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Abstract: In this research, a homotopy analysis method (HAM) is used for solving 

second-order nonlinear ordinary differential equations (ODEs). The approximate 

and complex solutions of the second-order nonlinear ODEs problem were solved 

using Maple software. The solution easier to solve and the computational works will 

be reduced when using Maple software. The numerical solution that has obtained 

using HAM is being compared with the exact solution and also being compared 

with the adomian decomposition method (ADM) to determine the efficiency and 

accuracy of the HAM towards the exact solution. The convergence of the HAM and 

the absolute error is discussed further in this research. The results for the homotopy 

analysis method were obtained using Maple 2015. It was observed that the 

homotopy analysis method and the adomian decomposition method were efficient in 

solving second-order nonlinear ODE. However, a modified homotopy analysis 

method (MHAM) can be used to obtain an approximate solution close to the exact 

solution. 
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1. Introduction 

A nonlinear differential equation has been explored by mathematicians and researchers with 

approaches, and tools. Nonlinear ODEs appears in the study of number of branches of applied 

mathematics such as rheology, quantitative biology, physiology, electrochemistry, scattering theory, 

diffusion transport theory, potential theory, and elasticity [1]. In the previous researches, 

mathematicians, and researchers introduced many methods to obtain an approximate solution for the 

second-order nonlinear ODEs. Some of the methods that used by the researcher to get the solutions 
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are the homotopy perturbation method (HPM), homotopy asymptotic method, variational iteration 

method (VIM), and runge kutta method (RKM). 

In this study, the second order nonlinear equation is considered as  

                     𝑦″ = 𝑓(𝑥, 𝑦, 𝑦′),                                                                  Eq. 1                   

with the initial condition 

                    𝑦(0) = 𝑦′ = 0                                                                            Eq. 2                   

        [4] introduced his idea where he proposed a homotopy analysis method (HAM) using the 

concept of fundamental in topology and differential geometry. He applied it to solve a lot of nonlinear 

in science, finance and engineering problems. HAM is an independent variable between any of small 

or large physical parameters at all [5]. 

        The aim of this paper is to apply HAM to obtain the approximate solutions of second-order 

nonlinear ordinary differential equations. We demonstrate the accuracy and efficiency of the HAM 

through some test examples. Numerical comparison will be made against the adomian decomposition 

method (ADM).  

2. Methodology 

        In order to describe HAM, we consider the following differential equation 

                         𝑁[𝑢(𝑥)] = 0,                                                                               Eq. 3                   

where N is a nonlinear operator u and x denote the independent variable and 𝑢(𝑥) is an unknown   

function. By means of generalizing the traditional homotopy method, we construct the zero-order 

deformation equation, 

                       (1 − 𝑞)𝐿[𝜑(𝑥; 𝑞) − 𝑢0(𝑥)] = 𝑞ℏ{𝑁[𝜑(𝑥; 𝑞)]},                                Eq. 4                   

where 𝑞 ∈ [0,1] is the embedding parameter, 

    ℏ is a nonzero auxiliary function, 

          L is an auxiliary linear operator, 

   𝑢0(𝑥) is an initial guess of 𝑢(𝑥), 

and    𝜑(𝑥; 𝑞) is an unknown function, 

        It is important to note that in HAM, it has great freedom to choose auxiliary objects such as ℏand 

L. Obviously, when the embedding parameter 𝑞 = 0 and 𝑞 = 1, both 

 

                     𝜑(𝑥; 0) = 𝑢0(𝑥), 𝜑(𝑥; 1) = 𝑢(𝑥),                                                       Eq. 5                                                                                                                 

hold. Thus as q increase from 0 to 1, the solution 𝜑(𝑥; 𝑞) varies from the initial guess 𝑢0(𝑥) to the 

solutions 𝑢(𝑥). Expanding 𝜑(𝑥; 𝑞) in Taylor series with respect to q, one has 

 

                     𝜑(𝑥; 𝑞) = 𝑢0(𝑥) + ∑ 𝑢𝑚(𝑥)𝑞
𝑚+∞

𝑚=1 ,                                                 Eq. 6                   
where 

                         𝑢𝑚 =
1

𝑚!

𝜕𝑚𝜑(𝑥;𝑞)

𝜕𝑞𝑚
|𝑞 = 0.                                                                      Eq. 7                   

If the auxiliary linear operator, the initial guess, the auxiliary parameter ℏ, and the auxiliary function 

are so properly chosen, then the series Eq. 6 converges at q = 1  one has 

 

                         𝜑(𝑥; 1) = 𝑢0(𝑥) + ∑ 𝑢𝑚(𝑥)
+∞
𝑚=1 ,                                                        Eq. 8                   
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which must be one of the solutions of the original nonlinear equation. If ℏ = −1 (Eq. 4) becomes 

 

                        (1 − 𝑞)𝐿[𝜑(𝑥; 𝑞) − 𝑢0(𝑥)] + 𝑞{𝑁[𝜑(𝑥; 𝑞)]} = 0.                              Eq. 9                   

According to Eq. 7, the governing equations can be deduced from the zero order deformation Eq. 4. 

We define the vectors as 

 

                  𝑢→ = {𝑢0(𝑥), 𝑢1(𝑥),… , 𝑢𝑖(𝑥)}.                                                             Eq. 10                   

Differentiating Eq. 4 𝑚  times with respect to embedding parameter q and then setting q = 0  and 

finally dividing them by 𝑚!, we have the so-called mth-order deformation equation: 

 

                    𝐿[𝑢𝑚(𝑥) − 𝜒𝑚𝑢𝑚−1(𝑥)] = ℏ𝑅𝑚(𝑢𝑚−1
→    ),                                                 Eq. 11                   

where 

                  𝑅𝑚(𝑢𝑚−1) =
1

(𝑚−1)!

𝜕𝑚−1{𝑁[𝜑(𝑥;𝑞)]}

𝜕𝑞𝑚−1
|𝑞 = 0,                                                Eq. 12                   

 and           𝜒𝑚 = {
0,𝑚 ≤ 1,
1,𝑚 > 1.

 

        It should be emphasized that 𝑢𝑚(𝑥) 𝑚 ≥ 1 are governed by the linear Eq. 11 with the linear 

boundary conditions that come from the original problem, which can be easily solved by symbolic 

computation software such as Matlab or Maple. The uniqueness of HAM is depending on the solution 

obtain from Eq. 3 and if it produce a unique solution, then it can be prove that the HAM is more 

accuracy and effectiveness. If it equation 3 does not produce unique solution, the HAM will give a 

solution from other possible solution. 

 

3. Results and Discussion 

For this research, the homotopy analysis method will be focus on solving second-order nonlinear 

ordinary differential equations (ODEs). The problems that will be solved are taking from the articles 

by [1] and [2] to obtain the solutions. Next, the solutions obtained from the homotopy analysis 

method (HAM) will be compared with the adomian decomposition method (ADM). 

3.1 Example 1 

Consider the second-order nonlinear ordinary differential equation 

              𝑦″(𝑥) − 𝑦(𝑥) = 20 ≤ 𝑥 ≤ 10,                                                                 Eq. 13                   

subject to initial conditions 

                    𝑦(0) = 𝑦 ′(0) = 0,                                                                                     Eq. 14                   

which has the exact solution 

                    𝑦(𝑥) = 𝑒𝑥 + 𝑒−𝑥 − 2,                                                                               Eq. 15                   

 

Furthermore, Eq. 13 suggests that we define the linear operator as [4] 

              𝐿[𝜑(𝑥; 𝑞)] =
𝜕2𝜑(𝑥;𝑞)

𝜕𝑥2
,                                                                                   Eq. 16                   

and nonlinear operator as 
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            𝑁[𝜑(𝑥; 𝑞)] =
𝜕2𝜑(𝑥;𝑞)

𝜕𝑥2
− 𝜑(𝑥; 𝑞) − 2,                                                           Eq. 17                   

Next, substitute equations Eq. 16 and 17 into zero order deformation equation as in Eq. 4. 

So we get, 

             (1 − 𝑞)[𝜑″(𝑥; 𝑞) − 𝑦0(𝑥)] = 𝑞ℏ[𝜑
″(𝑥; 𝑞) − 𝜑(𝑥; 𝑞) − 2],                            Eq. 18  

Then by using definition at Eq. 8, we get 

(1 − 𝑞)[𝑦1
″(𝑥)𝑞 + 𝑦2

″(𝑥)𝑞2 + 𝑦3
″(𝑥)𝑞3 +⋯] = 

𝑞ℎ [
[𝑦0

″(𝑥) + 𝑦1
″(𝑥)𝑞 + 𝑦2

″(𝑥)𝑞2 + 𝑦3
″(𝑥)𝑞3 +⋯] −

[𝑦0(𝑥) + 𝑦1(𝑥)𝑞 + 𝑦2(𝑥)𝑞
2 + 𝑦3(𝑥)𝑞

3 +⋯] − 2
]                               Eq. 19 

        By using Maple software, differentiate Eq. 19 with respect to q to get the first derivative and then 

put 𝑞 = 0, we obtain 

 

              𝑦1
″(𝑥) = ℏ[−𝑦0(𝑥) + 𝑦0

″(𝑥) − 2],                                                              Eq. 20               

So we get, 

 

             𝑦1(𝑥) = −ℏ𝑥
2,                                                                                              Eq. 21  

To get 𝑦2(𝑥), we differentiate the first derivative with respect to q and then put 𝑞 = 0
 
by using Maple 

software. 

Now, we successively obtain 

         𝑦1(𝑥) = −ℏ𝑥
2, 

         𝑦2(𝑥) =
ℏ
2𝑥4

12
− ℏ

2𝑥2 − ℏ𝑥2,
   

𝒚𝟑(𝒙) =
ℏ
𝟑𝒙𝟔

𝟑𝟔𝟎
+
ℏ
𝟑𝒙𝟒

𝟔
+
ℏ
𝟐𝒙𝟒

𝟔
− ℏ𝟑𝒙𝟐 − 𝟐ℏ𝟒𝒙𝟐 − ℏ𝒙𝟐,

                                  
Eq. 22

                                            
 

                          ⋮ 

Then the series solution expression can be written in the form of 

    𝒚(𝒙) = 𝒚𝟎(𝒙) + 𝒚𝟏(𝒙) + 𝒚𝟐(𝒙) + 𝒚𝟑(𝒙) + ⋯                Eq. 23
 

and so forth. Hence, the series solution when ℏ = −1 is 

       
𝑦(𝑥) ≈ 𝑥2 +

𝑥4

12
+

𝑥6

360
+

𝑥8

20160
+⋯                                                          Eq. 24                       

Then, we get the closed form which is 

                  𝑦(𝑥) = 𝑒𝑥 + 𝑒−𝑥 − 2,                                                                 Eq. 25                            

which is same with the exact solution in Eq. 15. 
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Table 3.1 Numerical solution of homotopy analysis method (HAM) and adomian decomposition method 

(ADM) compared with the exact solution 

x Exact Solution Solution with HAM Solution with ADM [1] 

0.1 0.010008336 0.010008336 0.010008336 

0.2 0.040133511 0.040133511 0.040133512  

0.3 0.090677028 0.090677029 0.090677028  

0.4 0.162144744 0.162144744 0.162144743  

0.5 0.255251930 0.255251931 0.255251930  

0.6 0.370930436 0.370930436 0.370930436  

0.7 0.510228011 0.510338011 0.510228011  

0.8 0.674869893 0.674869892 0.674869892  

0.9 0.886172771 0.866172771 0.886172770  

1.0 1.086161270 1.086161269 1.086161269  

Table 3.2 Numerical solution of adomian decomposition method (ADM) compared with the exact solution 

Exact solution = 𝑦(𝑥) = 𝑒𝑥 + 𝑒−𝑥 − 2 

x Solution with HAM Solution with ADM [1] 

0.1 0.000000000 0.000000000 

0.2 0.000000000 0.000000001 

0.3 0.000000001 0.000000000 

0.4 0.000000000 0.000000001 

0.5 0.000000001 0.000000000 

0.6 0.000000000 0.000000000 

0.7 0.000000000 0.000000000 

0.8 0.000000001 0.000000001 

0.9 0.000000000 0.000000001 

1.0 0.000000001 0.000000001 

 

3.2 Example 2 

        Consider the second-order nonlinear ordinary differential equation 

                  𝑦″(𝑥) − 𝑦 ′(𝑥) = 0,                                                                   Eq. 26                 

subject to initial conditions 

                    𝑦(0) = 𝑦 ′(0) = 1,                                                                  Eq. 27                            

which has the exact solution 

                    𝑦(𝑥) = 𝑒𝑥.                                                                                  Eq. 28                        
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Furthermore, Eq. 26 suggests that we define the linear operator as [4] 

 

                    𝐿[𝜑(𝑥; 𝑞)] =
𝜕2𝜑(𝑥;𝑞)

𝜕𝑥2
,                                                                Eq. 29                        

 

and nonlinear operator as 

 

                   𝑁[𝜑(𝑥; 𝑞)] =
𝜕2𝜑(𝑥;𝑞)

𝜕𝑥2
−
𝜕𝜑(𝑥;𝑞)

𝜕𝑥
,                                                 Eq. 30                        

 

        Next, substitute Eq. 29 and 30 into zero order deformation equation as in Eq. 4 

So we get 

(1 − 𝑞)[𝜑″(𝑥; 𝑞) − 𝑦0(𝑥)] = 𝑞ℏ[𝜑
″(𝑥; 𝑞) − 𝜑′(𝑥; 𝑞)],                               Eq. 31                        

Then by using definition at Eq. 8, we get 

(1 − 𝑞)[𝑦1
″(𝑥)𝑞 + 𝑦2

″(𝑥)𝑞2 + 𝑦3
″(𝑥)𝑞3+. . . ] = 

                                          𝑞ℏ [
[𝑦0

″(𝑥) + 𝑦1
″(𝑥)𝑞 + 𝑦2

″(𝑥)𝑞2 + 𝑦3
″(𝑥)𝑞3+. . . ] −

[𝑦0
′ (𝑥) + 𝑦1

′ (𝑥)𝑞 + 𝑦2
′ (𝑥)𝑞2 + 𝑦3

′ (𝑥)𝑞3+. . . ]
].                 Eq. 32            

                                                                                                                                                                                                                                                          

By using Maple software, differentiate Eq. 32 with respect to q to get the first derivative and then put 

𝑞 = 0, we obtain 

                𝑦1
″(𝑥) = ℏ[𝑦0

″(𝑥) − 𝑦0
′ (𝑥),                                                             Eq. 33                      

So, we get 

                  y1(x) =
−ℏx2

2
,                                                                                  Eq. 34                     

To get 𝑦2(𝑥), we differentiate the first derivative with respect to q and then put 𝑞 = 0 by using Maple 

software. 

Now, we successively obtain 

              𝑦1(𝑥) =
−ℏ𝑥2

2
, 

 

 𝑦2(𝑥) =
ℏ
2𝑥3

6
−

ℏ
2𝑥2

2
−

ℏ𝑥2

2
, 

 

𝑦3(𝑥) = −
ℏ
3𝑥4

24
+

ℏ
3𝑥3

3
−

ℏ
3𝑥2

2
−

ℏ𝑥2

2
+

ℏ
2𝑥3

3
− ℏ

2𝑥2.                                           Eq. 35                    

          ⋮ 

        Then the series solution expression can be written in the form of  

 

                  𝑦(𝑥) = 𝑦0(𝑥) + 𝑦1(𝑥) + 𝑦2(𝑥) + 𝑦3(𝑥) + ⋯                               Eq. 36                      

and so forth. Hence, the series solution when ℏ = −1 is 

 

                  𝑦(𝑥) ≈ 1 + 𝑥 +
𝑥2

2
+
𝑥3

6
+
𝑥4

24
+⋯                                                  Eq. 37                     

 

Then, we get the closed form which is 
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                  𝑦(𝑥) = 𝑒𝑥.                                                                                   Eq. 38                                

which is same with the exact solution in Eq. 28. 

 

 
Table 3.3 Numerical solution of homotopy analysis method (HAM) and adomian decomposition method 

(ADM) compared with the exact solution 

 

x Exact Solution Solution with HAM Solution with ADM [2] 

0 1.000000000 1.000000000 1.000000000 

0.1 1.105170918 1.105170918 1.105170918 

0.2 1.221402758 1.221402758 1.221402758 

0.3 1.349858808 1.349858808 1.349858808 

0.4 1.491824698 1.491824698 1.491824698 

0.5 1.648721271 1.648721271 1.648721270 

 

Table 3.4 Numerical solution of adomian decomposition method (ADM) compared with the exact solution 

Exact solution =  𝑦(𝑥) = 𝑒𝑥 

x Solution with HAM Solution with ADM 

[2] 

0 0.000000000 0.000000000 

0.1 0.000000000 0.000000000 

0.2 0.000000000 0.000000000 

0.3 0.000000000 0.000000000 

0.4 0.000000000 0.000000000 

0.5 0.000000000 0.000000001 
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3.3 Discussion 

 

 

 

 

 

 

 

 

 

 

 

                                                                                  

 

 

        Based on Figure 3.1 and Figure 3.2, it can be concluded that HAM is efficient and accurate to the 

exact solution because the graph does not show any differences between HAM and exact solution. 

Based on the example that we solved on the previous section, we successfully obtained an 

approximate solution. So, it shows that HAM able to solve second-order nonlinear ordinary 

differential equations. However, if we used the optimal homotopy asymptotic method (OHAM) which 

is an improve adaptation of HAM the solutions obtain will be more efficient and accurate because 

OHAM will involve simpler integration and less computation than the standard HAM. 

 

4. Conclusion 

Firstly, the background of HAM and second-order nonlinear ODEs is being explored for the 

research. Then, a standard method of HAM to solve second-order nonlinear ODEs also have been 

studied. Two examples of second-order nonlinear ODEs are solved using the homotopy analysis 

method (HAM) and the solutions obtained being compared with the adomian decomposition method 

(ADM) in finding the accuracy of the methods with the exact solution. Maple R2015 was the software 

used which provide numerical solutions and also graphical output that make the research easier to 

solve. The numerical solutions obtained from HAM are making small difference from the exact 

solutions and for ADM, the solutions obtained also make a small difference with the exact solutions. 

The graphical output shows the relation of exact solutions and HAM. From these two examples, we 

can say that both HAM and ADM make a small difference in the absolute error. So, it can be 

concluded that both HAM and ADM can be used to solve second-order nonlinear ordinary differential 

equations (ODEs) because both methods are accurate with the exact solution. We can also conclude 

that HAM provides a convenient way of controlling the convergence of approximation series, which 

is a fundamental qualitative difference in analysis between HAM and other methods. 

     There are some recommendations to improve the homotopy analysis method to get more accurate 

solution; 

Figure 3.2 Graph of numerical solutions of 

homotopy analysis method compared with exact 

solution for Example 2 

Figure 3.1 Graph of numerical solutions of 

homotopy analysis method compared with exact 

solution for Example 1 
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1. Using modified homotopy analysis method (MHAM) to get the solutions close with the exact 

solution 

2. The parameter ℏ, can be improved which make it optimally recognize and will converge faster 
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