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Abstract: From the previous studies, researchers were concerned about wave 

propagation in the artery. The research of wave modulation in the artery are somewhat 

limited since mathematical modelling is challenging to perform. The aim of this study 

is to investigate nonlinear wave modulation in a prestressed elastic tube filled with 

viscous fluid. In this research, the artery is assumed as thin-walled, long, and 

circularly cylindrical, the prestressed elastic tube with variable cross-section. Blood 

is considered an incompressible viscous fluid. For the reductive perturbation method 

(RPM), the stretched coordinates and asymptotic series were introduced in the 

dimensionless equations of tube and fluid. The RPM is applied to obtain a set of 

various orders of differential equations. The nonlinear Schrodinger (NLS) equation 

with variable coefficients is obtained by solving these differential equations as the 

nonlinear evolution equation in the corresponding mathematical model. The NLS 

equation with variable coefficients will be solved analytically. MATLAB’s graphical 

output shows that the wave speed increases when the viscosity of fluid increases. This 

happened due to the resistance of the blood flow indicates which results in the reaction 

of the wave speed. Increasing in wave number leads to decreasing in wavelength. 

Other than that, the wave travels further in the expanding tube than the narrowing 

tube. Furthermore, the wave amplitude effected by the cross-section area of the tube. 

Waves with greater amplitude comes from a high disturbance of energy. For future 

study, it is suggested to explore in wave modulation. There are few suggestions which 

are nonlinear wave modulation of heterogenous fluid flow in thin elastic tube with 

variable cross-sectional area, nonlinear wave modulation of Newtonian fluid flow in 

thin viscoelastic tube with variable cross-sectional area and nonlinear wave 

modulation of viscous fluid flow in thin stenosed viscoelastic tube. 

 

Keywords: Wave Modulation, Nonlinear Schrodinger Equation With Variable 

Coefficients, Viscous Fluid, Thin Wall Elastic Tube With Variable Cross-Section  
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1 Introduction 

In general, the human body consists of many biological systems to do a specific function to breathe 

and move. For instance, there are respiratory system, circulatory system, skeletal system, and digestive 

system. Ref. [1] stated that the circulatory system aids in blood circulation, which means it helps 

transport oxygen and nutrients to tissues in the body. Blood vessels in the body vary in size according 

to their functions. According to [2], the smallest blood vessels are capillaries, which only 5μm. It is 

only one cell thick that optimizes the diffusion of oxygen into the tissues. Many researchers have studied 

the wave modulation of fluid flow in an elastic tube such as [3], [4], [5] and [6]. In this research, blood 

is treated as an incompressible viscous fluid and the artery is a thin-walled, long, and prestressed elastic 

tube. 

2 Equations of the tube and fluid 

This section explains the equations of an incompressible viscous fluid-filled prestressed elastic tube. 

The equation of fluid is given as follow [3] 

𝜕𝑤∗

𝜕𝑡∗
+𝑤∗

𝜕𝑤∗

𝜕𝑧∗
+
1

𝜌𝑓

𝜕𝑃∗

𝜕𝑡∗
− 𝑣̅ (

8𝑤∗

𝑟𝑓
2 +

𝜕2𝑤∗

𝜕𝑡∗2
) = 0, 

(1) 

Where, 𝑟𝑓 = 𝑟0 + 𝑓
∗ + 𝑢∗is the final radius after deformation occurred. 

2
𝜕𝑢∗

𝜕𝑡∗
+ 2𝑤∗ [𝑓∗′ +

𝜕𝑢∗

𝜕𝑧∗
] + (𝑟0 + 𝑓

∗ + 𝑢∗)
𝜕𝑤∗

𝜕𝑧∗
= 0, 

 

 

(2) 

where w* is the mean of fluid speed, t* is time. z* is a coordinate that located on axis when the 

changes of radius maintain its value, f*(z*) is the function of a variable radius, 𝜌𝑓 the mass density, P* 

is the mean of fluid pressure, 𝑣̅ is the viscosity for fluid flow, u* is the function of displacement of the 

radius, and r0 is the initial radius in the coordinate system. 

The equation of motion of elastic tube in the radial direction could be written as follows [3]: 

−
𝜇

𝜆2

𝜕Σ

𝜕𝜆2
+ 𝜇𝑅0 ×

𝜕

𝜕𝑧∗

{
 
 

 
 

(𝑓∗′ +
𝜕𝑢∗

𝜕𝑧∗
)

[1 + (𝑓∗′ +
𝜕𝑢∗

𝜕𝑧∗
)
2

]

1
2

𝜕Σ

𝜕𝜆1

}
 
 

 
 

+
𝑃𝑟
∗

𝐻
(𝑟0 + 𝑓

∗ + 𝑢∗) 

× [1 + (𝑓∗′ +
𝜕𝑢∗

𝜕𝑧∗
)
2

]

1
2

= 𝜌0
𝑅0
𝜆𝑧

𝜕2𝑢∗

𝜕𝑡∗2
, 

 

 

 

 

 

 

 

(3) 

where  

𝑃𝑟
∗ = [1 + (𝑓∗′ +

𝜕𝑢∗

𝜕𝑧∗
)2]

−1/2

× [𝑃∗ + 4𝜇𝑣
(𝑓∗′ +

𝜕𝑢∗

𝜕𝑧∗
)

(𝑟0 + 𝑓
∗ + 𝑢∗)

𝑤∗] 

 

𝑅0 is the radius of the tube, Σ is the strain energy density function membrane, 𝜇 is the shear modulus 

of the material of the tube, 𝜆𝑧 represents the axial stretch of the tube, 𝜆2 is the circumference of curves, 

𝑃𝑟
∗ is a force where it is developed from the reaction of the fluid, 𝐻 is the thickness of the tube, and 𝜌0is 

the tube's mass density. Both equations of tube and fluid using the function, 𝑢 and depends on the same 

fast, and slow variables. Fast variables are t and z while slow variables are ξ and τ.  

The following non-dimensional quantities are introduced at this stage [3]: 



                                                                            Othman et al., Enhanced Knowledge in Sciences and Technology Vol. 1 No. 2 (2021) p. 88-97 
 

90 
 

𝑡∗ = (
𝑅0
𝑐0
) 𝑡, 

𝑧∗ = 𝑅0𝑧, 𝑢∗ = 𝑅0𝑢, 

𝑚 =
𝑝0𝐻

𝑝𝑓𝑅0
, 

𝑤∗ = 𝑐0𝑤, 𝑓∗ = 𝑅0𝑓, 

𝑟0 = 𝑅0𝜆𝜃 , 𝑃∗ = 𝑝𝑓𝑐0
2𝑝, 

𝑐0
2 =

𝜇𝐻

𝑝𝑓𝑅0
, 

𝑣̅ = 𝑝𝑓𝑐0𝑅0𝑣,̂  
 

 

 

 

 

  

 

 

 

(4) 

By applying Eq. (4) into Eq. (1), (2) and (3) yield 

𝜕𝑤

𝜕𝑡

𝑐0
2

𝑅0
+
𝑐0
2

𝑅0
𝑤(

𝜕𝑤

𝜕𝑧
) +

𝑐0
2

𝑅0

𝜕𝑃

𝜕𝑧
−
𝑐0
2𝑣̂𝜌𝑓𝑅0

𝑅0
2 [−

8𝑤

(𝜆𝜃 + 𝑓 + 𝑢)
2
+
𝜕2𝑤

𝜕𝑧2
] = 0, 

2 (
𝜕𝑤∗

𝜕𝑤

𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑧∗
) + 2𝑤∗ (𝑓∗′ +

𝜕𝑢∗

𝜕𝑢

𝜕𝑢

𝜕𝑧

𝜕𝑧

𝜕𝑧∗
) + (𝑟0 + 𝑓

∗ + 𝑢∗) × (
𝜕𝑤∗

𝜕𝑤

𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑧∗
) = 0, 

𝑝 =
𝑚

𝜆𝑧(𝜆𝜃 + 𝑓 + 𝑢)

𝜕2𝑢

𝜕𝑡2
+

1

𝜆𝑧(𝜆𝜃 + 𝑓 + 𝑢)

𝜕Σ

𝜕𝜆2
−

1

(𝜆𝜃 + 𝑓 + 𝑢)

𝜕

𝜕𝑧
 

×

{
 
 

 
 

𝑓′ +
𝜕𝑢
𝜕𝑧

[1 + (𝑓′ +
𝜕𝑢
𝜕𝑧
)
2

]

1
2

𝜕Σ

𝜕𝜆1

}
 
 

 
 

− 4𝑣
𝑓′ +

𝜕𝑢
𝜕𝑧

(𝜆𝜃 + 𝑓 + 𝑢)
𝑤. 

where, 𝜆𝜃 is the stretch ratio in the circumferential direction. 

 

 

 

 

 

 

 

 

 

 

 

(5) 

3 Nonlinear Wave Modulation 

In this section, to study the non-linear wave modulation in a viscous fluid contained in a thin elastic 

tube with the variable cross-sectional area, the reductive perturbation method (RPM) is applied. Based 

on the boundary-value problem, the following type of stretched coordinates are introduced [3]: 

 

𝜉 = 𝜀(𝑧 − 𝜆𝑡), 𝜏 = 𝜀2𝑧, (6) 

where ξ is the wave profile and τ is the space. ε indicates the nonlinearity measurer's weakness with 

a small value and λ is the scale constant to be determined from the solution. 

Since this study has a variable cross-section of tube, the order of ℎ̂ should be first-order, (𝜀), where 

ℎ̂(𝜀, 𝜏) = 𝜀ℎ(𝜏) [3]. The differential relations can be expressed as [3]: 

𝜕

𝜕𝑧
→
𝜕

𝜕𝑧
+ 𝜀

𝜕

𝜕𝜉
+ 𝜀2

𝜕

𝜕𝜏
,

𝜕

𝜕𝑡
→
𝜕

𝜕𝑡
− 𝜀𝜆

𝜕

𝜕𝜉
. 

(7) 

The field quantities 𝑢, 𝑤 and 𝑝 are assumed can be expressed as asymptotic series in the following 

form [3]: 

𝑢 = 𝜀𝑢1 + 𝜀
2𝑢2 + 𝜀

3𝑢3 +⋯  

𝑤 = 𝜀𝑤1 + 𝜀
2𝑤2 + 𝜀

3𝑤3 +⋯  

𝑝 = 𝑝0 + 𝜀𝑝1 + 𝜀
2𝑝2 + 𝜀

3𝑝3 +⋯ (8) 

where u, w, and p are the functions of fast variables and slow variables. 
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By solving Eq. (5), the various order equations obtained are shown as following  

𝑂(𝜀) order equation: 

𝜕𝑤1
𝜕𝑡

+
𝜕𝑝1
𝜕𝑧

= 0,
𝜕𝑢1
𝜕𝑡

+
𝜆𝜃
2

𝜕𝜔1
𝜕𝑧

= 0, 𝑝1 =
𝑚

𝜆𝑧𝜆𝜃

𝜕2𝑢1
𝜕𝑡2

− 𝑎0
𝜕2𝑢1
𝜕𝑧2

+ 𝛽1(𝑢1 + ℎ). 
 

(9) 

𝑂(𝜀2) order equation: 

𝜕𝑤2
𝜕𝑡

+
𝜕𝑝2
𝜕𝑧

− 𝜆
𝜕𝑤1
𝜕𝜉

+
𝜕𝑝1
𝜕𝜉

+ 𝑤1
𝜕𝑤1
𝜕𝑧

= 0, 

𝜕𝑢2
𝜕𝑡

+
𝜆𝜃
2

𝜕𝜔2
𝜕𝑧

− 𝜆
𝜕𝑢1
𝜕𝜉

+
𝜆𝜃
2

𝜕𝜔1
𝜕𝜉

+ 𝜔1
𝜕𝑢1
𝜕𝑧

+
𝑢1
2

𝜕𝜔1
𝜕𝑧

+
ℎ(𝜏)

2

𝜕𝜔1
𝜕𝑧

= 0,  

 

𝑝2 =
𝑚

𝜆𝑧𝜆𝜃
(
𝜕2𝑢2
𝜕𝑡2

− 2𝜆
𝜕2𝑢1
𝜕𝑡𝜕𝜉

) −
𝑚

𝜆𝑧𝜆𝜃
2 𝑢1

𝜕2𝑢1
𝜕𝑡2

+ 𝛽2𝑢1
2 + 𝛽1𝑢2 − 𝑎0

𝜕2𝑢2
𝜕𝑧2

− 2𝑎0
𝜕2𝑢1
𝜕𝑧𝜕𝜉

 

+(
𝛼0
𝜆𝜃
− 2𝛼1) 𝑢1

𝜕2𝑢1
𝜕𝑧2

− 𝛼1 (
𝜕𝑢1
𝜕𝑧
)
2

+ [−
𝑚

𝜆𝑧𝜆𝜃
2

𝜕2𝑢1
𝜕𝑡2

+ 2𝛽2𝑢1 + (
𝛼0
𝜆𝜃
− 2𝛼1)

𝜕2𝑢1
𝜕𝑧2

] 

× ℎ(𝜏) + 𝛽2(ℎ)
2. 

 

 

 

 

(10) 

𝑂(𝜀3) order equation: 

𝜕𝑤3
𝜕𝑡

+
𝜕𝑝3
𝜕𝑧

− 𝜆
𝜕𝑤2
𝜕𝜉

+
𝜕𝑝2
𝜕𝜉

+
𝜕𝑝1
𝜕𝜏

+ 𝑤1 (
𝜕𝑤2
𝜕𝑧

+
𝜕𝑤1
𝜕𝜉

) + 𝑤2
𝜕𝑤1
𝜕𝑧

+ 𝑣 (
8

𝜆𝜃
2 𝑤1 −

𝜕2𝑤1
𝜕2𝑧

) = 0, 

𝜕𝑢3
𝜕𝑡

+
𝜆𝜃
2

𝜕𝜔3
𝜕𝑧

− 𝜆
𝜕𝑢2
𝜕𝜉

+
𝜆𝜃
2

𝜕𝜔2
𝜕𝜉

+ 𝜔1 (
𝜕𝑢2
𝜕𝑧

+
𝜕𝑢1
𝜕𝜉
) +

𝜕𝑢1
𝜕𝑧

𝜔2 +
𝑢1
2
(
𝜕𝜔2
𝜕𝑧

+
𝜕𝜔1
𝜕𝜉

) 

+
𝑢2
2

𝜕𝜔1
𝜕𝑧

+
ℎ(𝜏)

2
(
𝜕𝜔2
𝜕𝑧

+
𝜕𝜔1
𝜕𝜉

) = 0, 

 

𝑝3 =
𝑚

𝜆𝑧𝜆𝜃

𝜕2𝑢3
𝜕𝑡2

− 𝑎0
𝜕2𝑢3
𝜕𝑧2

+ 𝛽1𝑢3 − 2𝜆
𝑚

𝜆𝑧𝜆𝜃

𝜕2𝑢2
𝜕𝑡𝜕𝜉

− 2𝑎0
𝜕2𝑢2
𝜕𝑧𝜕𝜉

 

+(𝜆2
𝛼0
𝜆𝜃𝜆𝑧

− 𝛼0)
𝜕2𝑢1
𝜕𝜉2

+
𝑚

𝜆𝑧𝜆𝜃
2 (2𝜆𝑢1

𝜕2𝑢1
𝜕𝑡𝜕𝜉

− 𝑢1
𝜕2𝑢2
𝜕𝑡2

− 𝑢2
𝜕2𝑢1
𝜕𝑡2

) 

+
𝑚

𝜆𝑧𝜆𝜃
3 𝑢1

2
𝜕2𝑢1
𝜕𝑡2

+ 𝛽3𝑢1
3 + 2𝛽2𝑢1𝑢2 − 2𝑎0

𝜕2𝑢1
𝜕𝑧𝜕𝜏

 

+(
3

2
𝛼0 − 3𝛾1) (

𝜕𝑢1
𝜕𝑧
)
2 𝜕2𝑢1
𝜕𝑧2

+ (
1

𝜆𝜃
𝛼0 − 2𝛼1)(𝑢1

𝜕2𝑢2
𝜕𝑧2

+ 𝑢2
𝜕2𝑢1
𝜕𝑧2

) 

−2𝛼1
𝜕𝑢1
𝜕𝑧

(
𝜕𝑢2
𝜕𝑧

+
𝜕𝑢1
𝜕𝜉
) + 2(−𝛼2 + 2

𝛼1
𝜆𝜃
−
𝛼0

𝜆𝜃
2)𝑢1

2
𝜕2𝑢1
𝜕𝑧2

 

+[
𝑚

𝜆𝑧𝜆𝜃
2 (2𝜆

𝜕2𝑢1
𝜕𝑡𝜕𝜉

−
𝜕2𝑢2
𝜕𝑡2

) + 2𝑢1
𝑚

𝜆𝑧𝜆𝜃
3

𝜕2𝑢1
𝜕𝑡2

+ 3𝛽3𝑢1
2 + 2𝛽2𝑢2   

+(
1

𝜆𝜃
𝛼0 − 2𝛼1)

𝜕2𝑢2
𝜕𝑧2

+ 2(
1

𝜆𝜃
𝛼0 − 2𝛼1)

𝜕2𝑢1
𝜕𝑧𝜕𝜉

+ (−𝛼2 +
𝛼1
𝜆𝜃
) (
𝜕𝑢1
𝜕𝑧
)
2
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+2𝑢1 (−𝛼2 + 2
𝛼1
𝜆𝜃
−
𝛼0

𝜆𝜃
2)
𝜕2𝑢1
𝜕𝑧2

] ℎ(𝜏) + (−𝛼2 +
𝛼1
𝜆𝜃
) (
𝜕𝑢1
𝜕𝑧
)
2

𝑢1 

+[
𝑚

𝜆𝑧𝜆𝜃
3

𝜕2𝑢1
𝜕𝑡2

+ 3𝛽3𝑢1 + (−𝛼2 + 2
𝛼1
𝜆𝜃
−
𝛼0

𝜆𝜃
2)
𝜕2𝑢1
𝜕𝑧2

] ℎ2(𝜏) + ℎ3(𝜏)𝛽3. 

 

(11) 

Where 𝛼0, 𝛼1, 𝛼2, 𝛽0, … , 𝛽3 and 𝛾1 are defined by     

𝛼0 =
1

𝜆𝜃

𝜕Σ

𝜕𝜆𝑧
, 𝛼1 =

1

2𝜆𝜃

𝜕2Σ

𝜕𝜆𝜃𝜕𝜆𝑧
, 𝛼2 =

1

2𝜆𝜃

𝜕2Σ

𝜕𝜆𝜃𝜕𝜆𝑧
 𝛾1 =

𝜆𝑧
2𝜆𝜃

𝜕2Σ

𝜕𝜆𝑧
2  

𝛽0 =
1

𝜆𝑧𝜆𝜃

𝜕Σ

𝜕𝜆𝜃
, 𝛽1 =

1

𝜆𝑧𝜆𝜃

𝜕2Σ

𝜕𝜆𝜃
2 −

𝛽0
𝜆𝜃
, 𝛽2 =

1

2𝜆𝑧𝜆𝜃

𝜕3Σ

𝜕𝜆𝜃
3 −

𝛽1
𝜆𝜃
, 𝛽3 =

1

6

𝜕4Σ

𝜕𝜆𝜃
4 −

𝛽2
𝜆𝜃
. 

 

Solving the Eq. (9), (10) and (11) give the following partial differential equation (PDE), which is 

the nonlinear Schrodinger (NLS) equation with variable coefficient 

𝑖
𝜕𝑈

𝜕𝜏
+ 𝜇1

𝜕2𝑈

𝜕𝜉2
+ 𝜇2|𝑈|

2𝑈 + 𝑖𝜇3ℎ
𝜕𝑈

𝜕𝜉
+ [𝜇4ℎ

2 + (𝜇5ℎ′ − 𝜇6ℎ)𝜉 + 𝑖𝜇7]𝑈 = 0. 

Where U is unknown function, and 𝜇1, 𝜇2, … , 𝜇7 are the variable coefficients shown as the following:  

𝜇1 =

(
𝜔
𝑘
− 𝜆)(3

𝜔
𝑘
− 𝜆) +

1
2(
(
𝑚
𝜆𝑧
) 𝑘2𝜆2 − 𝛼0𝜆𝜃𝑘

2)

(𝛼0𝜆𝜃𝑘
3 +

2𝜔2

𝑘
)

, 

 

𝜇2 =
1

(𝛼0𝜆𝜃𝑘
3 +

2𝜔2

𝑘
)
{−

16𝜔2

𝜆𝜃
2 +

4𝜔𝜆𝑘

𝜆𝜃
2 +

3

2
(𝛽3𝜆𝜃 −

𝛽1
𝜆𝜃
) 𝑘2 

+(𝛼2𝜆𝜃 −
5𝛼1
2
)𝑘4  − 𝜆𝜃𝑘

6 (
3𝛼0
4
−
3𝛾1
2
) + [𝑘2𝜆𝜃𝛽2 +

5

2
𝛽1𝑘

2 + 3𝛼1𝑘
4𝜆𝜃] ×  

[
3𝜔2

𝜆𝜃
+
4𝜔𝜆
𝜆𝜃𝑘

+ 3𝜆𝜃𝛼1𝑘
2]

3[(𝜆𝜃𝛽1𝑘
2 − 2𝜔2)]

 + 2𝜔𝑘 [Φ0 +
2𝜆

𝜆𝜃
]
−
𝜆2

𝜆𝜃
+
4𝜆𝜔
𝜆𝜃𝑘

+ 𝜆𝜃𝛽2 + 𝜆𝜃𝛼1𝑘
2

𝜆2 −
𝜆𝜃𝛽1
2

}, 

 

𝜇3 =
2𝛼1𝜆𝜃𝑘

3 + (
3
2𝜔 − 2𝜆𝜔)Φ0

(𝛼0𝜆𝜃𝑘
3 +

2𝜔2

𝑘
)

, 

 

𝜇4 =
1

𝛼0𝜆𝜃𝑘
3 +

2𝜔2

𝑘

[
𝜔𝑘(𝜆𝜃Φ0 + 2𝜆)𝛽2

𝜆2 −
𝜆𝜃𝛽1
2

− 𝑘2Φ0
2 + 𝑘2 (

3

2
𝜆𝜃𝛽3 + 𝛽2 +

𝛽1
𝜆𝜃
) +

1

2
𝛼0𝜆𝜃𝑘

4], 

 

𝜇5 =
1

(𝛼0𝜆𝜃𝑘
2 +

2𝜔2

2 )
× {2𝜔𝑘Φ0 +

𝜔𝑘(𝜆𝜃Φ0 + 2𝜆)(𝛽1 − 𝜆𝜃Φ0)

𝜆2 −
𝜆𝜃𝛽1
2

}, 

 

𝜇6 =
8𝑣𝜔𝑘(𝜆𝜃Φ0 + 2𝜆)Φ0

(𝛼0𝜆𝜃𝑘
2 +

2𝜔2

2 )
, 
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𝜇7 =

𝑣𝜔(
8
𝜆𝜃
2 + 𝑘

2)Φ0

(𝛼0𝜆𝜃𝑘
2 +

2𝜔2

2
)
, 

 

 

(12) 

where k is number of wave, 𝜔 is the angular frequency, v is the fluid viscosity and 

Φ0 =
(𝜆𝜃𝛽2 +

𝛽1
2
)𝑘2 + 𝜆𝜃𝛼1𝑘

4

2𝜔𝑘
. 

 

 

4 Results and Discussion 

In the previous section, the coefficient 𝜇7 describes the dissipation resulting from the viscosity of 

the fluid, coefficients 𝜇3, 𝜇4, 𝜇5 and 𝜇6 contribute the variable radius of the tube. Therefore, proposed 

solution of the NLS equation with variable coefficients of the following term: 

 𝑈 = 𝑎(𝜏)𝑉(𝜁)𝑒𝑖[𝜙(𝜏)𝜉−Ω(𝜏)], 𝜁 = 𝛼(𝜏)[𝜉 − 𝜑(𝜏)]. 
 

 

(13) 

where 𝑎(𝜏), 𝑉(𝜁), 𝛼(𝜏), 𝜑(𝜏), 𝜙(𝜏) and Ω(𝜏) are the given as following 

𝑉(𝜁) = sech(𝜁) , 𝑎(𝜏) = 𝑎0𝑒
−2𝜇7𝜏,  

𝛼(𝜏) = [
𝜇2
2𝜇1

]

1
2
(𝑎0𝑒

−2𝑖𝜇7𝜏), 𝜙(𝜏) = 𝐾 + 𝐴 [𝜇5𝜏 − 𝜇6
𝜏2

2
],  

𝜑(𝜏) = 2𝜇1 (𝐾𝜏 + 𝐴𝜇5
𝜏2

2
− 𝐴𝜇6

𝜏3

6
) + 𝜇3𝐴

𝜏2

2
,  

Ω(𝜏) = 𝜇1𝐾
2𝜏 +

𝜇2𝑎0
2

4𝜇7
(𝑒−4𝝁𝟕𝜏 − 1) + 𝐴𝐾 (𝜇1𝜇5𝜏

2 + 𝜇3
𝜏2

2
) + 

𝜏3

3
(𝐴2𝜇1𝜇5

2 − 𝐴𝐾𝜇1𝜇6 + 𝐴
2𝜇3𝜇5) − 𝐴

2
𝜏4

4
(𝜇1𝜇5𝜇6 +

𝜇3𝜇6
2
)−𝜇4𝐴

2 +
𝐴2

20
𝜇1𝜇6

2𝜏5. 

 

 

 

 

 

 

 

(14) 

Introducing functions 𝜙(𝜏), 𝜑(𝜏) and Ω(𝜏) into equation Eq. (13), it gives 

𝑈 = 𝑎0𝑒
−2𝜇7𝜏[sech 𝜁]𝑒𝑖[𝜂]. 

with 𝜁 and 𝜂 are defined as 

 

𝜁 = (
𝜇2
2𝜇1

)
1/2

𝑎0𝑒
−2𝜇7𝜏 [𝜉 − 2𝜇1𝜏𝐾 − 𝐴𝜇1𝜇5𝜏

2 + 𝐴𝜇1𝜇6
𝜏3

3
− 𝜇3𝐴

𝜏2

2
], 

(15) 

𝜂 = [𝜉 − 𝜇1𝐾𝜏]𝐾 + 𝐴(𝜇5𝜏 − 𝜇6
𝜏2

2
) 𝜉 −

𝜇2𝑎0
2

8𝜇7
(𝑒−4𝜇7𝜏 − 1) − 𝐴𝐾 (𝜇1𝜇5 +

𝜇3
2
) 𝜏2 

−
𝜏3

3
(−𝜇4𝐴

2 + 𝐴2𝜇1𝜇5
2 − 𝐴𝐾𝜇1𝜇6 + 𝐴

2𝜇3𝜇5) + 𝐴
2
𝜏4

4
(𝜇1𝜇5𝜇6 +

𝜇3𝜇6
2
) −

𝐴2

20
𝜇1𝜇6

2𝜏5. 

 

 

 

(16) 

The carrier wave speed of the NLS equation with variable coefficients which obtained from 

Eq. (16). is given by 

𝑉𝑝 =
𝜕𝜉

𝜕𝜏
, 

 

 

 

 

 



                                                                            Othman et al., Enhanced Knowledge in Sciences and Technology Vol. 1 No. 2 (2021) p. 88-97 
 

94 
 

=
1

𝐾 + 𝐴𝜇5𝜏 −
1
2
𝐴(𝜇6𝜏

2)
[𝜇1𝐾

2 + 2𝐴𝐾𝜏 (𝜇1𝜇5 +
𝜇3
2
) −

𝜇2𝑎0
2

2
𝑒−4𝜇7𝜏 +

𝐴2

4
𝜇1𝜇6

2𝜏4

− 𝐴2𝜏3 (𝜇1𝜇5𝜇6 +
𝜇3𝜇6
2
) + 𝜏2(−𝜇4𝐴

2 + 𝐴2𝜇1𝜇5
2 − 𝐴𝐾𝜇1𝜇6 + 𝐴

2𝜇3𝜇5)] 

−
(𝐴𝜇5 − 𝐴𝜇6𝜏)

(𝐾 + 𝐴𝜇5𝜏 −
1
2
𝐴𝜇6𝜏

2)
2 [
𝜇2𝑎0

2

8𝜇7
(𝑒−4𝜇7𝜏 − 1) + 𝐴𝐾 (𝜇1𝜇5 +

𝜇3
2
) 𝜏2 +

𝐴2𝜇1𝜇6
2𝜏5

20
+𝜇1𝐾

2𝜏

+
𝜏3

3
(𝐴2𝜇1𝜇5

2 − 𝜇4𝐴
2 − 𝐴𝐾𝜇1𝜇6 + 𝐴

2𝜇3𝜇5)  −
𝐴2𝜏4

4
(𝜇1𝜇5𝜇6 +

𝜇3𝜇6
2
)]. 

 

 

 

 

 

 

 

 

(17) 

 

The graphical outputs for radial displacement, the viscous effect of fluid, wave number, and wave 

speed are illustrated using MATLAB. In this research, the numerical value of α is 1.948 [7]. Other than 

that, the axial stretch, λz and λθ are assumed as 0.8 and 1.2, respectively. 

 

(a) (b) 
Figure 1: The solution of NLS equation with variable coefficients versus space, 𝜏 at 𝑣 = 0.05, for (a) 

narrowing tube and (b) expanding tube respectively. 

 

(a) (b) 
Figure 2: The solution of NLS equation with variable coefficients versus space, 𝜏 for narrowing tube at 

different fluid viscosity, (a) 𝑣 = 0.1 and (b) 𝑣 = 0.25. 
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Figure 3: The wave speed, 𝑉 of the NLS equation with variable coefficients at different fluid viscosity, 𝑣 

 

(a) (b) 

 

 

 

 

 

 

 

 

(c) 

Figure 4: The solution of NLS equation with variable coefficients at 𝑣 = 0.05 using different wave number, 

(a) 𝐾 = 1, (b) 𝐾 = 2, (c) 𝐾 = 3. 

The radial displacement in Figure 1 (a) is decreasing when 𝐴 = −0.05. However, the radial 

displacement in Figure 1 (b) is increasing when 𝐴 = −0.05. Here, 𝐴 < 0 represents the narrowing tube 

and 𝐴 > 0 is the expanding tube. The decreasing of radial displacement is due to the presence of a 

dissipative term. The dissipative term appears when the blood is considered as an incompressible 

viscous fluid flow in the artery. Hence, the resistance for blood flows in the artery due to the presence 
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of viscosity, 𝑣 = 0.05. From Figure 2, the radial displacement increases due to an increase in fluid 

viscosity. This happened because of higher flow resistance. 

Figure 3 shows that due to the fact when blood passes through the narrowing artery, the wave speed 

increased since the circumference of the artery is reduced, and the viscous effect of fluid is increased. 

Due to the viscous effect of fluid, the wave speed must be increasing in order to maintain an adequate 

flow of blood. 

By comparing the graphs in Figure 4, changes of the bell-shaped graph are shown. The results show 

the wavelength for the solution of the NLS equation with variable coefficients throughout the narrowing 

tube are decreasing when the wave number increases. In addition, increasing wave number leads to 

decreasing in radial displacement and speed of travelling wave. 

5 Conclusion 

This study focused on nonlinear wave modulation of viscous fluid flow in the prestressed elastic 

tube with variable cross-section area. These dimensional equations of tube and fluid are converted into 

non-dimensionalized equations by introducing the non-dimensionalized quantities. Next, the RPM is 

employed in the dimensionless equations of tube and fluid to obtain various orders of the differential 

equations. The RPM covered the stretched coordinates and asymptotic series used. After that, the 

differential equations will be solved to get the nonlinear evolution equation, the NLS equation with 

variable coefficients. Then, the progressive wave solution is implemented in the NLS equation with 

variable coefficients to achieve the analytical solution for the NLS equation with variable coefficients. 

The graphical output generated by MATLAB discussed the effects of analytical solution on radial 

displacement, the viscous effect of fluid, wave number, and wave speed. 

From the results, it shows that the wave in narrowing tube maintained its shape, and the amplitude 

was affected by the wave viscosity. In the expanding tube, the wave separates into two waves. This 

happened due to wave disruption. In an expanding tube, the wave travels longer than a wave in a 

narrowing tube. Other than that, the wavelength, radial displacement, and speed of travelling wave will 

be decreasing when the wave number increasing. The higher velocity of the wave, the higher the radial 

displacement. The wave speed is also affected by the fluid viscosity. This is because the high fluid 

viscosity has high resistance will make the fluid flows slower. 
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