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Abstract: The purpose of this study is to investigate the non-linear wave modulation 

in a stenosed elastic tube filled with viscous fluid. The artery is considered as an 

incompressible, pre-stressed, thin-walled and long elastic tube with a symmetrical 

stenosis while the blood is assumed as an incompressible viscous fluid. The stretched 

coordinates and asymptotic series were introduced to the non-dimensional equations 

of tube and fluid. By implementing the method of Reductive Perturbation (RPM), a 

sets of non-linear differential equations of various orders is obtained. Solving these 

differential equations resulted in the dissipative non-linear Schrodinger (NLS) 

equation with variable coefficients. Analytical solutions for the dissipative NLS 

equation with variable coefficients is carried out. Based on the graphical output, it is 

noticed that, when blood flowing in a stenosed elastic tube, the radial displacement 

decreases gradually due to the resistance of fluid flow. It is observed that increase the 

blood viscosity caused an increase in the pressure to walls of arteries consist stenosis. 

Besides, it is found that the wave amplitude decreases obviously when the viscous 

effect of fluid increases. Other than that, the wave speed also increase rapidly since 

the cross-sectional area of artery reduced due to the existence of the stenosis.   

 

Keywords: Wave Modulation, Dissipative Non-linear Schrodinger Equation With 

Variable Coefficients, Viscous Fluid, Thin Elastic Tube, Stenosed, Reductive 

Pertubation Method 

 

1. Introduction 

In general, blood plays an important role in delivering oxygen and nutrients to cells and 

transporting waste from cells in a human body so that it could maintain homeostasis and regulate the 

body’s systems.  A human body contains about 5 liters of blood and it also takes around 20 to 30 seconds 

to make a complete cycle through the circulation and return to the heart once it is pumped out [1]. 

According to Jarvis and Saman [2], it is part of the cardiovascular system, along with the heart, which 

acts as a pump. Besides, blood is also recognised as an incompressible non-Newtonian fluid in human 

body. Blood flow from arteries to the middle part of the artery reduced the hematocrit level. As the 
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hematocrit ratio is low, the shear rate in the artery is high. Rudinger [3] discovered that when blood 

included a low level of hematocrit and a high shear rate, it behaved similarly to a viscous fluid. 

According to Anthony and Raja [4], it is stated that the arteries play an important role in the circulatory 

system. It consists of three layers which are the intima, the media, and the adventitia. A stenosis defines 

as the deposits of fatty substances, cholesterol, cellular waste products, calcium and other substances 

build up in the inner lining of an artery which can causes blockage in arteries in a human body [5]. The 

decomposition of stenosis in the artery causes the narrowing of the artery. Consequently, it affects the 

blood flows mechanism. One of the major causes of the deaths in the world is  due  to  heart  diseases,  

and  the  most  commonly  heard names among the  same  are  ischemia, atherosclerosis, and angina 

pectoris [6]. Hence, mathematical model for modulation of non-linear waves in viscous fluid contained 

in stenosed elastic tube becomes one of the most significant study in order to determine the location of 

stenosis in the early stage.  

In the past studies, many researchers have studied the wave propagation of fluid flow in an 

elastic tube such as [7], [8], [9], and [10] while wave modulation becomes less concerned. The study of 

wave modulation in the arteries is rather difficult to construct because the mathematical model involves 

complex solution. In 2017, Nagappan [11] studied on the non-linear wave modulation in a pre-stressed 

thin elastic tube where assuming that the artery is pre-stressed thin elastic, incompressible and isotropic 

tube whereas the blood is considered to be incompressible inviscid fluid. In this research, he obtained 

NLS equation. Ahmed et al. [12] investigated the modulation of non-linear wave in blood flow. The 

blood is considered to be incompressible inviscid fluid while the tube exhibits viscous and elastic 

behaviour. In this study, the NLS equation was obtained by using the reductive perturbation technique. 

Recently, Bi et al. [13] analyzed on the non-linear waves of blood flow in arterial vessels where 

considering the blood as an incompressible Newtonian fluid and the propagation of blood flow is 

observed.  For their study, a new higher order non-linear Schrödinger equation is obtained to describe 

the blood flow in blood vessels. 

Therefore, in this study, blood is treated as an incompressible viscous fluid and the artery is a 

pre-stressed, thin-walled and long elastic tube with a symmetrical stenosis. The method of reductive 

perturbation method is implemented in this study in order to investigate the modulation of non-linear 

waves in such composite medium. Later on, the dissipative NLS equation with variable coefficient was 

derived after solving the differential equations. Next, the progressive wave solution of the dissipative 

NLS equation with variable coefficient is determined.  Results and discussion are also made for the 

variation of the radial displacement, as well as the fluid pressure function and the wave speed.  

 

2. Equations of the tube and fluid 

Since Rudinger [2] discovered that the blood behaved similarly to a viscous fluid, therefore in this 

study, the blood is treated as an incompressible viscous fluid. The equation of balance of linear 

momentum in the axial direction of an incompressible viscous fluid is given by [14] 

 
  

* * * 2 * *
*

2* * * *2
* * *

0

1 8
0,

f f

w w w w
w

t z z z r f z u



 

 
        

                       Eq. 1 

where 
*w  denotes the mean of fluid speed,  is time, 

*z  represents a coordinate that located on axis 

when the changes of radius maintain its value, 
*P  is the mean of fluid pressure,   is the viscosity of 

the fluid,  is the mass density,  * * *

0fr r f z u  
 is the final radius after deformation occurred. 

The following equation is the mass conservation equation of an incompressible viscous fluid: 
            Eq. 2 
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where 
*w  denotes the mean of fluid speed,  is time. 

*z  represents a coordinate that located on axis 

when the changes of radius maintain its value,  is the function of a variable radius,  defined  
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as the viscosity for fluid flow,  is the function of displacement of the radius, while  is the initial 

radius in the coordinate system. 
 

Next, the equation of elastic tube in the radial direction could be written as follows [14]: 
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           
      Eq. 3 

where   depicts the membrane's strain energy density function while   stands for the shear modulus 

of the tube material. In this equation, z  is the stretch ratio in the axial direction, H  is the thickness 

of the non-deformed state, 1  and 2  denote the stretch ratios along the meridional and circumferential 

curves respectively while 
*z  is the axial coordinate after static deformation. Next, the 0R  represents 

the mean radius at the origin of the coordinate system while 
*u  denotes a dynamical radial displacement 

whereas 
*P  represents the inner pressure applied by the fluid. The 0r  in this equation is the deformed 

radius at the origin of the coordinate system while 0  is the mass density of the tube and 
*t  is the time 

parameter. Figure 1 shows the geometry of the artery in various configurations. 

 

 
Figure 1: The geometry of the artery in various configurations. 

 

The following non-dimensional quantities are introduced [14]: 
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where  

0

0

r

R
 

represents the initial stretch ratio, p  is the fluid pressure, and 0c  denotes the Moens-

Korteweg wave speed. 

 

Introducing Eq. 4 into Eq. 1, Eq. 2, and Eq. 3 by applying chain rule results in 

  

2

22

8
0,

w w p w w
w

t z z z f z u




 
   

     
        

 '2 2 0,
u u w

w f f z u
t z z


   

                

     

2

2

2

1

z z

m u
p

tf z u f z u     

  
  

       

   

     

''

1
2 12

'

4
1

1

uu f wf
zz

zf z u f z u
u

f
z

 



 

 
               

            
      .                Eq. 5 

 

3. Non-linear Wave Modulation 

In this section, the method of reductive perturbation is applied. Firstly, the following type of 

stretched coordinates are introduced [14]: 

 z t   
, 

2z  ,                  Eq. 6 

where   denotes the wave profile,   represents the space,   represents the small parameter that 

measures the weakness of non-linearity, and   indicates the constant to be determined from the 

solution. 

Since this study is to investigate the effect of stenosis, hence  f z
 should be in first-order,  O 

 

whereby    ĥ h 
[14]. The differential relations are introduced in the following form [14]: 

t t
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    .               Eq. 7 

For the long wave limit approximation, the function  h 
 and the field quantities u , w , and p  are 

assumed that it can be written as asymptotic series in the following form [14]: 
2 3

1 2 3 ...u u u u      ,    
2 3

1 2 3 ...w w w w      , 
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2 3
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                      Eq. 8 

Introducing the stretched coordinates Eq. 6, differential relations Eq. 7 and asymptotic series Eq. 8 into 

Eq. 5, the various order equations obtained are shown below: 
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Here the coefficients of 0 , 1 , 2 , 0 , 1 , 2 , 3 , and 1  are defined by [14]: 
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The Solution of  O 
equations 

For the first-order Eq. 9, the following type of solution are explored [14]: 
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where 1U  and 1W  are the unknown functions of the slow variables  , 
, t kz    indicates the 

phasor and .c c  denotes the complex conjugate of the corresponding expressions. Here,   represents 

the angular frequency whereas k  represents the wave number.  

Applying Eq. 13 into Eq. 9, it yields 
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Solving Eq. 9 results in  
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The Solution of  2O 
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Introducing the following expression to obtain the solutions for  2O 
 [14]: 
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Introducing the solutions Eq. 14 and Eq. 15 into Eq. 10 gives 
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    ,           Eq. 17 

where 

2 *U UU
, 

*U represents the complex conjugate of U . 

Solving Eq. 17 by applying Eq. 16 yields: 

   1 12 2

2 0 1 2 02
z z

m m U
P k U i k
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
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    ,             Eq. 18 
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k k




 
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  

  ,                        Eq. 19 

the group velocity,  

4 2

0

2

2

2

z k

k mk

   



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,               Eq. 20 
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W U U
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, and                 Eq. 21 
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The Solution of  3O 
equations 

To obtain the solutions for  3O 
, firstly, the following expressions are introduced [14]: 

   
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.
l il

l
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,   
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l il
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   
3

0

3 3 3

1

.
l il

l

p P P e c c



  
. Eq. 23 

Apply the harmonic wave solutions Eq. 23 into  3O 
 Eq. 11 yields the following dissipative NLS 

equation with variable coefficients [14]: 
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 

 
    

  ,             Eq. 24 

whereby U is the unknown function and the coefficients of 1 , 2 , 3  and 4  are defined by 
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The k  is known as the number of wave,   represents the angular frequency while   is the fluid 

viscosity. 

The following changing of variable is applied by [14]: 

  
 3 1 40,

i h s ds
U V e


  

 
 




,                     Eq. 26 

which can reduces Eq. 24 to the following conventional NLS equations [14]: 
2

2

1 22
0

V V
i V V 
 

 
  

  .                Eq. 27 

 

4. Progressive Wave Solution 

In the previous section, the coefficient 4  describes the dissipation resulting from the viscosity of 

the fluid whereas the coefficients 1 , 2 , and 3  contribute the variable radius of the tube. The 

progressive wave solution is applied into Eq. 27 of the following term: 

      
,

i K
V F e

 
  




, c    .                         Eq. 28 

Substituting Eq. 28 into Eq. 27 will results in 
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whereby the product of 1 2 0    and  
4

42 2 3
1 3 1 2K h a e

 
   


    . Here, a  represents the 

amplitude of the wave. In order to eliminate the 

F





 term, let 12c K , then Eq. 29 yields 
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By solving the Eq. 30, the Eq. 28 can be expressed as 
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  .                        Eq. 31 

Applying Eq. 31 into Eq. 26 gives the solution of the dissipative NLS equation with variable coefficient 

Eq. 24 as 
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By setting 
  43 10

0i K h s ds


    
 
 
 
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, it gives 
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    

  .                                   Eq. 33 

Solving the above equation, it yields to the result for the wave speed of the NLS equation with variable 

coefficients Eq. 24 

   3 1 4

p

K

h i


  


  .                 Eq. 34 

 

5. Results and Discussion 

In this study, the graphical results for radial displacement, the effect of viscous in fluid, fluid 

pressure, and wave speed are illustrated by using MATLAB software. The numerical value of   was 

found to be 1.948 [15]. By using the values of 1.948  , 1.6z     where z  is axial stretch and 

  represents the stretch ratio in the circumferential direction while 0.1m  , 1  , 2k  and 2K  , 

it gives the results 0
78.6924  , 1

233.7666  , 2
1563.4837  , 0

49.1827  , 1
296.1049  , 

2
991.4958  , 3

2394.6580  , 1
418.3605  , 41.6845  , 29.2660  , 0

-6.0631  , 

1
7.2986  , 2

0.3823  , 1
-0.1548  , 2

27.7531  , 3
7.3572  , and 4

0.1082  . 
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(a)                                                                           (b) 

Figure 2: The solution of dissipative NLS equation with variable coefficients versus space,  at fluid 

viscosity, 1.0   for (a) and the solution of NLS equation for (b). 

 

 Figure 2 illustrates the comparison between the viscous fluid (a) and the inviscid fluid (b) flows 

in the thin walled elastic tube with stenosis. As can been seen in these figures, the viscous effect of fluid 

influenced the wave amplitude. When viscous fluid flows in the stenosed elastic tube, the wave 

propagates to the left with increasing amplitude due to the effect of viscosity. On the other sides, when 

the inviscid fluid flows in the stenosed elastic tube, the downward bell-shaped wave with the amplitude 

of unity travels to the left.   

    
(a)                                                                           (b) 

Figure 3: The fluid pressure versus space,   at different fluid viscosity, (a) 1.0   and (b) 2.0  . 

 

Figure 3 presents the behaviour of the fluid pressure for the two different fluid viscosity. It is 

worth noting that the resistance to flow is greatly enhanced even for a slight increment of the viscous 

effect of fluid. In other words, the fluid pressure are observed to be increasing with the increase in the 

fluid viscosity, which means that the blood required higher pressure to passes through the stenosis when 

the viscous effect of fluid increases. 

    

(a)                                                                      (b) 
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            (c)                                                                (d) 

Figure 4: The solution of dissipative NLS equation with variable coefficients versus space,  with various 

viscosity of fluid, (a) 0.1  , (b) 0.4  , (c) 0.8   and 1.2  . 

 

Figure 4 exhibits the variation of the radial displacement,  ,U  
 with space,   when 

viscosity of fluid is 0.1,  0.4,  0.8,  and 1.2  . As the fluid viscosity increases, the downward bell-

shaped wave travels to the left with increasing amplitude. Thus, the severity of the viscous effect of 

blood affects the blood flow in the stenosed artery significantly. The higher of the viscous effect of 

blood, the higher the severity, the more the radial displacement is increased due to resistance in flow 

increase. 

 

Figure 5: The wave speed, V  of the NLS equation with variable coefficients at viscosity of fluid, 1.0  . 

 

In Figure 5,   determines the sharpness of stenosis function,    sechf  
. Figure 4 

indicates that blood velocity increases as it passes through the stenotic region. The wave speed takes it 

maximum value at the center of stenosis and it gets smaller as it goes away from the center of stenosis 

approaching a constant value. The severity of the stenosis affects the wave speed significantly. That is, 

the more the severity, the bell-shaped curve of wave speed appears to be more sharply. 

 

 

6. Conclusion 

In this study, a mathematical model of wave modulation for blood flow in a thin walled stenosed 

elastic artery has been developed. The dimension equations of tube and fluid are transformed into 

dimensionless equations by substituting the dimensionless quantities. Throughout this study, the RPM 

is implemented in the dimensionless equations of tube and fluid to get various orders of the differential 

equations. After that, the dissipative NLS equation with variable coefficients is obtained after solved 

the differential equations. Later on, the progressive wave solution is applied in the NLS equation with 

variable coefficients to achieve the analytical solution. The graphical outputs were illustrated by using 

MATLAB software in order to discuss the consequences of analytical solution on radial displacement, 

the fluid viscous effect, and wave speed. 

It is observed that the radial displacement and fluid pressure increase when the fluid viscosity 

increases. The modulus of the radial displacement and fluid pressure show a downward bell shaped 

wave solution. The waves propagate to the left with increasing amplitude. On the other hand, it is found 

that the wave speed reaches to its maximum value at the center of the stenosis and becomes smaller and 

smaller as it go away from the stenosis. This result seems to be reasonable from the physical view point. 
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