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Abstract: N-puzzles are difficult to solve manually due to the large number of 

potential paths that increase with the puzzle size. Intuitive solutions are likely to 

include repeated paths, and various strategies can help shorten the paths. In this 

research, the performance of the A* and IDA* algorithms, along with their 

respective heuristics, in solving the N-puzzle was benchmarked using 15 examples 

of puzzles with actual distances up to 30, using Manhattan and Hamming distances 

as heuristics. The experiments were conducted on a laptop with an AMD Ryzen 3 

2200U processor and 8GB DDR4 RAM, programmed in Python. The results 

showed that A* and IDA* algorithms with the Manhattan distance were at least 

90% faster than those with the Hamming distance, and that the IDA* algorithm 

was also faster than the A* algorithm, taking at least 75% to 98% less time in 

solving the 8-puzzles and 70-100% less time to solve the 15-puzzle and  

24-puzzle. The longer runtime of the A* algorithm was attributed to its slower 

retrieval of a node with a smaller 𝒇(𝒏) value from the open list, especially when 

multiple nodes had the same value. The research suggested that future work could 

focus on developing an approach to break ties when multiple nodes have the same 

𝒇(𝒏) value. 
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1. Introduction 

The N-puzzle is a puzzle game composed of N number of tiles where N can be 8, 15, 24, and so on. 

For instance, the 15-puzzle consists of 15 tiles numbered from 1 to 15 and a blank space on a square 

board. To solve the puzzle, the player must arrange all tiles to match the goal configuration by sliding 

them horizontally or vertically into the blank space without removing any tiles. However, some initial 
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puzzle configurations are unsolvable due to not adhering to the rules of solvability, which are described 

in Section 2.1. For example, Sam Loyd's 15-puzzle cannot be solved due to tiles 15 and 14 of the puzzle 

are arranged in reverse order. Solving N-puzzles manually is a challenging process because there are 

numerous potential paths that may lead to the solution, and as the puzzle size increases, so does the 

number of paths. Although a player might solve the puzzle intuitively, the solution is likely to include 

repeated paths. Various strategies can help shorten the paths, but our goal is to find the shortest or 

optimal path for a general N-puzzle. 

Pathfinding techniques are one of the ways to get the shortest path between two points in a graph. 

It widely applied in many real-life scenarios like transportation [1], logistics, intelligent navigation 

system [2], robotics and others. There are two types of pathfinding techniques: informed and 

uninformed searches. Informed search uses domain-specific knowledge to guide the search process, 

while uninformed search does not. The A* and IDA* algorithms are examples of informed search 

algorithms that explore fewer nodes [3] and are more efficient than uninformed search algorithms like 

Dijkstra's algorithm. 

Dijkstra's algorithm is a pathfinding technique that calculates the shortest path through a graph from 

a given vertex to all other vertices [4]. The algorithm finds the shortest path by continually expanding 

the network from the start to adjacent vertices and selecting the node with the shortest path from the 

start to that node, until the goal node is reached. If a better path with a shorter distance is discovered, 

Dijkstra's algorithm updates the nodes in the path. However, it becomes ineffective for large-scale 

problems [5]. This is because Dijkstra’s algorithm may visit a huge number of the network’s nodes to 

get the shortest path between vertices that are reasonably far from each other, thereby consuming a lot 

of time and wasting necessary resources [6, 7].  

Another pathfinding technique that can be used is the A* algorithm. The A* algorithm is one of the 

Best First Search algorithms (BFS) that explores a graph by expanding the most promising node first, 

according to some evaluation function like heuristics. The A* algorithm gets the shortest path like the 

Dijkstra’s algorithm and using heuristic information like the best first search to guide itself [4]. The 

heuristic information helps to reduce the search effort and estimate the most promising node to explore 

next [8], but it needs to be a close approximation to the target to work well for the A* algorithm [5]. 

There are various heuristics that can be used with the A* algorithm such as Hamming distance and 

Manhattan distance, which are explained in detail in Section 2.2. The A* algorithm is more efficient in 

finding the shortest path compared to Dijkstra's algorithm [9, 10] , but it also requires more memory to 

prevent duplicated searches [11, 12] . Because of this limitation, other algorithms have been considered, 

and one of them is the Iterative Deepening A* (IDA*) algorithm. 

The IDA* algorithm is a combination of two other algorithms, the Depth-First Iterative Deepening 

(DFID) and A* algorithms. The DFID algorithm sets a limit on the depth of nodes to be expanded, and 

it expands all nodes up to that limit before discarding them and starting a new search with a deeper limit. 

This process repeats until the goal node is found. In the IDA* algorithm, the A* algorithm's cost 

function 𝑓(𝑛) is used as a threshold, and the algorithm applies the Depth-First Iterative Deepening 

algorithm's technique to search. The details of how the IDA* algorithm works are explained in  

Section 2.4. 

The aim of this research is to benchmark the time taken by the A* and IDA* algorithms to solve 8, 

15, and 24-puzzles and to benchmark the time taken for different heuristics used in each algorithm. A 

total of 15 puzzles with an actual distance up to 30 were used for the benchmarking process, using the 

A* and IDA* algorithms, and the heuristics of Hamming and Manhattan distances. The evaluation was 

conducted on three different N-puzzles, specifically the 8, 15, and 24-puzzle, without considering the 

pattern, type, or difficulty of the puzzles. 
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2. Methodology 

We will first check the solvability of the puzzle before solving it. As discussed in the previous 

section, two heuristics are considered, and we will explain how both heuristics are calculated for  

N-puzzle's case. Then we will discuss the implementation details of the A* and IDA* algorithms.  

2.1 Solvability of the puzzle 

The solvability of sliding puzzles can be determined based on two rules. The first rule is applicable 

to odd-sized puzzles, which can be solved if the initial state of the puzzle has an even number of 

inversions. An inversion number refers to the number of times a tile in a sliding puzzle is ahead of 

another tile with a lower number, when counting from left to right, top to bottom, and excluding the 

blank tile. For even-sized puzzles, the second rule applies if satisfy one of the followings: 

• If the puzzle has an even number of inversions, then the blank must be on an odd-numbered row 

counting from the bottom row. 

• If the puzzle has an odd number of inversions, then the blank must be on an even-numbered row  

counting from the bottom row. 

To demonstrate how the inversion numbers are calculated, see Figure 1. Figure 1 shows different 

N-puzzles, such as 8-puzzles and 15-puzzles, each with its own numbered tiles, for example, the 8-puzzle 

has eight tiles numbered from 1 to 8. The tile 0 represents the blank tile or space in the puzzle. In  

Figure 1, puzzle (b) is the goal state of puzzle (a), while puzzle (d) is the goal state of puzzle (c). The 

tile 5 in the goal puzzle (b) is located at row 2 and column 2. Since there are four tiles with lower 

numbers (1, 2, 3, and 4) positioned after tile 5 in puzzle (a), the inversion number of tile 5 is 4. On the 

other hand, for Figure 1(c), the inversion number of tile 5 is 0 as there are no tiles with a lower number 

following it. By adding up the inversion numbers for each tile in both puzzles, the total inversion number 

for Figure 1(a) is 8, while for Figure 1(c) is 33. 

 

Figure 1: Examples of N-puzzle (a) 8-puzzle. (b) goal node of the 8-puzzle.  

(c) 15-puzzle (d) goal node of 15-puzzle. 

Since the puzzle in Figure 1(a) is an odd sized puzzle and the number of inversions is even, it is 

solvable. For the even sized puzzle in Figure 1(c), the blank tile 0 is located at an even-numbered row. 

As a result, the puzzle in Figure 1(c) is also solvable. 

2.2 Admissible heuristic  

Heuristics are the functions that estimate the actual cost of the path. Heuristic is also an estimation 

that provides information to guide the algorithm to get the goal in the right direction [13]. A heuristic 

that overestimates the actual cost might end up finding a path that is not optimal. On the other hand, a 

heuristic that underestimates the actual cost is guaranteed to find the optimal path, and such heuristic is 

known as an admissible heuristic. Furthermore, the closer the heuristic approximates the actual cost, 

then the faster the optimal path can be found. We consider two types of heuristics here, the Hamming 

distance and the Manhattan distance. The blank tile 0 is excluded in the calculation since it represents 

the blank space in the puzzle. 

5 0 1 1 2 3 2 7 4 3 1 2 3 4

4 2 3 4 5 6 1 12 8 6 5 6 7 8

7 8 6 7 8 0 0 14 15 9 9 10 11 12

(a) (b) 13 5 11 10 13 14 15 0

(c) (d)
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Generally, the Hamming distance is defined as the number of elements which two objects differ. 

For example, the difference between the two words ‘Jimmy” with ‘Jammi’ is 2 because there are two 

differences between them. Therefore, we can formulate the Hamming distance for an N-puzzle as 

ℎ = ∑ 𝑑(𝑥𝑖, 𝑦𝑖),

𝑁

𝑖=1

𝐸𝑞. 1 

where 

𝑑(𝑥𝑖, 𝑦𝑖) = {
1, 𝑥𝑖 ≠ 𝑦𝑖 ,
0, 𝑥𝑖 = 𝑦𝑖 ,

 

and 𝑥𝑖  is 𝑖th tile in the first puzzle, and 𝑦𝑖  is 𝑖th tile in the second puzzle. For example, the number of 

misplaced tiles for Figure 1(a) is 5 because tiles 1, 2, 3, 5, and 6 are misplaced compared to the goal 

node in the Figure 1(b). For Figure 1(c), the Hamming distance is 14 compared to the goal node of the 

Figure 1(d) because a total of 14 tiles are misplaced, except tile 13. 

The Manhattan distance is the total distance of each tile of current state to its goal position [14]. 

The formula of Manhattan distance for each tile is 

ℎ = |𝑥1
(𝑀)

− 𝑥2
(𝑁)

| + |𝑦1
(𝑀)

− 𝑦2
(𝑁)

| 𝐸𝑞. 2 

where 𝑥 is and 𝑦 are the row and column position of the tile in puzzle. Using the examples in Figure 1, 

tile 14 in the Figure 1(c) is located at row 3 and column 2, while in the goal node of Figure 1(d), tile 14 

is located at row 4 and column 2. By applying the Eq. 2, we get the Manhattan distance for tile 14 

between Figures 1(c) and 1(d) as 

ℎ = |3 − 4| + |2 − 2| = 1. 

The Manhattan distance between two N-puzzle is 

ℎ = ∑ |𝑥𝑖
(𝑀)

− 𝑥𝑖
(𝑁)

| + |𝑦𝑖
(𝑀)

− 𝑦𝑖
(𝑁)

|

𝑁

𝑖=1

𝐸𝑞. 3 

where 𝑥𝑖
(𝑃)

 refers to the 𝑖𝑡ℎ tile in puzzle 𝑃. Using Eq. 3, the total Manhattan distance between the 

puzzles in Figure 1(c) and Figure 1(d) is 24. 

2.3 A* Algorithm 

The A* algorithm expands each node from start to adjacent node where each adjacent node is 

evaluated with a cost function 𝑓(𝑛). The function represents the estimated cost for any node 𝑛 to the 

goal node by adding the 𝑛’s heuristic value ℎ(𝑛) to 𝑔(𝑛), the number of nodes currently in the path to 

the node 𝑛. In other words,  

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛). 𝐸𝑞. 4 

To prevent revisiting the same node, the A* algorithm utilizes two lists, the open list and the closed 

list. The open list contains frontier nodes that need to be explored and a closed list holds the visited 

nodes to prevent revisiting. The A* algorithm will choose and expand the node with minimum 𝑓 value 

from the open list. Then, the node that the A* algorithm selected will shift from the open to closed list 

while the nodes that just explored will added into the open list. If the A* algorithm found that new same 

node exists in open or closed lists, the node will be excluded and will not add into the open list. This 

step is repeated until the goal node is found. The overall flow of the algorithm is shown in Appendix A. 

2.4 IDA* Algorithm 
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The Iterative Deepening A* (IDA*) algorithm is a search technique that search iteratively with 

increasing cost of thresholds until the goal node is found [15]. The algorithm starts by setting a threshold 

value, denoted as 𝑓(𝑛) in Eq. 4, and using the initial node's 𝑓(𝑛) value as the initial threshold value. If 

the node's 𝑓(𝑛) value is greater than the given threshold, the search halts at that node and moves on to 

the next node or branch. Unlike the A* algorithm, the IDA* algorithm does not keep track of visited 

nodes, only checking for duplicates of the previous two of its current nodes. Once all branches have 

been explored, the threshold is updated with the minimum 𝑓(𝑛) of all nodes that exceeded the current 

threshold [16]. This process is repeated until the goal node is found. The overall flow of the algorithm 

is presented in Appendix B. 

 

3. Results and Discussion 

This research was conducted using a Python test program on an Acer Aspire 3 laptop equipped with 

an AMD Ryzen 3 2200U processor and 8GB DDR4 RAM. Two major comparisons were made in this 

section. The first comparison was between the performance of the Hamming and Manhattan distances 

in the A* and IDA* algorithms. The second comparison was between the performance of the A* and 

IDA* algorithms in 5 sets of 8, 15, and 24-puzzles. This research only focused on the time taken to 

solve the puzzles using the A* and IDA* algorithms, disregarding the pattern, type, or difficulty of the 

N-puzzles. 

3.1 Hamming vs Manhattan distances 

In this section, we compare the performance of Hamming and Manhattan heuristics in both the A* 

and IDA* algorithms using the puzzles in Figure 2. In Section 2.1, we noted that both heuristics are 

admissible, and this is justified in Table 1, which shows the actual distance of the three puzzles from 

their goal. As we can see, both the Hamming and Manhattan distances are less than the actual cost 

(making them admissible), and the Manhattan distance is closer to the actual distance than the Hamming 

distance. For puzzle A3, the Manhattan heuristic even provides an accurate approximation. 

 

Figure 2: N-puzzles that tested in Section 3.1 

Table 1: The actual, Hamming and Manhattan distances for different puzzle A1-A3 

Puzzle A1 (8-puzzle) A2 (15-puzzle) A3 (24-puzzle) 

Actual distance 18 18 20 

Hamming distance 5 9 14 

Manhattan distance 8 12 20 

 

Table 2 shows the time elapsed (in seconds) for the A* and IDA* algorithms to find the optimal 

path using the Hamming and Manhattan distances for the puzzles in Figure 2. The percentage reduction 

column measures the reduction rate of the solution time of Manhattan distance compared to the 

Hamming distance. For all three puzzles, the times for Manhattan distance are shorter by at least 90% 
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compared to the Hamming distance in both A* and IDA* algorithms. As we expect, for both the A* 

and IDA* algorithms, the Manhattan distance performs better than the Hamming distance. This is 

because the Manhattan distance approximates the actual distance much better than the Hamming 

distance. When the Manhattan distance accurately approximates the actual distance (in the case of 

puzzle A3), the reduction rate of the Manhattan distance is 100% and 98% for the A* and IDA* 

algorithms respectively. 

Table 2: Time used by different heuristics for different size puzzle using the A* and IDA* algorithms. 

 
A1 (8-puzzle) A2 (15-puzzle) A3 (24-puzzle) 

H(s) M(s) % R H(s) M(s) % R H(s) M(s) % R 

A* algorithm 6.72 0.32 95 28.13 0.65 98 38.66 0.08 100 

IDA* algorithm 0.34 0.03 92 0.69 0.04 94 0.48 0.01 98 

Variations:  H = Hamming distance; M = Manhattan distance; % R = percentage of reduction rate 

3.2 A* vs IDA* algorithms 

In this experiment, a total of 15 examples with three different N-puzzles were tested, including  

8-puzzles in Figure 3, 15-puzzles in Appendix C, and 24-puzzles in Appendix D. The goal of the 

experiment was to compare the performance of A* and IDA* algorithms on N-puzzles with different 

sizes. All the N-puzzles were randomly generated by moving the blank tiles of goal puzzles with 30 

random moves to ensure that the N-puzzles tested were solvable. Manhattan distance was applied in 

both the A* and IDA* algorithms since it performs better than the Hamming distance. Each experiment 

is repeated 100 times and the average time is recorded in Table 3. 

 

Figure 3: Test 8-puzzles 

Table 3: Time taken by the A* and IDA* algorithms for puzzles B1-B5 

Puzzle Actual distance A* algorithm (s) IDA* algorithm (s) % Reduction 

B1 14 0.08 0.01 78 

B2 16 0.12 0.02 83 

B3 18 0.31 0.02 92 

B4 22 7.68 0.25 96 

B5 24 21.81 0.45 98 

 

Table 3 presents a comparison of the time required by the A* and IDA* algorithms to solve  

puzzles B1-B5. The data in Table 3 demonstrate that the IDA* algorithm was able to solve the 8-puzzle 

examples shown in Figure 3 at least 78%, and at most 98% faster than the A* algorithm.  
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The reason that the A* algorithm finds the optimal path much slower than the IDA* algorithm is 

that the A* algorithm must expand all nodes in the open list that have the minimum value of 𝑓(𝑛). 

When there are many nodes with tied values of 𝑓(𝑛), the A* algorithm must expand all of them first. 

This situation is exacerbated when the 𝑓(𝑛) values for the newly expanded nodes continue to tie with 

each other. On the other hand, for the IDA* algorithm, the search is “deepened” until the threshold 

value increases. When the goal node is found, there might be a lot of nodes that have tied threshold 

value that remain unexplored. This scenario is illustrated in Figure 4 and 5.  

 

Figure 4: Branch network of the puzzle B1 in the A* algorithm 

 

Figure 5: Branch network of the puzzle B1 in the IDA* algorithm 

Figure 4 shows how the A* algorithm gradually expands the search up to the goal node, which is 

highlighted with a red border. Each node is represented by a square with a label that includes its 𝑔 and 𝑓 

values for example 𝐴(0, 6) for node 𝐴 with 𝑔 value 0 and 𝑓 value 6. Currently, the search is completed, 
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and the nodes are expanded up to 𝑓 value equal to 14, which is the 𝑓 value of the goal node. The nodes 

that are in the closed list are coloured in grey, and the grey nodes that have blue border are the ones 

with 𝑓 value equal to 14. The nodes in the open list that are awaiting to be expanded are coloured yellow. 

We counted 67 blue-bordered nodes in total, which took a long time to expand because some expansions 

required traversing multiple levels. For example, the node with label 𝐶𝐻(6,14) has expanded several 

nodes with an 𝑓 value of 14 from level 6 to level 11, as there are many newly expanded nodes with tie 

𝑓 value of 14. 

Figure 5 shows the expansion tree of the IDA* algorithm for the same puzzle. Unlike Figure 4, 

which depicts the A* algorithm, Figure 5 differs slightly as the two algorithm search nodes differently. 

The A* algorithm searches nodes based on the open list while the IDA* algorithm searches nodes by 

depth through iteration with a threshold limit. In Figure 5, the green nodes indicate the ones searched 

by the IDA* algorithm when the threshold was 14. Among these green nodes, a total of 51 nodes with 

an 𝑓 value 14 were expanded in the IDA* algorithm. In comparison, the yellow nodes in Figure 5, which 

are not expanded by the IDA* algorithm, were expanded by the A* algorithm, as depicted by the blue 

bordered nodes in Figure 4. The yellow node in Figure 5 is expanded during threshold 12 but not 

expanded during the threshold was 14 since the path containing the goal node is found. Therefore, 

Figure 4 shows that the A* algorithm took more time on these yellow nodes in Figure 5 compared to 

the IDA* algorithm.  

Furthermore, we also run the benchmark of larger-sized puzzles such as 15-puzzle in  

Appendix C and 24-puzzle in Appendix D and the result is summarized in Table 4.  

Table 4: Time used by the A* and IDA* algorithms for the 15-puzzle and 24-puzzle. 

Puzzle Actual distance 
A* 

algorithm (s) 

IDA* 

algorithm (s) 
% Reduction 

C1 (15-puzzle) 15 0.19 0.02 91 

C2 (15-puzzle) 18 0.26 0.01 95 

C3 (15-puzzle) 18 9.55 0.16 98 

C4 (15-puzzle) 24 4.72 0.07 98 

C5 (15-puzzle) 27 28.77 0.11 100 

D1 (24-puzzle) 14 0.06 0.01 80 

D2 (24-puzzle) 16 0.02 0.01 70 

D3 (24-puzzle) 18 0.46 0.03 92 

D4 (24-puzzle) 22 2.33 0.06 97 

D5 (24-puzzle) 28 11.54 0.13 99 

 

Table 4 presents similar results to those in Table 3, demonstrating the superiority of the IDA* over 

A* algorithms. Table 4 data shows that the IDA* algorithm is 70% to 100% faster than A* algorithm 

in solving puzzles in Appendices C and D, and consistently requires less time overall. The reason for 

the slower performance of the A* algorithm is the same as those observed when solving the 8-puzzles. 

 

 



Siow and Lee, Enhanced Knowledge in Sciences and Technology Vol. 3 No. 1 (2023) p. 97-107 

105 

 

4. Conclusion 

Based on our experiments, we found that the Manhattan heuristic is 90% faster than the Hamming 

heuristic for our test puzzles. Moreover, the IDA* algorithm outperformed the A* algorithm in all tested 

cases, taking 78-98% less time to solve the 8-puzzles and 70-100% less time to solve the 15-puzzles and 

24-puzzles. This suggests that the IDA* algorithm is a more efficient approach than the A* algorithm 

for solving N-puzzle problems. The A* algorithm's limitation is that it expands all nodes with the 

minimum value of 𝑓(𝑛), leading to a huge increase in the number of nodes that must be expanded when 

there are many new nodes with tied 𝑓(𝑛) values. For this reason, it is worthwhile to look for a better 

heuristic function so that tied 𝑓(𝑛) values happen less frequent. 
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