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Abstract: Population dynamics model is one of the important topics in mathematical 

modeling. The purpose of using these models is to generate a model that can well 

describe the population species at any moment. Nowadays, this technique has been 

well developed and not only effective in the form of an ordinary differential equation 

but also derived a new branch, a delayed population dynamics model which is a delay 

differential equation. In the delay differential equation, the time delay is the main core 

for the equation and this factor is always represented as the time lag taken between 

the implementation of control and responding of the system. In this study, two 

population dynamics models were investigated correspond to the form of ordinary 

and delay differential equations. The comparison between these models were 

conducted and this results in no significant changes if the value of time delay is small 

enough, but the solution will meet a great change on it which is the rise of oscillation 

if the time delay keeps increasing. There is a specific name for the phenomenon, 

called Hopf-bifurcation. Therefore, the determination to obtain the critical value of 

time delay was taken in order to know when the Hopf-bifurcation will occur. 

According to the result, once the parameter achieves the critical value, the initially 

stable equilibrium has become unstable which was a loss of stability and then lead to 

the happening of Hopf-bifurcation which was in the form of periodic solution.  

 

Keywords: Population Dynamics, Delay Differential Equation, Ordinary 

Differential Equation, Time Delay, Hopf-Bifurcation 

 

1. Introduction 

Population dynamic is one of the applications of mathematical modeling that made an important 

role in real life especially in biology and ecology. The related models are often used in order to predict 

the trend of population, the number of infections or others that are related to the population investigated 

and these models are expected to provide an associated prediction and description to the present 

environment or conditions [1]. The first population dynamic model which is called the exponential 

growth model was introduced, and it is a simple linear ordinary differential equation (ODE) [2]. 
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𝑑𝑃

𝑑𝑡
= 𝑎𝑃; where 𝑃(𝑡) = 𝑃𝑜𝑒𝑎𝑡. Eq.1 

From this model, the population at any moment 𝑡 mainly depends on the intrinsic growth rate 𝑎, 

which is the only factor that will affect the trend and behavior of the solution. There is a fact which 

pointed out and indicates that there will be no limitation for the population growth up due to the 

exponential term. Therefore, a modification for the first population model was taken and a new factor 

was introduced based on the environmental consideration so that the resources available in the 

corresponding environment are involved for the model generation. As a result, the logistic growth model 

was introduced, where the new parameter 𝐾 is represented as the environment carrying capacity [3]. 

𝑑𝑃

𝑑𝑡
= 𝑎 (1 −

𝑃(𝑡)

𝐾
) 𝑃(𝑡).  Eq.2 

The environment carrying capacity specified that there is a limited value of resources that can be 

supplied for the corresponding population. The carrying capacity of an environment depends on the 

factors like adequate food, shelter, water, and mates. Over time, the population size will be unchanged 

at the end and converge at a state level which is equal to the value of carrying capacity. It is reasonable 

to say that the population dynamic can be better represented by the logistic growth model after the 

modification. The model can better describe the population if there is an ideal condition with no time 

delays occur but it is impossible. 

Time delay is a real-life factor that should be considered in the application of ODE and the presence 

of the time delays may cause the difference between the model description and the real-world 

phenomenon. Therefore, the knowledge of delay differential equation (DDE) is necessary and essential 

for the dynamical system, it also can be applied to other technological control problems and dynamical 

models. In definition, the derivative for DDE at any time depends on the solution at the previous time. 

Yang [4] depicted the simplest constant delay equation has the form of 

𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)), where Eq.3 

the differential equation that depends on the value of 𝑦 in the past with a certain state and the parameter 

𝜏 is the time delay. In ecology, the time delay is often used to represent the resource regeneration time, 

maturation period, or feeding time, all the processes that take a certain time and cannot complete 

instantaneously. For example, Vaidya and Wu [5] used the time delay to represent the riskless time of 

budworms to the environment which is about 9 months that during the state from egg to second instar 

caterpillar, and the model is used for better outbreak control. Moreover, a modification for logistic 

growth model based on properties of DDE was introduced [6], and the model is more realistic and 

reliable to describe natural conditions such that Eq.2 becomes 

𝑑𝑃

𝑑𝑡
= 𝑎 (1 −

𝑃(𝑡−𝜏)

𝐾
) 𝑃(𝑡),  

 

Eq.4 

The population growth description can be better represented by a time-delayed model compared to 

the ODE because organisms rarely react instantaneously to the changes in the system. For example, 

Freitas [7] had shown that the trajectory path exponential growth model with delay is grow more slowly 

compared with the model without delay and the accuracy is enhanced. In ODE, a fact about the 

population condition for the species in the past may be ignored, the growth rate or rate of change of the 

population at time 𝑡 only depends on the relative number of individuals at that current time. The critical 

factor that was not taken into account for these population models is the existence of factor time delay 

in real life. Some processes in ecology may not be presented or completed in the form of instantaneous, 

such as human gestation and reproduction. Therefore, the knowledge of the delay differential equation 

is essential for the modification of the population dynamic model to make the model more appreciated 

the real-life conditions. 

For the models which have incorporated the time delay factor, the current system behavior may 

vary with the value of delay. In most cases, the system stability for the model is changed from stable to 
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unstable when the value of the delay gets larger, which then induces the happening of a bifurcation. 

Bifurcation is a phenomenon where the solution changes drastically due to the parameter that at a certain 

value. In addition, there is a variation in the population description between the population models with 

and without delay in terms of population growth trends. Therefore, this study is proposed to analyse the 

system behavior of a delayed population model and make a comparison with the model without delay. 

 

2. Preliminaries 

2.1 Delay Differential Equation 

      A differential equation that the derivative of a function is depending on the values of the function 

in the previous times but different with the ODE ones in terms of the value of the function at current 

times. The functions in the previous time is referred as the delayed function and a new parameter 𝜏 

which represents the time delay was added. Besides, the initial condition of DDE must be specified for 

the time interval [0 , 𝜏] that is based on time delay used. 

2.1 Equilibrium 

      An equilibrium is the level where the state variable does not change once the solution attains the 

level or it converges at the level in the end. Therefore, the rate of change is considered as equal zero at 

that level. Equilibrium can be classified as stable or unstable for the situation of system is moving 

toward or away to the equilibrium as time over. Generally, the stable equilibriums are called ‘attractor’ 

and the unstable equilibriums are called ‘repeller’ for the dynamical system. 

2.2 Stability Analysis 

      Stability analysis is used to determine the stability of the equilibrium and to obtain the trajectory 

path or system behavior over time. In application of DDE, the analysis is mainly used to determine the 

region in the delay parameter space at which the system is still stable. 

2.3 Dimensionless Analysis 

      Dimensionless analysis is used to convert a dimensional model to dimensionless form does not get 

any affected on its original meaning. A model equation that expressed in dimensionless term by 

reducing of the number of parameters in the equation is helpful in the procedure of stability analysis 

and it can better illuminate the relationships between parameters. 

2.4 Hopf-bifurcation 

Hopf-bifurcation is an extension of the bifurcation theory and the corresponding techniques is 

modified for the application of delay differential equation [8]. [9] had stated that the stability of the 

models with DDE is found that easily affected by the time delay parameter and it is common to see that 

a stable equilibrium of delay differential equation becomes unstable due to the value of time delay 

becomes larger. This condition provides the dynamics of DDE are extremely sensitive to the parameter 

and more complex dynamics will be generated when increasing time delay. In other words, Hopf-

bifurcation occurs when the periodic solution or limit cycle surrounding an equilibrium is risen or 

disappeared as the time delay varies. Therefore, the Hopf-bifurcation theorem is one of the crucial parts 

for DDE which is used to establish the existence of period solutions. 

3. Results and Discussion 

3.1 Exponential model with and without delay 

The exponential growth or decay model introduced by Malthus [2] is written as 
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 𝑢′(𝑡) = 𝛼𝑢(𝑡), 𝐸𝑞. 5 

and the corresponding model with delay is  

 𝑢′(𝑡) = 𝛼𝑢(𝑡 − 𝜏), 𝐸𝑞. 6 

where 𝛼 is the intrinsic rate that can be positive or negative, since it is depending on whether it is used 

for exponential growth model or exponential decay model respectively. In order to see the difference 

between ODE and DDE, the graphs in Figure 1 were generalized by these equations. It was assumed 

that the initial value for 𝐸𝑞. 5 is 𝑢(0) = 100. For the case of DDE, it may a bit different compared with 

ODE, the initial condition was specified for time interval [0 , 𝜏] but not for time of 0 only, to make the 

comparison significantly,  𝑢 = 100 was used for [0 , 𝜏], the parameter 𝛼 was set with 𝛼 = −1 which 

means that there are decaying for both equations. 

  

Figure 1:  𝑬𝒒. 𝟓 and 𝑬𝒒. 𝟔 with various time 

delays 

Figure 2: 𝑬𝒒. 𝟔 with various time delays 

Based on the first graph, if the value of time delay is sufficiently small like 0.1, 0.15, and 0.2, then 

all the solutions with delay are looks very similar with to solution without delay. This implies that the 

smaller time delay is not giving the solution result in a large difference and only result in growth or 

decay more slowly compared with the condition without time delay. However, if the time delay kept 

increasing, it might be leading to a huge change for the solution of 𝐸𝑞. 6 and induced the arise of 

oscillation over time. 

From Figure 2, it can be seen that there are huge changes for the solution over time as the time 

delay increases. When 𝜏 = 1 or less, the solution (blue color) has finally decayed and converged to 0, 

and there was a stable equilibrium or stable steady state be set as the solution is moving toward it. 

However, when 𝜏 = 2 or more, the solutions (another three curves in Figure 2) had started to decay 

with oscillation and the periodic solutions had occurred which means that there was a loss of stability 

for the stable equilibrium. The situation indicates that the loss of stability and the occurrence of periodic 

motion is called Hopf-bifurcation. As the bifurcation occurs, the stable equilibrium becomes unstable, 

and there is a critical value of the time delay τ, which leads to the situation happening. Once the time 

delay is equal to or greater than the critical value, the Hopf-bifurcation happens. 

Next, it was to proceed with the stability analysis in order to know when the equilibrium will be in 

a steady-state and when will not. However, it should take the dimensionless analysis first for the delayed 

model but not the ordinary model, this is because it is an infinitely dimensional equation with high 
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complexity and the 𝐸𝑞. 5 is already in simplest form. Therefore, two equations were introduced for 

scaling of 𝐸𝑞. 6 which are 𝑈(𝜔) = 𝑢(𝑡) and 𝜔 = 𝑛𝑡, where 𝑛 > 0 and the 𝐸𝑞. 6 will become 

 𝑑𝑢

𝑑(
𝜔

𝑛
)
  = 𝛼𝑢 (

𝜔

𝑛
− 𝜏)   

 𝑈′(𝜔) = 𝛼 (
1

𝑛
) 𝑈(𝜔 − 𝜏𝑛)   

Two new parameters were introduced to reduce the number of parameters: 𝜏 =
1

n
 and 𝛽 = 𝛼𝜏. After 

that, the dimensionless analysis is completed. 

 𝑈′(𝜔) = 𝛽𝑈(𝜔 − 1)  𝐸𝑞. 7 

Equilibrium will be determined as well as this will be used for the stability test. As the equilibrium 

state is achieve, there will be no changes anymore, the rate of change will be 0. This implies that function 

𝑈(𝜔 − 1) will no difference with the value of 𝑈(𝜔) in equilibrium. The equilibrium for both equations 

can be simply obtained by just making the rate of change equal to 0. As the result, a trivial equilibrium 

was obtained in both model 𝐸𝑞. 5 and 𝐸𝑞. 6. 

3.2 Stability Test: Exponential model with delay and without delay 

      For the exponential decay model without delay, the stability of trivial equilibrium is known to 

depend on the value of 𝛼, if negative then there is a stable equilibrium, if positive the equilibrium is 

stable. No bifurcation happened because of the existence of the parameter. However, as the Figure 2 

shows, the stability of the equilibrium was changed due to the value of time delay was getting larger.  

      To determine the stability, it was assumed that there was an exponential solution which is 𝑈(𝜔) =

𝐶𝑒𝜆𝜔 for 𝐸𝑞. 7, and substituted it inside the equation. As the sequence, a corresponding characteristic 

equation was obtained. 

 𝐶𝜆𝑒𝜆𝜔 = 𝛽𝐶𝑒𝜆(𝜔−1)   

 𝜆 − 𝛽𝑒−𝜆 = 0  𝐸𝑞. 8 

      There are two possibilities for the eigenvalue of the characteristic equation which are real or 

imaginary. For the imaginary eigenvalues, considered that the eigenvalue is in the form of 𝜆 = 𝑥 + 𝑖𝑦, 

where 𝑥 was a real part and 𝑦 was the imaginary part. Substitute the complex eigenvalue proposed into 

the characteristic equation, the 𝐸𝑞. 8. 

(𝑥 + 𝑖𝑦) − 𝛽[𝑒−(𝑥+𝑖𝑦)] = 0   

 𝑥 + 𝑖𝑦 = 𝛽𝑒−(𝑥+𝑖𝑦)   

  = 𝛽𝑒−𝑥[cos(−𝑦) + 𝑖𝑠𝑖𝑛(−𝑦)]   

 𝑥 + 𝑖𝑦 = 𝛽𝑒−𝑥 cos(𝑦) − 𝑖𝛽𝑒−𝑥𝑠𝑖𝑛(𝑦)  𝐸𝑞. 9 

From the 𝐸𝑞. 9, the general equations for the real and imaginary parts was found: 

 𝑥  = 𝛽𝑒−𝑥 cos(𝑦)  𝐸𝑞. 10 

 𝑦  = −𝛽𝑒−𝑥𝑠𝑖𝑛(𝑦)  𝐸𝑞. 11 

      Recall that the equilibrium is stable if and only if all the eigenvalues have negative real parts but 

unstable if there are any positive real parts. Besides, from the 𝐸𝑞. 10 and 11, it is known that the real 

and imaginary parts of eigenvalue is depending on the value of 𝛽. That is, what value of 𝛽 is which 

there is 𝑥 equal to zero, and there are existences of a pure imaginary eigenvalue. Let assumed that 𝑥 =

0 and 𝑦 ≠ 0 for 𝐸𝑞. 10, 

 0  = 𝛽𝑒−(0) cos(𝑦)   

 y  = ±
𝜋

2
+ 𝑘𝜋, 𝑘 = 0, 1, 2, …  𝐸𝑞. 12 

And then, use the information obtained to determine the value of 𝛽, 
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 ±
𝜋

2
  = −𝛽𝑒−(0)𝑠𝑖𝑛 (±

𝜋

2
)   

 𝛽  = ±
𝜋

2
  𝐸𝑞. 13 

The negative 𝛽 was chosen as the critical value for the happening of Hopf-bifurcation. This is because 

the equilibrium is initially in steady state which refer to Figure 1 and 2, means that there were all 

negative eigenvalues. If the positive one was chosen, 𝛽 =
𝜋

2
, the 𝐸𝑞. 10 would become positive, the real 

eigenvalue were positive. Once the value of 𝛽 arrives at the critical value, −
𝜋

2
, the purely complex 

eigenvalues (no real eigenvalues) are formed and the solution will become unstable starting from this 

point due to the arise of periodic solution. 

Based on the finding above, three conditions were concluded for 𝐸𝑞. 8  given that there were 

complex conjugate eigenvalues. Recall that parameter 𝛽 actuary was the product of 𝛼 and 𝜏. 

1. If −
𝜋

2
< 𝛼𝜏 < 0, then the equilibrium 𝑈 = 0 is stable due to the real part is smaller that 0 for 

all eigenvalues. 

2. If 𝛼𝜏 = −
𝜋

2
, then the real part is equal to 0 and there are exist of purely complex conjugate 

eigenvalues, 𝜆 = ±𝑖
𝜋

2
. Hopf bifurcation is occurs. 

3. If 𝛼𝜏 < −
𝜋

2
, there are eigenvalues with real parts greater than 0 and the equilibrium 𝑈 = 0 is 

unstable. 

Next, the real eigenvalue for the characteristic equation was analyzed by using a graph which 

consist of 2 equation that are 𝑧 = 𝜆 and 𝑧 = 𝛽𝑒−𝜆, in order to determine where the point of intersection 

located. 

  

Figure 3: For real and positive eigenvalues Figure 4: For real and negative eigenvalues 

      In Figure 3, the value of 𝛽 is assumed that it is positive and equal 1, and there is one intersection 

point is obtained and located at a positive 𝜆 . Thus, the solution for 𝐸𝑞. 6 is expected to grow 

exponentially and it is reasonable to conclude there is an unstable equilibrium at 𝑈 = 0 due to the 

positive eigenvalue. 

      In Figure 4, the value of β is set in negative. Three possibilities were obtained based on the different 

values of β used which are zero, one, or two intersections for the two equations. There was one 

intersection point called single real root that happens when the curves are tangent of the 𝑧 = 𝜆. The 

corresponding value of β can be easily found out since there was the same slope for both curves and the 

straight line has a slope of 1. Thus, 
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 𝑑

𝑑𝜆 
(𝜆)  =

𝑑

𝑑𝜆 
(β𝑒−𝜆)   

 1  = −β𝑒−𝜆   

 𝑒𝜆  = −β   

 β  = −𝑒𝜆  𝐸𝑞. 14 

After that, replace the equation found into the 𝑧 = β𝑒−𝜆, and then 

 𝑧  = (−𝑒𝜆)𝑒−𝜆   

 z = −1   

Due to 𝑧 = 𝜆, it is known that when the 𝜆 = −1, the tangency happened and the β is equals to −𝑒−1. 

As the critical value for tangency was obtained, it can be used as refer, to determine the value of β 

corresponding to zero or two intersection points. In the graph, there are two intersection points given 

that the β is set with equal to −0.1 which was greater than −𝑒−1  and no exist of intersection point 

when assuming that equal to −1 which is smaller than −𝑒−1. 

      Based on the discussion above, several conditions are concluded for the 𝐸𝑞. 8, the characteristic 

equation given that there are real and for both positive and negative eigenvalues, 𝜆. 

1. If 𝛼𝜏 > 0, then there is exactly one real and positive eigenvalue, the equilibrium is unstable. 

2. If −𝑒−1  < 𝛼𝜏 < 0, there are exactly two real negative eigenvalues, the associated exponential 

solution is decay to 0 over time. The equilibrium can be said as a stable equilibrium. 

3. If 𝛼𝜏 = −𝑒−1, then there is a single negative eigenvalue with value −1 and lead to a result of 

stable equilibrium. 

4. If 𝛼𝜏 < −𝑒−1, there are no real roots with exponentially decaying to the solution. 

3.3 Logistic growth model and Hutchinson’s equation 

      The second comparison was conducted by using Logistic growth model and Hutchinson’s equation 

that introduced by [3] and [6] respectively, the model equations is written as following: 

 𝑑𝑝

𝑑𝑡 
 = 𝛼 (1 −

𝑝(𝑡)

𝐾
) 𝑝(𝑡)  𝐸𝑞. 15 

 𝑑𝑝

𝑑𝑡 
 = 𝛼 (1 −

𝑝(𝑡−𝜏)

𝐾
) 𝑝(𝑡)  𝐸𝑞. 16 

Similar procedure was repeated as the previous section that for exponential model which in order to 

make comparison and analyzing on both models. 

  

Figure 5: 𝑬𝒒. 𝟏𝟓 and 𝑬𝒒. 𝟏𝟔 with various time 

delays 

Figure 6: 𝑬𝒒. 𝟏𝟔 with various time delays 
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Based on the Figure 5, it can clearly be seen that the solutions for 𝐸𝑞. 16 which is the Hutchinson 

equation are almost similar with the 𝐸𝑞. 15 which is the logistic equation if the delay is sufficiently 

small given that the time delay values are equal to 1, 2 and 3. All the solutions shown above are growth 

and converge to the value of carrying capacity.  

      From the Figure 6, there was a small perturbation that occurs given the time delay is equal to 9 and 

10, but it had converged back to the value of carrying capacity at the end over time which means the 

equilibrium until the current delay is still in stable. However, when the time delay was equal 11, there 

was an arise of oscillation or periodic solution over time for the equilibrium, which was the sign of 

Hopf-bifurcation. It is reasonable to say that there is a critical value in between 10 and 11 that leads to 

the bifurcation to occur. Naturally, the equilibrium that originally in steady state has become unstable. 

As the time delay increases, the periodic solution arose and led to the loss of stability for a stable 

equilibrium. This condition is similar as in exponential model. 

      In order to conduct the stability analysis, the dimensionless analysis was repeated for the 

Hutchinson’s equation. Let introduce two equations in order to reduce the number of parameters of 

Hutchinson’s equation by assuming 𝑦 =
𝑝

K
 and 𝑡′ =

𝑡

𝜏
 , and the following equation will be achieved 

 𝑑(𝐾𝑦)

𝑑(𝜏𝑡′ )
  = 𝛼 (1 −

𝐾𝑦(𝜏𝑡′−𝜏)

𝐾
) (𝐾𝑦)  

 

 𝑑(𝑦)

𝑑(𝑡′)
  = (𝜏)𝛼𝑦(1 − 𝑦(𝑡′ − 1))   

 𝑑𝑦

𝑑𝑡′  
= 𝜏𝛼𝑦[1 − 𝑦(𝑡′ − 1)]   

Let σ = 𝜏𝛼 , then the interchange of dimension is completed 

 𝑑𝑦

𝑑𝑡′  
= σ𝑦[1 − 𝑦(𝑡′ − 1)]  𝐸𝑞. 17 

The equilibrium for both 𝐸𝑞. 15 and 16 is similar due to the value of function 𝑝(𝑡 − 𝜏) is totally 

identical with that of 𝑝(𝑡) at equilibrium since the solution does not change with the moment of 𝑡 in 

the steady state. Therefore, only the 𝐸𝑞. 17 will be investigated and the equilibrium found can be 

applies for 𝐸𝑞. 15 given that if it is also in dimensionless form. 

 0  = σ𝑦[1 − 𝑦]   

 σ𝑦 = 0 1 − 𝑦 = 0 

 𝑦 = 0 𝑦 = 1 

As the result shown, there are two equilibriums for both equations which are in dimensionless form, 

they are 0 and 1. 

3.4 Stability Test: Logistic growth model and Hutchinson’s equation 

       It should be known that there will be no changes of stability for the logistic growth model and the 

solution of the logistic growth model was mainly depending on the value of 𝛼. The solution will grow 

and move toward to the equilibrium 𝐾 when 𝛼 is positive, the solution was approaching the other 

equilibrium 0 when 𝛼 is negative. Given that the initial value of value was greater than the carrying 

capacity, the solution was also moving toward to the equilibrium 𝐾 as well. It should be notice that the 

equilibrium 𝐾 and 0 are valid for the dimensional form but not for dimensionless form, the equilibrium 

for dimensionless form were 1 and 0 that obtained in previous analysis. 

For the stability analysis of Hutchinson’s equation, the perturbation from each equilibrium was 

introduced to see whether the solution returns to the steady state and the method used is called 

linearization. The equilibriums investigated were 0 and 1 given that the Hutchinson’s equation was in 

dimensionless form.  
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First, the perturbations 𝑧  from 𝑦 = 0  were satisfying the linear equation 
𝑑𝑧

𝑑𝑡′ = σ𝑧 , which was 

differentiation function with exponential growth and decay. This means that the equilibrium 𝑦 = 0 was 

unstable. For equilibrium 𝑦 = 1, an equation 𝑦 = 𝑧 + 1 was introduced in order to analyze the state 

stability. 

 𝑑𝑧

𝑑𝑡′  
= σ(𝑧 + 1)[1 − {𝑧(𝑡′ − 1) + 1}]    

 𝑑𝑧

𝑑𝑡′  
= −σ(𝑧 + 1)𝑧(𝑡′ − 1)    

For small perturbation, given that 𝑧 + 1 ≈ 1, then the linearized equation is 

 𝑑𝑧

𝑑𝑡′  
= −σ𝑧(𝑡′ − 1)  𝐸𝑞. 18 

For the 𝐸𝑞. 18 stated above, it should not stranger to it since it actually was similar to the 𝐸𝑞. 7 that 

investigated the exponential equation with delay. Therefore, the analysis result for the stability for 𝐸𝑞. 7 

can be applied for 𝐸𝑞. 18. 

In this case, there was a negative sign for 𝐸𝑞. 18 but 𝐸𝑞. 7 not, which is 𝛽 = −σ. Thus, some 

modification will be taken and the critical value for Hopf-bifurcation will be change as well. Remember 

that σ = 𝜏𝛼. 

1. If −
𝜋

2
< −σ < 0, which is equal to 0 < 𝜏𝛼 <

𝜋

2
, the equilibrium 𝑈 = 0 is stable due to the real 

part is smaller that 0 for all eigenvalues. 

2. If 𝜏𝛼 =
𝜋

2
, then the real part is equal to 0 and there are exist of purely complex conjugate 

eigenvalues, 𝜆 = ±𝑖
𝜋

2
. Hopf-bifurcation occurs. 

3. If −σ < −
𝜋

2
, which is 𝜏𝛼 >

𝜋

2
, then there are eigenvalues with real parts greater than 0 and the 

equilibrium 𝑈 = 0 is unstable. 

From the statement above, it can be said that the small perturbation from equilibrium 1, was 

decaying to 0 at the end over time, and conclude that the corresponding equilibrium was stable. At σ =
𝜋

2
, there were purely complex conjugate eigenvalues, and induce that the loss of stability of equilibrium 

1. Start from the point, the periodic solution has risen and satisfied the condition of Hopf bifurcation.  

Given that there are real eigenvalues for the characteristic equation of 𝐸𝑞. 18, 

1. If σ < 0, then there is exactly one real and positive eigenvalue, the equilibrium is unstable. 

2. If 0 < σ < 𝑒−1, there are exactly two real negative eigenvalues, the associated exponential 

solution is decay to 0 over time. The equilibrium can be said as a stable equilibrium. 

3. If σ = 𝑒−1, then there is a single negative eigenvalue with value −1 and lead to a result of 

stable equilibrium. 

4. If σ > 𝑒−1, there are no real roots with exponentially decaying to the solution. 

4. Conclusion 

       Based on the result obtained in the study, it can be concluded that there is no significant difference 

for both ODE and DDE population dynamics models given that the value of time delay is small enough. 

However, there must an existent of time delay for all processes and systems but not respond 

instantaneous, so that the delayed population dynamics models are recommended which can present a 

better approximation and analysis based on the real-life phenomenon.  
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With the basic theory of DDE, as the time delay gets larger, there is something that happens on the 

trajectories of the model solution. The equilibrium which is initial in a stable state becomes unstable, 

this leads to the condition of the solution will not converge at one state level over time. As the loss of 

stability, the periodic solutions occur and oscillate over time. When the time delay keeps increasing, 

the solution will become more and more non-stationary. Thus, the critical value that leads to this 

phenomenon is necessary to be obtained. 

For the exponential decay model, if the product of the intrinsic growth rate and the time delay, 𝛼𝜏 

is equal to −
𝜋

2
, then the Hopf-bifurcation will occur. Strat from that point, the equilibrium will be 

unstable and there is a periodic solution. In Hutchinson’s equation, it was tested as well to determine 

the critical value for the happening of Hopf-bifurcation as well. The condition for the happening of 

Hopf-bifurcation phenomenon is totally opposite with the discussion on the exponential decay model. 

The non-trivial equilibrium will be stable if the product of the intrinsic growth rate and the time delay 

was smaller than 
𝜋

2
 due to the negative real part for all eigenvalues. As the product becomes larger, a 

critical value will be met, which is 
𝜋

2
, then the similar phenomenon as in the exponential decay model 

will be repeated with the risen of periodic solution and loss of stability.  
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