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Abstract: Risk aversion play an important role in economics, finance, psychology 

and especially decision making. This research conducts a study using random data by 

proving Arrow-Pratt measures using Jensen-type operators. The methodology is 

based on the objectives of the study which are determining the risk aversion by using 

fuzzy numbers under utility function, proving Arrow-Pratt measures by using Jensen 

type operators and determining risk premium under fuzzy risk aversion. The 

methodology includes formulating utility functions under decision making, triangular 

and trapezoidal fuzzy number is introduced to reduce the complexity of determining 

the utility function of a decision maker, proving Pratt’s theorem for possibilistic risk 

aversion associated with fuzzy number, a utility function and weighting function 

under Jensen type operators and also risk premium was set defining as a measure of 

risk aversion discovered and explain using the possibilistic expected value using 

Arrow-Pratt formula  The results and discussion yields all the three objectives based 

on the methodology discussed. The main notions are the possibilistic risk premium 

and the possibilistic relative risk premium associated with a fuzzy number and a utility 

function using Arrow-Pratt theorems with Jensen type operators under risk aversion. 
 
Keywords: Risk Aversion, Fuzzy Set And System Environment, Risk Premium, 

Utility Function, Jensen-Type Operators, Arrow-Pratt Measures 

 

1. Introduction 

Risk aversion is traditionally defined in the context of lotteries over monetary payoffs. However, 

one can also consider risk aversion when the outcomes of risky lotteries may not be measurable in 

monetary terms [15].  Zadeh [12] initiated possibility theory in 1978 as a way to approach risk aversion. 

Risk theory is developed traditionally in the context of probability theory. Fuzzy logic models are more 

convenient for incorporating different expert opinions and more adapted to cases with insufficient and 

imprecise data. Providing a framework in which experts’ input and experience data can jointly assess 

the uncertainty and identify major issues [11]. The risk situation has been described by fuzzy numbers 
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and the notions and results on possibilistic risk aversion are expressed by a possibilistic indicator [6]. 

Risk aversion under fuzzy numbers is to be said that the main notions are the possibility risk premium 

and the possibility relative risk premium associated with a fuzzy number and a utility function. During 

an uncertainty in life, when we face some partial information, uncertainty theory could not be used as 

a model to determine the risk aversion. Hence, this study considers the fuzzy number as a tool to 

overcome this kind of lack of risk aversion theory. 

2. Materials and Methods 

2.1 Risk aversion using fuzzy numbers under utility function  

2.1.1 The utility function is formulated 

This research first considers the concept of utility based on the risk aversion, which is used to 

evaluate and compare the various situations against the risk when the insured or insurer taking decisions. 

The utility function 𝑢(⋅) for economic models is based upon the income and profit of the given 

individual. The utility function has to be expressed by any of the following functions (Quittard-Pinon 

2003) [16] such as:  

 Quadratic ⇒ 𝑢(𝑥) = 𝑎 ⋅ 𝑥 − 𝑏 ⋅ 𝑥2 

 Logarithmic ⇒ 𝑢(𝑥) = ln(𝑥) 
 Power ⇒ 𝑢(𝑥) = 𝑤𝜆, 𝜆 < 1 

 Exponential ⇒ 𝑢(𝑥) = −𝑒−𝑎⋅𝑥 

Thus, this study considers the decision-maker attitude towards the risk aversion, so the decision-maker 

prefers the excepted value as follows 

                  𝜆𝑢(𝑥) + (1 − 𝜆)𝑢(𝑦) ≤ 𝑢(𝜆𝑥 + (1 − 𝜆)𝑦), ∀𝜆 ∈ [0,1] 

where 𝑥 is the maximum gain with the probability 𝜆, whereas the minimum gain is 𝑦 with the probability 

1 − 𝜆 [18]. 

2.1.2 Fuzzy numbers 

In order to reduce the complexity of determining the utility function of a decision-maker, this study 

applying for the triangular number and the trapezoidal fuzzy number to the concept of the individual 

utility level which will give us mathematical accuracy to human thinking. 

Definition 3.1 Triangular Fuzzy Number 

A triangular fuzzy number 𝐴 is represented by the (𝑎1, 𝑎2, 𝑎3) is defined by the membership 

function [12]  

𝜇𝐴(𝑥) =

{
 
 

 
 
𝑥 − 𝑎1
𝑎2 − 𝑎1
𝑥 − 𝑎2
𝑎2 − 𝑎3
0

    

𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑎2 ≤ 𝑥 ≤ 𝑎3

otherwise 

 

where [𝑎1, 𝑎3] is the support range, and the point (𝑎2, 1) is the normal.  

Definition 3.2 Trapezoidal Fuzzy Number 

A trapezoidal fuzzy number 𝐴 is represented by (𝑎1, 𝑎2, 𝑎3, 𝑎4) is defined by the membership 

function [10]:  

Eq. 1 

Eq. 2 
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𝜇𝐴(𝑥) =

{
 
 

 
 
𝑥 − 𝑎1
𝑎2 − 𝑎1

,

1,

𝑎1 ≤ 𝑥 ≤ 𝑎2
𝑎2 ≤ 𝑥 ≤ 𝑎3

𝑥 − 𝑎4
𝑎3 − 𝑎4

, 𝑎3 ≤ 𝑥 ≤ 𝑎4

0 otherwise

 

2.1.3 Model for determining the Utility Function 

When the decision-maker choice is risk-averse, it is important to evaluate a certain equivalent or 

guarantee money by the use of trapezoidal fuzzy numbers which depends on decision-makers' initial 

wealth 𝑊0 [5]. Mathematically, according to the risk-aversion, the utility of the final wealth expected 

value is  

 

𝐸[𝑢(𝑊0 + 𝑥)]. 

Then the utility of the final expected wealth  

𝑢(𝑊0 + 𝐸(𝑥)) 

 is different from the expected value of the final wealth utility. Now, we can find the certainty equivalent 

(CE) as follows  

𝐶𝐸 = 𝑢−1{𝐸[𝑢(𝑊0 + 𝑥)]} 

Adopt the Lixandroiu [4] steps as follows  

Step 1: Draw the decision tree depends on the lottery and find the utility function of initial and final 

points.  

Step 2: Determine the certainty equivalent value as a trapezoidal fuzzy number.  

Step 3: Determine the utility of the certainty equivalent value. Then, determine the other values of the 

utility function and trace the concave curve of utility function to decide the decision maker is 

risk aversion.  

2.2 Arrow-Pratt measures using Jensen-type operators 

The agent is risk averse if she is willing to pay more than 𝐸𝑥 for an insurance contract paying out 

the monetary equivalent of a random outcome 𝑋, regardless her initial wealth w. One may prove that 

the agent is risk averse if and only if the function 𝑢 is concave, that is,  

 

𝑢(𝑎𝑥 + (1 −  𝑎)𝑦) ≥  𝑎𝑢(𝑥) + (1 −  𝑎)𝑢(𝑦) 

for all 𝑥, 𝑦 and 0 <  𝑎 <  1 

Moreover, if two agent have the same initial wealth and the 𝑖-th agent has twice differentiable 

utility function 𝑢𝑖 , 𝑖 =  1, 2, then the first of them is more risk averse (wants to pay not less than the 

other agent), if and only if  𝛼1 (𝑥)  ≥   𝛼2 (𝑥) for all 𝑥, where 𝛼𝑖(x) is the coefficient of absolute risk 

aversion of the 𝑖-th agent defined as: 

𝛼(𝑥) = −
𝑢"(𝑥)

𝑢′(𝑥)
  for 𝑢 ∈  {𝑢1, 𝑢2}.  

It is also called the Arrow-Pratt index.  

2.3 Risk premium under risk aversion 

Eq. 3 

Eq. 7 

Eq. 8 

Eq. 4 

Eq. 5 

Eq. 6 
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The risk premium 𝜌𝑋 (associated with the random variable 𝑋 and the utility function 𝑢) is 

defined by the identity  

    𝐸(𝑢(𝑋)) =  𝑢(𝐸(𝑋) −  𝜌𝑋)          

Let us assume that 𝑢 is twice differentiable, strictly concave and increasing. Then, 

𝜌𝑥 =  −
1

2
𝜎2𝑥 

𝑢′′(𝐸(𝑋))

𝑢′(𝐸(𝑋))
 

       where 𝜎2𝑥 is the variance of 𝑋              

The Arrow-Pratt index (= the coefficient of absolute risk aversion) associated with a utility function 𝑢 

is introduced by the equality: 

𝛼(𝑥) =
𝑢′′(𝑥)

𝑢′(𝑥)
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℝ 

         The risk premium 𝜌𝑥 can be expressed in terms of the Arrow-Pratt index and of two probabilistic 

indicators (expected value and variance). Thus the Arrow-Pratt index can be viewed as a measure of 

the risk aversion of the agent represented by the utility function 𝑢.  

3. Results and Discussion 

3.1 Risk aversion by using fuzzy numbers under utility function 

3.1.1 Risk aversion under utility function 

Individual A has the opportunity to participate in two gambles. In the first, a referee will flip a 

coin, and if it lands heads, Individual A will receive an old rare coin (Individual A is a coin collector). 

In the second, the referee will flip a different coin, and if it lands tails, Individual A will receive a nice 

pair of shoes. Individual A believes both coins to be fair. Now a trickster comes along and offers 

Individual A sort of an insurance: for a few cents, the trickster will rig the game so that the first coin 

determines both outcomes – if it lands heads, Individual A gets the rare coin, and if it lands tails, 

Individual A gets the shoes. Therefore, Individual A is guaranteed to receive some prize. Individual A 

values the two goods independently in the sense that having one does not add to or decrease from the 

value of having the other. He decides that the trickster’s deal is worthwhile and it would be nice to 

guarantee that he gets something no matter what. So, he decides to pay a few cents to rig the game. We 

can represent his options schematically as follows: 

Table 1: Offers between two deals 

 HH HT TH TT 

Deal 1 Coin Coin and shoes Nothing Shoes 

Deal 2 Coin Coin  Shoes Shoes 

 

Individual A prefers deal 2 compared to deal 1 and this seems very much reasonable as many of the 

players will have similar preferences. However, standard decision theory [9] rules this out as an absurd 

decision.  

Individual B values small amount of money, receiving RM 50 is just the same whether individual 

B starts with RM 0 or RM 50, and feels similarly about all small increments of money. It can be said 

that individual B values money linearly: every ringgit received is worth as much to as the previous ones, 

at least for amounts of money less than RM 200. Individual B prefers RM 50 to a coin flip between RM 

0 and RM 100. If individual B takes the former, then RM 50 would be obtained, and the possibility of 

getting RM 100 is not enough to make up for the for the possibility of obtaining RM 0. Individual B 

would rather take RM 50 as a guarantee money than take that chance. These preferences also might 

Eq. 9 

Eq. 10 

Eq. 11 
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seem appealing to many people, and are at least understandable. But standard decision theory cannot 

represent individual B’s preferences, and judges like Individual A to be an irrational decision. 

Finally, in a classic example due to Maurice Allais [2], commonly known as the Allais paradox, 

people are presented with a choice between X1, X2, X3 and X4, where the gambles are as follows: 

X1: RM 5,000,000 with probability 0.1, RM 0 otherwise. 

X2: RM 1,000,000 with probability 0.11, RM 0 otherwise. 

X3: RM 1,000,000 with probability 0.89, RM 5,000,000 with probability 0.1, RM 0 otherwise. 

X4: RM 5,000,000 with probability 1. 

People tend to choose X1 over X2, and X4 over X3: in the first pair, the minimum amount that 

one stands to walk away with is the same for either gamble, and there is not much difference in one’s 

chances of winning some money. However, X1 yields higher winnings; in the second pair, however, the 

minimum amount that X4 yields is a great deal higher than the minimum that X3 yields. Again, these 

preferences are understandable (most people express them), but standard decision theory cannot 

accommodate them, and, again, must judge the decision to be absurd or irrational. 

3.1.2 Risk aversion using fuzzy numbers 

A recent research proposes using the concept of expected value of a fuzzy number developed in 

[18], which for a fuzzy number 𝑎̃, we symbolize as 𝐸𝑉[𝑎̃, 𝛽]. This value can be obtained by introducing 

the decision-maker risk aversion with the parameter 𝛽, where 0 ≤ 𝛽 ≤ 1:  

𝐸𝑉[𝑎̃, 𝛽] = (1 − 𝛽)∫ 𝑎(𝛼)𝑑𝛼
1

0

+  𝛽∫ 𝑎(𝛼)𝑑𝛼
1

0

  

So, if 𝑎̃ is the triangular fuzzy number (𝑎, 𝑙𝑎 , 𝑟𝑎): 

𝐸𝑉[𝑎̃, 𝛽] = 𝑎 −
𝑙𝑎
2
+
𝛽

2
(𝑙𝑎 + 𝑟𝑎) 

The fuzzy numbers constitute a class of possibilistic distributions with remarkable properties and 

with important applications. In this section, a series of definitions and results on the expected 

value 𝐸𝑓(𝐴) and the variance 𝑉𝑎𝑟𝑓(𝐴) of a fuzzy number 𝐴 is recalled. Two propositions on the 

expected value are given (Propositions 4.1 and 4.2) which was used in proving the main results of the 

section in chapter 3 under section 3.4. The main contribution of the section is the introduction of a new 

possibilistic indicator the variance 𝑉𝑎𝑟𝑓
∗(𝐴) for which two calculation formulae are established. 

𝑉𝑎𝑟𝑓
∗(𝐴) is a possibilistic variance different from 𝑉𝑎𝑟𝑓(𝐴) and it is used in evaluating the possibilistic 

risk aversion [20].  

Let 𝐴 be a fuzzy number such that for any 𝛾 ∈ [0,1], the 𝛾-level set [𝐴]𝛾 = [𝑎1(𝛾)𝑎2(𝛾)] is non-

degenerate (𝑎1(𝛾) ≠ 𝑎2(𝛾)). 

The notion of central value introduced below allows us to define and study the expected value and 

variance of a fuzzy number. 

The central value of [𝐴]𝛾 is the real number  

𝑐𝑒𝑛𝑡𝑟𝑒([𝐴]𝛾) =
1

𝑎2(𝛾) − 𝑎1(𝛾)
 ∫ 𝑥 𝑑𝑥 =

𝑎1(𝛾) + 𝑎2(𝛾)

2

𝑎2(𝛾)

𝑎1(𝛾)

 

If 𝘨 ∶ ℝ →  ℝ is a continuous function then 𝘨(𝐴) is defined by the Zadeh sup-min extension principle 

[13]  

Eq. 12 

Eq. 13 

Eq. 14 



Mohammed Sayeed Shafaraz et al., Enhanced Knowledge in Sciences and Technology Vol. 2 No. 1 (2022) p. 1-10 

6 
 

𝘨(𝐴)(𝑦) = {
sup𝐴(𝑥)

𝘨(𝑥) = 𝑦
0

        𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑥 ∈ ℝ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝘨(𝑥) = 𝑦, 

If 𝘨 ∶ ℝ →  ℝ is a continuous function then the central value of the 𝛾-level set of 𝘨(𝐴) is defined by   

𝑐𝑒𝑛𝑡𝑟𝑒(𝘨[𝐴]𝛾) =
1

𝑎2(𝛾) − 𝑎1(𝛾)
 ∫ 𝘨(𝑥)𝑑𝑥

𝑎2(𝛾)

𝑎1(𝛾)

 

A non-negative and monotone increasing function 𝑓: [0,1] → ℝ is a weighting function if it satisfies the 

normality condition ∫ 𝑓(𝛾) 𝑑𝛾 = 1
1

0
. 

The expected value of a fuzzy number 𝐴 with respect to a weighting function 𝑓 is defined by  

𝐸𝑓(𝐴) = ∫ 𝑐𝑒𝑛𝑡𝑟𝑒([𝐴]𝛾)𝑓(𝛾) 𝑑𝛾
1

0

∫
𝑎1(𝛾) + 𝑎2(𝛾)

2

1

0

𝑓(𝛾) 𝑑𝛾 

If 𝑓(𝛾) = 2𝛾 for 𝛾 ∈ [0,1] then 𝐸𝑓(𝐴) is exactly the possibilistic mean value 𝑀̅(𝐴) introduced in [8]. 

If 𝘨 ∶ ℝ →  ℝ is a continuous function then the expected value of 𝘨(𝐴) with respect to a weighting 

function 𝑓 is defined by 

𝐸𝑓(𝘨(𝐴)) = ∫ 𝑐𝑒𝑛𝑡𝑟𝑒([𝘨(𝐴)]𝛾)𝑓(𝛾) 𝑑𝛾
1

0

 

                   = ∫ (
1

𝑎2(𝛾) − 𝑎1(𝛾)
∫ 𝘨(𝑥)𝑑𝑥
𝑎2(𝛾)

𝑎1(𝛾)
)

1

0

𝑓(𝛾) 𝑑𝛾 

𝘨 is interpreted as a utility function, and 𝐸𝑓(𝘨(𝐴)) as the possibilistic expected utility. 

3.2 Proving Arrow-Pratt measures using Jensen-type operators 

The following four conditions on a pair of (increasing, twice differential) Von Neumann-

Morgenstern utility functions 𝑢𝑎(∙) and 𝑢𝑏(∙) are equivalent: 

(1) 𝑢𝑎(∙) is a concave transformation of 𝑢𝑏(∙), in essence, 𝑢𝑎(𝑥) = 𝜌( 𝑢𝑎(𝑥)) for some 

(necessarily increasing) concave function 𝜌(∙). 
(2) The Arrow-Pratt coefficients of absolute risk aversion satisfy the inequality 

−
𝑢𝑎
′′(𝑥)

𝑢𝑎
′ (𝑥)

≥
𝑢𝑏
′′(𝑥)

𝑢𝑏
′ (𝑥)

 for all 𝑥  

 

(3) If 𝑘𝑎 and 𝑘𝑏 are such that 𝑢𝑎( 𝑘𝑎) = 𝔼𝐹 𝑢𝑎(𝑥) and 𝑢𝑏( 𝑘𝑏) = 𝔼𝐹 𝑢𝑏(𝑥) for some 

distribution 𝐹(∙), then 𝑘𝑎 ≤ 𝑘𝑏. 

(4) Suppose that 𝑢𝑎(∙) and 𝑢𝑏(∙) are concave. If 𝑟 is known and 𝑟 > 0, 𝑥 is uncertain with 𝔼𝐹(𝑥) >
𝑟 and probability (𝑥 < 𝑟) > 0, and α𝑎 and α𝑏 respectively solve 

max
0≤α≤I

𝔼𝐹𝑢𝑎 ((𝐼 − 𝛼)𝑟 + 𝛼𝑥) 

 and 

max
0≤α≤I

𝔼𝐹𝑢𝑏 ((𝐼 − 𝛼)𝑟 + 𝛼𝑥) 

 then α𝑎 ≤ α𝑏. 

Risk aversion is plainly related to concavity, hence to 𝑢𝑎
′′(∙) and 𝑢𝑏

′′(∙). But these, unlike the Arrow-

Pratt coefficients −
𝑢𝑎
′′(∙)

𝑢𝑎
′ (∙)

 and −
𝑢𝑏
′′(∙)

𝑢𝑏
′ (∙)

 , are not invariant to increasing linear transformations, and 

Eq. 15 

Eq. 16 

Eq. 17 

Eq. 18 

Eq. 19 

Eq. 20 

Eq. 21 
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therefore cannot be linked as closely to the behavioural conditions (3) and (4) as the theorem’s 

conclusion requires. 

 

PROOF.  

1.  (1) ⟺ (2) 

     𝑢𝑎(𝑥) ≡ 𝜌(𝑢𝑏(𝑥)), 

      𝑢𝑎
′ (𝑥) ≡ 𝜌′(𝑢𝑏(𝑥))𝑢𝑏(𝑥), 

𝑢𝑎
′′(𝑥) ≡ 𝜌′(∙)𝑢𝑏

′′(𝑥) + 𝜌′′(∙)(𝑢𝑏
′′(𝑥))

2
 

Thus, 

−
𝑢𝑎
′′(𝑥)

𝑢𝑎
′ (𝑥)

≡
−𝜌(∙)𝑢𝑏

′′(𝑥) − 𝜌′′(∙)(𝑢𝑏
′ (𝑥))

2

𝜌′(∙)𝑢𝑏
′ (𝑥)

 

               ≡ −
𝑢𝑏
′′(𝑥)

𝑢𝑏
′ (𝑥)

−
𝜌′′(∙)

𝜌′(∙)
𝑢𝑏
′ (𝑥) ≥ −

𝑢𝑏
′′(𝑥)

𝑢𝑏
′ (𝑥)

 

because 𝜌(∙) is increasing and concave. This proves (1) ⟹ (2). However to prove vice versa, (1) ⟸ 

(2), note that since 𝑢𝑎(∙) and 𝑢𝑏(∙) are both increasing functions of one variable, they can always be 

related, as in (1), by an increasing transformation 𝜌(∙). (2) then shows that 𝜌(∙) must be concave.      

2. (1) ⟹ (3) depends on an important lemma known as Jensen’s Inequality, which is true “in 

general” , but is proven here assuming twice differentiability: 

If 𝑓(𝑦) is a concave function of one variable, then 𝔼𝑓(𝑦) ≤ 𝑓(𝑦). 

3.3 Risk premium under Risk Aversion 

In what follows, by deriving Arrow’s risk premium when probability distortion takes place, that is 

when normalized decision weights, 𝜔(𝑝), rather than objective probabilities, 𝑝, are employed. Based 

on [15] and [8], decision weights are employed Arrow’s risk-measure increases relative to the case 

where the objective probabilities are employed. This increase may be quite significant, and a positive 

risk premium (𝑝 >
1

2
) is obtained “in the small” even if 𝑈′′ = 0, and may be also obtained with 𝑈′′ >

0 [20]. 

Based on the Rothschild and Stiglitz [14] definition of risk. One agent is weakly more risk averse 

than another if he always chooses the less risk two alternatives whenever the other agent does. As shown 

previously, these two notions of risk aversion are identical under expected utility theory so they will 

always identify the same utility functions as more risk averse. 

 If one utility function is more concave than another then it demands a larger risk premium for 

bearing any risk in its entirety. But it does not follow that a more concave utility function always 

demands a larger risk premium for moving from one prospect to a Rothschild-Stiglitz [14] more risk 

prospect. This can be illustrated with the following example: 

There are two risky projects. The first 𝑚̃, has two outcomes with probability 𝑝 of paying 20 and a 

probability 1 − 𝑝 of paying 0. The second project 𝑛̃, has the same probability 1 − 𝑝 of paying 0 and a 

probability 𝑝/2  of paying 25 and 15. According to [13], the second project is riskier than the first 

because the added variation of 5−
+  in 𝑛̃ when 𝑚̃ = 20, is conditionally means zero-noise [9]. 

The risk premium that an investor would pay to give up 𝑛̃ in favour of 𝑚̃ is the solution 

to 𝔼[𝑢(𝑛̃)] ≡ 𝔼[𝑢(𝑚̃ − 𝜋)]. The figure shows the risk premium for two exponential utility functions 

with risk aversions 𝑎 = 0.05 and 0.09. The premiums are plotted against the probability 𝑝 of the higher 

outcome. The more risk averse utility function demands a higher risk premium than the less risk averse 

utility only for 𝑝 >  57.9%.  

Eq. 22 

Eq. 23 
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Figure 1: Risk Premiums Illustrating Stronger Risk Aversion 

This figure illustrates that Arrow-Pratt risk is insufficient for an increase in risk to require a larger risk 

premium [10]. The risk premium here provides only partial insurance. It protects against the risk 5−
+  

risk, but not against the risk of getting 0 instead of 20. The Arrow-Pratt [10] theorem is only applicable 

for complete insurance.  

This problem can also be analysed just as the simple Arrow-Pratt [9 and 11] problem. 

Because 𝑛̃𝑑 = 𝑚̃ + 𝜀̃ with 𝔼[𝜀̃|𝑚] = 0, a Taylor expansion gives 

𝔼[𝑢(𝑚̃ − 𝜋𝑛→𝑚)] ≡ 𝔼[𝑢(𝑛̃)] = 𝔼[𝑢(𝑚̃ + 𝜀̃)] 

𝔼[𝑢(𝑚̃)] − 𝜋𝑛→𝑚𝔼[𝑢
′(𝑚)] ≈ 𝔼[𝔼[𝑢(𝑚̃ + 𝜀)|𝑚]] 

≈ 𝔼[𝑢(𝑚̃) + 𝑢′(𝑚̃)𝔼[𝜀̃|𝑚̃] +
1

2
𝑢′′(𝑚̃)𝔼[𝜀̃2|𝑚̃]] ⇒ 𝜋𝑛→𝑚 ≈

𝔼[−𝑢′′(𝑚̃)𝑣𝑎𝑟[𝜀̃|𝑚̃]

2𝔼[𝑢′(𝑚̃)]
 

When 𝑚̃ is not random, it refers to the Arrow-Pratt result [see 9, 11, 15] where 𝜋 ≈
1

2
𝐴(𝑥)𝑣𝑎𝑟[𝜀̃]. 

When 𝑚̃ is random, with a constant conditional variance for 𝜀̃, then  

𝜋𝑛→𝑚 ≈
1

2
𝑣𝑎𝑟[𝜀̃] × 𝔼

[−𝑢′′(𝑚̃)]
𝔼[𝑢′(𝑚̃)]
⁄  

which is almost the same result.   

However, when the conditional variance depends on 𝑥 , as it does in this example, the results can 

be quite different. Risk premium can be re-expressed as 

𝜋 ≈
𝔼[−𝑢′′(𝑚̃)𝑣𝑎𝑟[𝜀̃|𝑚̃]

2𝔼[𝑢′(𝑚̃)]
=
𝔼[𝑣𝑎𝑟[𝜀̃|𝑚̃]]

2𝔼[𝑢′(𝑚̃)]

𝔼[−𝑢′′(𝑚̃)𝑣𝑎𝑟[𝜀̃|𝑚̃]

𝔼⌊𝑣𝑎𝑟[𝜀̃|𝑚̃]⌋

=
1

2
𝑣𝑎𝑟[𝜀̃]

𝔼[−𝑢′′(𝑚̃) × 𝑣𝑎𝑟[𝜀̃|𝑚̃]/𝔼[𝑣𝑎𝑟[𝜀̃|𝑚̃]]

𝔼[𝑢′(𝑚̃)]
 

The numerator is a weighted average of the second derivative of the utility function where the weights 

are the conditional variances at different values of 𝑚. For most utility functions, −𝑢″(𝑚) decreases 

with 𝑚 so if 𝑣𝑎𝑟[𝜀̃|𝑚̃] increases with 𝑚, the smaller values of −𝑢″(𝑚) will be overweighted leading 

to a risk premium that is smaller than predicted by the Arrow-Pratt measure. When −𝑢″ decreases 

rapidly, the overweighting can be great enough to decrease the risk premium when risk aversion rises.  

 

4. Conclusion 

The first discussion based on the first objectives was split into two parts, where the first is risk 

aversion under utility function and the second is risk aversion using fuzzy numbers. The first section 

incorporated some types of decision-makers which is related to utility theory. The second section was 

discussed based on the normal and convex fuzzy set. The possibilistic risk premium is also described 

Eq. 24 

Eq. 25 

Eq. 26 
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by the use of fuzzy numbers. The next discussion is based on the second objective that mostly about 

proving the Arrow-Pratt theorem using Jensen-type operators where Von Neumann-Morgenstern utility 

functions were used. Apart from that, Lipchitz's continuity was briefly discussed and used in this 

section. The final discussion is based on the risk premium that was initiated from the idea of Arrow [1] 

and Pratt [10]. The discussion comprises with decision-making, market premium, decreasing absolute 

risk premium, which is discussed closely related to risk aversion.  The proposed research is mainly 

focused on the concept of risk aversion, so throughout this study, the word ‘risk aversion’ is kept on 

repeated even when it is compared to the attitude of risk decision-makers. 
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