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Abstract: Mackerel fish is one type of pelagic fish that live in the surface of the ocean. 
It is also have benefits in terms of protein which also has high demand in Asian and 
others countries and helps gaining profits in fisheries industries. This study aims to 
predict mackerel landings in Malaysia in one year advance which is 2018. The data 
of 132 monthly of mackerel landings from year 2007 until 2017 is used to make a 
prediction of mackerels landing by using four methods which are Seasonal 
Autoregressive Integrated Moving Average (SARIMA) method, Multiplicative Holt-
Winters, Additive Holt-Winters Method and Simple Exponential Smoothing method. 
The aim is to compare the performance among four methods by measuring the 
accuracy of each method. The result shows that Additive Holt-Winters method is the 
best method used to forecast mackerel landings in 2018 with the lowest value of Mean 
Absolute Percentage Error (MAPE) and Mean Square Error (MSE). In conclusion, 
the potential result from this study could be used by fish farmers in their annual 
planning of supplying fish in Malaysia. 
 
Keywords: Seasonal Autoregressive Integrated Moving Average (SARIMA) 
method, Multiplicative Holt-Winters method, Additive Holt-Winters method, Simple 
Exponential Smoothing method, Mean Square Error (MSE). 

 

1. Introduction 

Pelagic fish are found near in the surface of the ocean or in the middle depths of the ocean. Then, 
most of the pelagic fish is known as one type of species that exhibit behaviors that can increase their 
catchability. Pelagic fishes occupy the surface of the waters in the ocean [1]. Economically, pelagic fish 
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is important.  Pelagic fish also commercially and traditionally accumulating the fishing gear that 
contributed towards the total marine landings in Malaysia [2]. Mackerel is one type of small pelagic 
fish that has high demand due to its main source of protein [3]. 

Mackerel landings has obtained high demand in Asian trade which import and export to others 
countries. Therefore, time series analysis is used to make a prediction of mackerel landings. The ability 
of fishery industries in Malaysia also is determined. Mackerel also contribute in shortfall supply of 
canning from national countries during fishing seasons [4]. There are researchers that used 
Autoregressive Integrated Moving Average (ARIMA) and Holt-Winters method to be apply in time 
series that exhibit seasonality [4]. 

Forecasting the fish price have a long history of study, for example, Hudson & Capps [5] forecasted 
the hard blue crabs price using time series method and econometric method. Vukina & Anderson [6] 
applied the State-Space method to forecast the price of salmon and the result showed that four out of 
five times series follow random walk and cyclic behaviour was indicated in time series of prices. Park 
[7] forecasted the Walleye Pollock landings in Korea using seasonal autoregressive integrated moving 
average (SARIMA) and the result showed the fluctuations of the monthly catches of Walleye Pollock. 

In order to make a time series analysis, the forecast accuracy was used to measure the performance 
of method used by obtaining the lowest value of error. The lowest value of error will show that model 
tend to be good [8]. Autoregressive Integrated Moving Average (ARIMA), Multiplicative Holt–winters, 
Additive Holt-Winters and Simple Exponential Smoothing Methods will be used. Moreover, the 
comparison will be made and the methods with lowest values of Mean Absolute Percentage Error 
(MAPE) and Mean Square Error (MSE) will be selected as the best model.  
 
2. Materials and Methods 

2.1 Materials 

The data for this study were obtained from the Fisheries Department of Malaysia. The data that 
involved were the monthly landings of Mackerel in Malaysia from January 2007 until December 2017. 
The method that will be used to forecast the monthly landings of Mackerel were Seasonal 
Autoregressive Integrated Moving Average (SARIMA) method, Multiplicative Holt-Winters, Additive 
Holt-Winters Method and Simple Exponential Smoothing method. The criterion that will be used as 
forecast accuracy to measure the performance among the four method were the MSE and MAPE values. 

2.2 Methods 

2.2.1 Seasonal Autoregressive Integrated Moving Average (SARIMA) 

Before using ARIMA model, the data should fulfill the normality assumptions. Transformation is 
used to stabilize the variance when the data show different variation at different levels of series. The 
equation of ARIMA(𝑝𝑝,𝑑𝑑, 𝑞𝑞) can be written as described in Eq. 1 - Eq. 5 [7], 
 
              Square root 𝑤𝑤𝑡𝑡 =  �𝑦𝑦𝑡𝑡        Eq. 1 

                  Cube root 𝑤𝑤𝑡𝑡 =  �𝑦𝑦𝑡𝑡3                                   Eq. 2                    
               Logarithm 𝑤𝑤𝑡𝑡 = log (𝑦𝑦𝑡𝑡)                     Eq. 3                  

          
where;  

𝑦𝑦𝑡𝑡 = actual value 
 
Then, differencing is used to stabilize the mean. 
   𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡−1 + 𝑒𝑒𝑡𝑡                                                                 Eq. 4           

 𝑦𝑦𝑡𝑡′′ = 𝑦𝑦𝑡𝑡′ − 𝑦𝑦𝑡𝑡−1′            Eq. 5           
where;  

𝑦𝑦𝑡𝑡 = actual value 
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𝑦𝑦𝑡𝑡−1 = previous value 
𝑦𝑦𝑡𝑡′ = First differencing 
𝑦𝑦𝑡𝑡′′ = Second differencing 
𝑒𝑒𝑡𝑡 = error 

 
Table 1 shows the identification model of ARIMA models by referring to Autocorrelation Function 
(ACF) and Partial Autocorrelation Function (PACF) plot of the data [8]. 
 

Table 1: Identification model of ARIMA models 
 

ACFs PACFs Model 
Decay to zero with 
exponential pattern Cuts off after lag p AR (p) 

Cuts off after lag q Decay to zero with 
exponential pattern MA (q) 

Decay to zero with 
exponential pattern 

Decay to zero with 
exponential pattern ARMA (p,q) 

Cuts off after lag q Cuts off after lag p AR (p) or M (q) 
 

     After that, determination of optimal model parameters is a crucial step in model selection. The model 
with the lowest values of Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 
will be selected [8] as stated in Eq. 6 and Eq. 7. 
 

     𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝) = 𝑛𝑛 ln �𝜎𝜎�𝑒𝑒
2

𝑛𝑛
�+ 2𝑝𝑝               Eq. 6             

          𝐵𝐵𝐴𝐴𝐴𝐴(𝑝𝑝) = 𝑛𝑛 ln �𝜎𝜎�𝑒𝑒
2

𝑛𝑛
� + 𝑝𝑝 + 𝑝𝑝 ln(𝑛𝑛)    Eq. 7           

where; 
n = number of effective observations which used to fit the model 
p = number of parameters in the model 
𝜎𝜎�𝑒𝑒2 = sum of sample squared residuals 

 
     Seasonal difference followed first difference [8] as in Eq. 8, 
 

(1 − 𝐵𝐵)(1 − 𝐵𝐵𝑚𝑚)𝑦𝑦𝑡𝑡            Eq. 8  
where; 

𝐵𝐵= backward shift operator 
𝐵𝐵𝑚𝑚= backward shift operator of monthly 
𝑦𝑦𝑡𝑡= actual value 

 
General Box-Jenkins model which allocated seasonality as in Eq. 9, 
 

  ∅𝑝𝑝(𝐵𝐵)∇𝑑𝑑𝑦𝑦𝑡𝑡 = 𝜃𝜃𝑞𝑞(𝐵𝐵)𝜀𝜀𝑡𝑡                  Eq. 9 
where;                       

                                ∇(𝐵𝐵) = 1 − 𝐵𝐵                             Eq. 10 
                         ∅𝑝𝑝(𝐵𝐵) = 1 − ∅1𝐵𝐵 − ∅2𝐵𝐵2 −⋯− ∅𝑝𝑝𝐵𝐵𝑝𝑝       Eq. 11 
                            𝜃𝜃𝑞𝑞 = 1 − 𝜃𝜃1𝐵𝐵 − 𝜃𝜃2𝐵𝐵2 −⋯− 𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞          Eq. 12 
                                     𝐵𝐵𝑗𝑗𝑦𝑦𝑡𝑡 =  𝑦𝑦𝑡𝑡−ℎ          Eq. 13  

 

2.2.2 Additive Holt-Winter Method 

     Holt-Winters is used when the data are exhibit trend and seasonal variation [6]. Below are the 
procedure of Additive-Holt-Winters model [9].  
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The least squares trend line is fitted as in Eq. 14, 

                                                         𝑦𝑦�𝑡𝑡 =  𝑙𝑙0 + 𝑏𝑏0𝑡𝑡                   Eq. 14 

where; 
 𝑙𝑙0= y-intercept 
 𝑏𝑏0= slope 
 𝑡𝑡= time 
 

Initial seasonal factors is defined as in Eq. 15, 
 
                                                                𝑆𝑆𝑡𝑡 =  𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡    Eq. 15 
where; 

             𝑦𝑦𝑡𝑡= actual value 
𝑦𝑦�𝑡𝑡= trend line 
 

Average of seasonal values is shown as in Eq. 16, 
 
                                                        𝑆𝑆�̅�𝑡 =  𝑆𝑆𝑡𝑡+ 𝑆𝑆𝑡𝑡+1+𝑆𝑆𝑡𝑡+2+𝑆𝑆𝑡𝑡+3

4
   Eq. 16    

where; 

  𝑆𝑆𝑡𝑡= seasonal factors 
 
Point forecast from time 0 is defined as in Eq. 17, 

                                                        𝑦𝑦�𝑇𝑇+𝑝𝑝 = 𝑙𝑙𝑇𝑇 + 𝑝𝑝𝑏𝑏𝑇𝑇 + 𝑠𝑠𝑛𝑛𝑇𝑇+𝑃𝑃−1  Eq. 17   

where; 

 𝑙𝑙𝑇𝑇= level 
 𝑏𝑏𝑡𝑡= trend 
 𝑠𝑠𝑛𝑛𝑇𝑇= seasonal 
 

A seasonal equation is stated as in Eq. 18- Eq. 21, 

           Level 𝐿𝐿𝑡𝑡 =∝ (𝑦𝑦𝑡𝑡 − 𝑆𝑆𝑡𝑡−𝑠𝑠) + (1−∝)( 𝐿𝐿𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1)     Eq. 18          
              Trend 𝑏𝑏𝑡𝑡 = 𝛽𝛽(𝐿𝐿𝑡𝑡 − 𝐿𝐿𝑡𝑡−1) + (1 − 𝛽𝛽)𝑏𝑏𝑡𝑡−1               Eq. 19 
               Seasonal 𝑆𝑆𝑡𝑡 =  𝛾𝛾(𝑦𝑦𝑡𝑡 − 𝐿𝐿𝑡𝑡) + (1 − 𝛾𝛾)𝑆𝑆𝑡𝑡−𝑠𝑠     Eq. 20 
                    Forecast 𝐹𝐹𝑡𝑡+𝑘𝑘 = 𝐿𝐿𝑡𝑡 + 𝑘𝑘𝑏𝑏𝑡𝑡 + 𝑆𝑆𝑡𝑡+𝑘𝑘−𝑠𝑠   Eq. 21 

where; 
𝑆𝑆𝑡𝑡−𝑠𝑠= seasonal of seasonal before, 
 𝐿𝐿𝑡𝑡−1= level before, 
 𝐿𝐿𝑡𝑡= level, 
 𝑏𝑏𝑡𝑡−1= trend before, 
 𝑘𝑘= value of forecast 
s = length of seasonal cycle,0 ≤∝≤ 1, 0 ≤ 𝛽𝛽 ≤ 1, 0 ≤ 𝛾𝛾 ≤ 1 
 
 

2.2.3 Multiplicative Holt-Winters Method 

The procedure below are for Multiplicative Holt-Winters method [9]. 

Obtain initial values for the level 𝑙𝑙0,the growth rate 𝑏𝑏0and the seasonal factors 𝑠𝑠𝑛𝑛−3, 𝑠𝑠𝑛𝑛−2, 𝑠𝑠𝑛𝑛−1    
and 𝑠𝑠𝑛𝑛0  (fitting least square trend line) as in Eq. 22, 
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                                   𝑦𝑦�𝑡𝑡 =  𝑙𝑙0 + 𝑏𝑏0𝑡𝑡      Eq. 22           
where; 

𝑙𝑙0 = y-intercept,  
𝑏𝑏0 = slope, 
𝑡𝑡 = time 
 

Initial seasonal factors described in Eq. 23 – Eq. 27: 

                                         𝑦𝑦�𝑡𝑡 =  𝑙𝑙0 + 𝑏𝑏0𝑡𝑡    Eq. 23     
                                   𝑆𝑆𝑡𝑡 = 𝑦𝑦𝑡𝑡

𝑦𝑦�𝑡𝑡
                Eq. 24     

               𝑆𝑆�̅�𝑡 =  𝑆𝑆𝑡𝑡+ 𝑆𝑆𝑡𝑡+1+𝑆𝑆𝑡𝑡+2+𝑆𝑆𝑡𝑡+3
4

       Eq. 25 

    𝐴𝐴𝐹𝐹 = 𝐿𝐿
∑ �̅�𝑆[𝑖𝑖]
𝐿𝐿
𝑖𝑖=1

                 Eq. 26                         

                                𝑠𝑠𝑛𝑛1−𝐿𝐿 = 𝑆𝑆[̅𝑖𝑖](CF)                             Eq. 27                                                                                   
where; 

 𝑆𝑆𝑡𝑡= seasonal factors, 
 𝑆𝑆[̅𝑖𝑖]= average of seasonal factor, 
 𝐴𝐴𝐹𝐹= cumulative Frequency 

Point forecast from time 0 stated in Eq. 28, 

  𝑦𝑦�𝑇𝑇+𝑝𝑝 = 𝑙𝑙𝑇𝑇 + 𝑝𝑝𝑏𝑏𝑇𝑇 + 𝑠𝑠𝑛𝑛𝑇𝑇+𝑃𝑃−1     Eq. 28              

where; 

 𝑙𝑙𝑇𝑇= level, 
 𝑏𝑏𝑡𝑡= trend,  
𝑠𝑠𝑛𝑛𝑇𝑇= seasonal 

 

Update the estimates of factors as in Eq. 29 – Eq. 32: 

 Level 𝐿𝐿𝑡𝑡 =∝ � 𝑦𝑦𝑡𝑡
𝑆𝑆𝑡𝑡−𝑠𝑠

�+ (1−∝)(𝐿𝐿𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1)     Eq. 29          

                     Trend 𝑏𝑏𝑡𝑡 = 𝛽𝛽 � 𝐿𝐿𝑡𝑡
𝐿𝐿𝑡𝑡−1

�+ (1 − 𝛽𝛽)𝑏𝑏𝑡𝑡−1       Eq. 30           

Seasonal 𝑆𝑆𝑡𝑡 =  𝛾𝛾 �𝑦𝑦𝑡𝑡
𝐿𝐿𝑡𝑡
�+ (1 − 𝛾𝛾)𝑆𝑆𝑡𝑡−𝑠𝑠    Eq. 31                       

                            Forecast 𝐹𝐹𝑡𝑡+𝑘𝑘 = (𝐿𝐿𝑡𝑡 + 𝑘𝑘𝑏𝑏𝑡𝑡)𝑆𝑆𝑡𝑡+𝑘𝑘−𝑠𝑠  Eq. 32           
where; 

∝,𝛽𝛽, 𝛾𝛾 = predetermined values, 
 𝑆𝑆𝑡𝑡−𝑠𝑠= seasonal of seasonal before, 
 𝐿𝐿𝑡𝑡−1= level before, 
 𝐿𝐿𝑡𝑡= level,  
𝑏𝑏𝑡𝑡−1= trend before, 
 𝑘𝑘= value of forecast 

 s = length of seasonal cycle,0 ≤∝≤ 1, 0 ≤ 𝛽𝛽 ≤ 1, 0 ≤ 𝛾𝛾 ≤ 1. 
 

2.2.4 Simple Exponential Smoothing Method 
Compute the initial estimate of mean of the series at time period  𝑡𝑡 = 0 as  in Eq. 33 [4]. 
 

                          𝑙𝑙0 =  𝑦𝑦� = ∑ 𝑦𝑦𝑡𝑡𝑛𝑛
𝑡𝑡=1
𝑛𝑛

    Eq. 33           
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where  𝑦𝑦� is mean of data. 
 

Compute the updated estimate by using the smoothing equation as in Eq. 34.   
 
   𝑙𝑙𝑇𝑇 =∝ 𝑦𝑦𝑇𝑇 + (1−∝)𝑙𝑙𝑇𝑇−1   Eq. 34                      
where  

∝ = value between 0 and 1. 
𝑦𝑦𝑇𝑇= actual value, 
 𝑙𝑙𝑇𝑇−1= level before estimate 

 
Point forecast made at time T for 𝑦𝑦𝑇𝑇+𝑝𝑝 as in Eq. 35, 
 

  𝑦𝑦�𝑇𝑇+𝑝𝑝(𝑇𝑇) = 𝑙𝑙𝑇𝑇 (𝑝𝑝 = 1,2,3, … )                  Eq. 35                                        
 

2.3 Measurement Error 

2.3.1 Mean Square Error (RMSE) 

     The root mean square error (RMSE) is the square root of the mean of the square of all error. The 
formula of RMSE can be written as described in Eq. 36 [7]. 

                                                𝑀𝑀𝑆𝑆𝑀𝑀 = 1
𝑛𝑛
∑ (𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡)2𝑛𝑛
𝑡𝑡=1   𝑀𝑀𝑞𝑞. 36    

where 𝑦𝑦𝑡𝑡 is the actual value of period 𝑡𝑡, 𝑦𝑦𝑡𝑡�  is the forecasted value of period 𝑡𝑡,𝑛𝑛 is the total number of 𝑛𝑛 
periods. 

2.3.2 Mean Absolute Percentage Error (MAPE) 

     The mean absolute percentage error (MAPE) is a measure of prediction accuracy of a forecasting 
method. The formula of MAPE can be written as described in Eq. 37 [7]. 

                                            𝑀𝑀𝐴𝐴𝑀𝑀𝑀𝑀 =  100
𝑛𝑛
∑ �𝑦𝑦𝑡𝑡−𝑦𝑦𝑡𝑡�

𝑦𝑦𝑡𝑡
�𝑛𝑛

𝑡𝑡=1   𝑀𝑀𝑞𝑞. 37   
where 𝑦𝑦𝑡𝑡 is the actual value of period 𝑡𝑡, 𝑦𝑦𝑡𝑡�  is the forecasted value of period 𝑡𝑡, 𝑛𝑛 is the total number of 
𝑛𝑛 periods. 

 

3. Results and Discussion 

Figure 1 showed the monthly Scombridae landings data from January 2007 to December 2017. The 
pattern of the graph showed the upward trend with seasonal pattern. The landings of Scombridae was 
lowest from January 2007 to January 2008. This was due to fishmonger lifestyle may not be sufficient 
as unability to catch the Mackerel. 

 
Figure 1: Time series plot of Mackerel Landing in Malaysia 
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Figure 2 showed the ACF plot before differencing, hence the data in ACF plot was slowly 
decreasing which mean that the data was not stationary. The data needed to be differencing as to obtain 
more accurate model to proceed the forecast of Mackerel landings. Meanwhile, Figure 3 showed that 
the data in PACF plot was cut off at lag 1. 

 

Figure 2: ACF plot of Mackerel landing in Malaysia 

 

Figure 3: PACF plot of Mackerel landing in Malaysia 

     Figure 4 showed the lambda table contains an estimate of lambda (1.09) and the rounded value (1.00) 
which was the value used in the transformation. The lambda table also included the upper confidence 
interval (0.68) and lower confidence value (1.63) which were obtained by vertical lines.  

 

Figure 4: Second Box-Cox transformation 

Figure 5, 6 and 7 below showed the time series plot of Mackerel Landings with first differencing 
followed by ACF and PACF plot of first differencing. 
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Figure 5: Time series plot of Mackerel landing in Malaysia with first differencing 

 

Figure 6: ACF plot with first differencing 

 

Figure 7: PACF plot with first differencing 

 
     Table 2 showed that SARIMA (0,1,0)(2,0,1)12 was the best model amongst others SARIMA model 
obtained as the value of AIC and BIC of this model was the lowest. The p-value of Ljung-Box in each 
lag was also larger than 0.05 and MSE was the lowest. Thus, this model will be used to make a 
prediction of Mackerel landings. 
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Table 2 : Analysis of SARIMA (0,1,0)(2,0,1) 
 

 
 
 
 
 
 

Model  AIC BIC 

𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑀𝑀𝐴𝐴(0,1,0)(1,0,2)12 459.0968765 474.2468434 
𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑀𝑀𝐴𝐴(0,1,0)(2,0,1)12 430.9217182 446.0716852 
𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑀𝑀𝐴𝐴 (0,1,0)(2,0,2)12 432.2695935 451.2070522 

 
     Table 3 showed the analysis of Multiplicative Holts Winter, Additive Holts Winter and Simple 
Exponential Smoothing method which showed the value of coefficient using optimization of  Solver in 
Excel. 
 
 

 

 

 
     Table 4 showed the summarization of all 4 methods that has been used to make a prediction of 
Scombridae landings in Malaysia. Then, as a result, Additive Holt-Winters Method was the best method 
as it have lowest value of Mean Absolute Error and Mean Square Error compared to other methods.  

 
Table 4: Summarization of all methods 

 

 𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑀𝑀𝐴𝐴  
(0,1,0)(2,0,1)12 

Multiplicative 
Holt-Winters 

Method 

Additive Holt-
Winters 
Method 

Simple Exponential 
Smoothing Method 

 
MAPE 

 0.41 0.12 0.11 0.13 

MSE 
 2269323.26 266288.2 251965.1 308823.6 

 

4. Conclusion 

     Additive Holt-Winters method was selected as the best model to predict of Mackerel landings in 
Malaysia. This method has the lowest value of MAPE and MSE and showed that this method has the 
best performance compared to the others method. Therefore, by conducting this time series analysis of 
Mackerel landings, all of the fishmongers in Peninsular Malaysia can make a well preparation to 
facilitate their work and also can increase the economics of Malaysia through import and exports of 
mackerel to the others countries. The information provided by the monthly retail price of Indian 
Mackerel was enough to help the fish farmers and the planners for future planning in Malaysia. Time 
series analysis of fish prices has been important tool for fisheries management and decision making. 
 
 
 
 
 
 

 PACFs Model 
Cut off at lag 12 , SAR(1) 

Cut off at lag 24 , SAR(2) 
Cut off at lag 12, SMA(1) 

Cut off at lag 24, SMA(2) 
𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑀𝑀𝐴𝐴(0,1,0)(1,0,2)12 

𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑀𝑀𝐴𝐴(0,1,0)(2,0,1)12 

𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝑀𝑀𝐴𝐴 (0,1,0)(2,0,2)12 

Table 3: 𝜶𝜶,𝜷𝜷,𝜸𝜸 value by solver 
 
 MHWM AHWM SESM 
∝ 0.90 0.97 0.01 
𝛽𝛽 0.02 0.02 - 
𝛾𝛾 0.98 0.21 - 
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