗  denotes the radial displacement, 𝑧∗  denotes the axial coordinate after the static deformation, 𝜆1 

denotes the stretch ratio along the meridional curve, 𝜆𝑧 denotes the axial stretch ratio of the tube, 𝑅0 

denotes the radius of the circular cylindrical long tube, 𝜆2  denotes the stretch ratio along the 

circumferential curve, 𝜆𝜃  denotes the stretch ratio in the circumferential direction after finite static 

deformation, 𝑃∗ denotes the pressure of the fluid, 𝐻 denotes the initial tube thickness, 𝜌0 denotes the 

mass density of the tube material, and 𝑡∗ denotes the parameter of the time.  

 

Figure 1: The geometry of the artery with a constant radius 

 

2.2 Equations of Fluid  

Generally, blood is a non-Newtonian fluid that is incompressible and has heterogeneous properties 

as the blood contains fluid plasma and solid components such as platelets, red and white blood cells [9]. 

Blood behaves like incompressible non-Newtonian fluid due to the deformability of red blood cells, 

and the level of cell concentration, or called hematocrit ratio. As of simplicity, in this study, blood is 

treated as an incompressible inviscid fluid. The equations of inviscid fluid in the cylindrical polar 

coordinates are given by [5] 
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where 𝑉𝑟
∗ is the fluid velocity components in the radial directions, 𝑉𝑧∗

∗  is the fluid velocity components 

in the axial directions, 𝜌𝑓 is the fluid mass density, and �̅� is the fluid pressure function. 

3. Long Wave Approximation 

To investigate the propagation of small-but-finite amplitude waves in a thin elastic tube filled with 

fluid, a long wave approximation is applied and the reductive perturbation is adopted. The following 

type of stretched coordinates are introduced [5] 

𝜉 = 𝜖
1
2(𝑧∗ − 𝑔𝑡∗),              𝜏 = 𝜖

3
2𝑧∗. 

Eq. 5 

The differential relations are defined as [10] 
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Eq. 6 

The asymptotic series are introduced as [5] 
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Eq. 7 

Introducing Eq. 5 – Eq. 7 into Eq. 2 – Eq. 4, the following various order differential equations set are 

obtained. 
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Eq. 13 

4. Solution of the Field Equations 

First, 𝑢1
∗ = 𝑈(𝜉, 𝜏) is assumed by [5]. Then, the boundary conditions are introduced by [5]. 
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From Eq. 8 – Eq. 10, some operations are done to obtain the solution of �̅�(1)(𝜉, 𝜏), 𝑈(𝜉, 𝜏), 𝑉𝑧∗
∗(1)

, and 

𝑉𝑟
∗(1)

. The solutions are obtained as 
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provided 𝑔2 =
𝛽1𝜇𝐻𝑟𝑓

2𝜌𝑓𝑅0
2 , where the unknown function 𝑈(𝜉, 𝜏), its governing equation will be acquired 

later while the function 𝑔 is corresponding to the phase velocity. From Eq. 12 will get  
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Eq. 16 

Then, eliminating the second-order perturbed quantities 𝑉𝑧∗
∗(2)

 and �̅�(2), the acquired Korteweg-de Vries 

(KdV) equation is shown as follow 
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where the coefficients are defined by  
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5. Progressive Wave Solution 

Eq. 17 has the progressive wave solution as follow [5]: 

𝜂 = (𝜉 − 𝑣𝜏) ≡ �̅�(1)(𝜂) . Eq. 19 

Now, it is required that in the case that 𝜂 → ±∞, one can get  

 �̅�(1) = 0,
𝑑�̅�(1)

𝑑𝜂
= 0,  and 

𝑑2�̅�(1)

𝑑𝜂2
= 0  by [5]. The evolution equation �̅�(1)  has the following type of 

progressive wave 

�̅�(1) = �̅�(0)𝑠𝑒𝑐ℎ
2 [
𝜂

Δ
], Eq. 20 

where Δ = 2√
𝐵

𝑣
 , and �̅�(0) =

3𝑣

𝐴
. 

6. Results and Discussion 

The propagation of pressure waves in inviscid fluid contained in thin elastic tube has been studied. 

The graphical outputs and the discussion are presented in this section. 𝛽1 = 296.105, 𝛽2 =

991.496,  𝜌𝑓 =
1.05𝑔𝑚

𝑐𝑚3 ,  𝑅0 = 0.38𝑐𝑚,  𝜌0 =
1.03𝑔𝑚

𝑐𝑚3 , 𝜆𝑧  =  𝜆𝜃 =  1.6,   𝛼0 = 78.692, 𝐻 = 2 ×
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10−2𝑐𝑚, 𝜇 = 0.4, 𝑣 = 8𝑐𝑚/𝑠, and 𝑟𝑓 = 0.75 are used in order to obtain the graphical outputs [5]. 

Figures 2 - 5 illustrate the space for −0.2 < 𝜏 < 1.5 and traveling wave profile, 0 < 𝜉 < 10.  

 

Figure 2: The fluid pressure function, �̅�(𝟏)(𝝃, 𝝉) based on Eq. 20 versus spaces, 𝝉 for different wave 

profiles, 𝝃. 

 

Figure 2 illustrates the variation of the analytical solution of the KdV based on Eq. 20 with space. 

As seen from the figure due to the absence of viscous effect in fluid, the amplitude of the fluid pressure 

function unchanged with increasing traveling wave profile. 
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Figure 3: The fluid velocity components in the radial direction, 𝑽𝒓
∗(𝟏)(𝝃, 𝝉) based on Eq. 15 versus 

spaces, 𝝉 for different wave profiles, 𝝃. 

 

Figure 3 reveals the solution of fluid velocity components in the radial direction based on Eq. 15 

with space. It shows the variation of kink wave soliton solution with increasing wave profile. Again, 

due to the without viscous effect in the fluid, the solitary waves propagated to the right with a permanent 

kink shape wave structure.  
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Figure 4: The fluid velocity components in the axial direction, 𝑽𝒛∗
∗(𝟏)(𝝃, 𝝉) based on Eq. 15 versus 

spaces, 𝝉 for different wave profiles, 𝝃. 

 

Figure 4 displays the results of the fluid velocity components in the axial direction based on Eq. 15 

at a particular value of the traveling wave profile. The symmetrical bell-shaped waves structure does 

not change when these solitary waves travel along the tube. This is because the resistance to the flow 

of an inviscid fluid does not occur.  
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Figure 5: The radial displacement, 𝑼(𝝃, 𝝉) based on Eq. 15 versus spaces, 𝝉 for different wave 

profiles, 𝝃. 

 

Figure 5 presents the radial displacement based on Eq. 15 through inviscid fluid along the thin 

elastic tube. This figure shows that the amplitude of waves is always 2.0909 with the increasing 

traveling wave profile. It can be concluded that the amplitude of the wave does not change when the 

viscosity is not considered.  

In reality, blood is known to be an incompressible non-Newtonian fluid. The viscosity changes 

regarding the temperature, pressure, and density. However, in some applications, when blood flows in 

the large blood vessels, as first approximation, the effect of viscosity is neglected. Therefore, from 

Figures 2 – 5, it is realized that the solution of KdV equation preserves its wave structure without 

reduction of wave amplitude. This is due to the resistance of fluid flow does not exist in the inviscid 

fluid. Besides, the occurrence of a stable structure for the amplitude of the solitary wave is due to the 

exhibits of balance nonlinearity and dispersion effects.  

7. Conclusion 

As a summary, the reductive perturbation method is used in this study in order to investigate the 

wave propagation in the thin elastic tube filled with inviscid fluid. The governing equation for the 

corresponding mathematical model is Korteweg-de Vries (KdV) equation. Next, the KdV equation has 

been solved analytically. It can be concluded that the fluid pressure function, radial displacement, and 

fluid velocity in the axial direction admit solitary wave solutions. The waves propagate to the right by 

retaining their bell-shaped wave. The fluid velocity in the radial direction shows the variation of the 

kink wave structure. These kink waves travel to the right without deformation. Hence, one can conclude 

that nonlinear wave propagation in inviscid fluid does not influence the solitary wave solution.  
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