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Abstract: Mathematical modelling of coronavirus disease (COVID-19) is eagerly 

required in public health to understand the evolution of COVID-19. However, 

unknown parameters in the model prevent the progress of the modelling. This 

report aims to study the spread of COVID-19 in Malaysia through the susceptible-

infected-recovered (SIR) model. By using the real data of COVID-19 from 1 

January to 30 September 2022 to estimate the model parameters, which are the 

transmission rate and recovery rate, a loss function was introduced. The Gauss-

Newton recursion equation was derived and the value of parameters was updated 

iteratively until convergence was achieved. With these optimal parameter 

estimates, the SIR model was solved numerically. The model solution revealed that 

the spread of COVID-19 increased exponentially for the following 2 months. In 

addition, the prediction results for the coming 16 years show that the number of 

infected cases will reach a peak of 8.1493 million in 2.5 years. After 10 years, the 

spread of COVID-19 will stay at a total cumulative of 2.7794, 0.02757 and 29.857 

million for susceptible, infected and recovered cases, respectively. In conclusion, 

parameter estimation in the SIR model is satisfactorily performed and prediction 

results of the spread of COVID-19 in Malaysia are clearly interpreted. 
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1. Introduction 

Coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), was first discovered in December 2019 in Wuhan, China [1]. 

The disease spreads globally and became an outbreak. Thus, World Health Organization (WHO) 

declared COVID-19 a pandemic on March 11, 2020 [2]. The first case of COVID-19 in Malaysia was 

an imported case from China that was reported on 25 January 2020 [3]. Since then, the outbreak has 

become serious in Malaysia. To slow down the transmission of the disease, people have been urged to 

follow the standard operating procedures (SOPs) such as wearing masks, washing hands, using alcohol-
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based hand sanitizer, practicing social distancing, and being vaccinated. However, the virus can spread 

in small liquid particles from an infected person’s mouth or nose into the air. Infected individuals with 

mild symptoms will recover without special treatment, while those are underlying medical conditions 

and elderly citizens are at a higher risk of developing serious illnesses and requiring medical attention. 

Hence, mathematical modelling in epidemics is required to analyse and predict the evolution of this 

outbreak [4].  

In fact, epidemics modelling can be dated back to 1662 for the work done by John Graunt [5]. 

Daniel Bernoulli also created the earliest mathematical model to defeat the progress of smallpox in 1760 

[6]. Later, epidemic modelling has evolved rapidly since the early 20th century and become a useful 

tool to study the spreading of disease, predict the future course of an outbreak and evaluate strategies 

to control the disease. The Susceptible-Infected-Recovered (SIR) model is a fundamental 

compartmental model that has been widely used in epidemic modelling. Previous studies showed that 

this model has been applied to calculate the infection parameter and reproduction number of COVID-

19 as well as predict the expected number of infected cases [7, 8]. Although applying mathematical 

models to epidemics provides information for understanding the dynamics of infectious disease 

transmission, exact parameters in an existing SIR mathematical model, which are the transmission and 

recovery rates, are unknown. Their value can only be measured through collected observation data and 

modern big data technology [9].  

This paper mainly focuses on mathematical modelling for the epidemics of COVID-19 in Malaysia 

using the SIR model. The real data on COVID-19 in Malaysia were obtained from the GitHub website 

(https://github.com/MoH-Malaysia/covid19-public) that is contributed by the Ministry of Health (MOH) 

Malaysia, and the daily reported numbers of confirmed, recovered and death cases are considered [10, 

11,12]. The Gauss-Newton computational approach is applied to estimate parameters in the SIR model, 

namely transmission and recovered rates. For this aim, a least-square optimization problem, which 

minimizes the measurement of differences between the real data and the estimated output, is defined. 

Then, the Gauss-Newton recursion equation is derived. Through updating the parameters repeatedly, 

the optimal parameter estimates are obtained when convergence is achieved, and the loss function is 

minimized. With these parameter estimates, the SIR model is solved by using the Runge-Kutta fourth-

order method. So, the numerical results are interpreted as the prediction results for the spread of 

COVID-19.  

The rest of the paper is organized as follows. In Section 2, the problem of the general model to be 

solved is described, the Gauss-Newton computational approach is discussed, and the Runge-Kutta 

numerical method is expressed. In Section 3, the data visualization of COVID-19 is presented. The SIR 

model is discussed for modelling COVID-19. The optimal parameter estimates, which are the effective 

transmission rate and the recovered rate, are obtained using the Gauss-Newton computational approach. 

Prediction results of COVID-19 using the SIR model are interpreted. Finally, a conclusion is made. 

 

2. Materials and Methods 

Consider a general model for COVID-19 [13] given by  

( ) ( ( ), , )x t f x t t  ,                                                          Eq. 1 

where 
nx  is the state vector and t is time; while x  is the rate of change of the state over time, and 

: n m nf     is the function dynamics. Here, 
m   is the unknown parameter in the 

model. Suppose the initial value of the state is  

0(0)x x , 
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and the solution of the system (Eq.1) is assumed to be measured by the output equation  

( ) ( ( ), )y t h x t t                                                              Eq. 2 

where py  is the output vector and : n m ph     is the measurement function. Because 

the state equation (Eq. 3) is nonlinear and complex, obtaining the solution of the state equation (Eq. 1) 

is difficult, especially with the unknown model parameter  .  

Therefore, we propose an estimated output model as follows, 

ˆ( , ) ( ( ), , )y t h x t t  .                                                     Eq. 3 

Here, our aim is to solve the state equation (Eq. 1) given the parameter estimate ̂ . For doing so, 

the model parameter   will be estimated iteratively so that the state trajectory ( )x t  can be determined, 

in turn, to approximate the solution of the output measurement (Eq. 2). This problem is known as the 

parameter estimation problem for a nonlinear system based on the output residual and is referred to as 

Problem (P).  

2.1 Gauss-Newton Computational Approach 

To solve Problem (P), let us define an optimization problem [14] as follows,  

T1
Minimize      ( ) ( ) ( )

2
J r r   ,                                            Eq. 4 

where J is the loss function, which represents the sum of square error, and ( )r   is the residual function, 

which is defined by 

ˆ( ) ( ) ( , )r y t y t   .                                                       Eq. 5 

The gradient of the loss function J is 

T ˆ( ) ( ) ( ( ) ( , ))J r y t y t      ,                                              Eq. 6 

and the Hessian is  

2 2 T Tˆ( ) ( ) ( ( ) ( , )) ( ) ( )J r y t y t r r          ,                            Eq. 7 

where ( )r   is the Jacobian matrix of the residual function ( )r  .  

Now, write the loss function as the second order Taylor series expansion,   

( ) ( ) ( ) ( ) T 2 ( ) ( )1
( ) ( ) ( )( ) ( ) ( )( )

2

i i i i i iJ J J J                .             Eq. 8 

Taking the first-order necessary condition, we have 

( ) 2 ( ) ( )( ) ( ) ( )( ) 0i i iJ J J         .                                   Eq. 9 

After rearranging (Eq. 9), the normal equation [15]  

2 ( ) ( ) ( )( )( ) ( )i i iJ J       ,                                                Eq. 10 

is obtained, and assuming the inverse of the Hessian exists, we have the following equation, 

( ) 2 ( ) 1 ( )( ) ( ( )) ( )i i iJ J        .                                         Eq. 11 
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By letting 
( 1)i   , the updating equation  

( 1) ( ) 2 ( ) 1 ( )( ( )) ( )i i i iJ J                                                 Eq. 12 

is addressed. Then, substitute (Eq. 6) and (Eq. 7) into (Eq. 12) yielding 

( 1) ( ) 2 ( ) T ( )ˆ( ( ) ( ( ) ( , ))i i i ir y t y t         ( ) T ( ) 1( ) ( ))i ir r     

( ) T ( )ˆ( ) ( ( ) ( , ))i ir y t y t   .                                                      Eq. 13 

For simplification, we ignore the first term at the right-side in (Eq. 13) to obtain the recursion 

equation,  

( 1) ( ) ( ) T ( ) 1 ( ) T ( )ˆ( ( ) ( )) ( ) ( ( ) ( , ))i i i i i ir r r y t y t            ,           Eq. 14 

with the initial value 
(0)  is given. Hence, (Eq. 14) is known as the Gauss-Newton approach [16]. 

During the iteration, the model parameter 
( )i  is updated through using (Eq. 14). When the 

convergence is achieved, the optimal parameter estimate 
* ( 1) ( )i i     will minimize the loss 

function (Eq. 4) and the trajectory of the state equation (Eq. 1) can be approximated through numerical 

methods. 

2.2 Runge-Kutta Numerical Method 

The numerical solution of the model (Eq. 1) is computed using the Runge-Kutta fourth order (RK4) 

method, 

1 1 2 3 4( 2 2 )
6

n n

h
x x k k k k                                             Eq. 15 

1n nt t h                                                            Eq. 16 

for n = 0, 1, 2, 3, ..., with 

( )

1 ( , , ),i

n nk f x t                                                    Eq. 17 

( )

2 1, , ,
2 2

i

n n

h h
k f x k t 

 
   

 
                                        Eq. 18 

( )

3 2 , , ,
2 2

i

n n

h h
k f x k t 

 
   

 
                                        Eq. 19 

( )

4 3( , , ),i

n nk f x hk t h                                               Eq. 20 

and the initial conditions 
0 0,t y  are given. Here, ( )n nx x t , h > 0 is the step size, and the parameter 

estimate 
( )i  at the iteration number i is considered. Finally, the numerical solution of the model is 

obtained and interpreted as the prediction results for the spread of COVID-19. 

 

 

3. Results and Discussion 
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From the real data on COVID-19 in Malaysia (https://github.com/MoH-Malaysia/covid19-public), 

the daily reported numbers of confirmed, recovered and death cases were considered from 1 January 

2022 until 30 September 2022, which are 273 data for each daily number of confirmed, recovered and 

death cases in the cumulative form. Then, these data are used to estimate the unknown parameters in 

the SIR model, which are transmission and recovered rates, and the solution of the SIR model is applied 

to predict the spread of COVID-19 that may happen in the following 61 days. Also, the trend of COVID-

19 spreading is interpreted. For the simulation, the GNU Octave is used.  

3.1 The Classical SIR Model 

Consider the classical SIR model given as follows. 

( ) ( ) ( )dS t S t I t

dt N
               Eq. 21 

( ) ( ) ( )
( )

dI t S t I t
I t

dt N
                                             Eq. 22 

( )
( )

dR t
I t

dt
               Eq. 23 

where ( )S t  is the number of susceptible people at time t, ( )I t  is the number of people infected at time 

t, ( )R t  is the number of people who have recovered or removed at time t, and N is the total population 

given by     

( ) ( ) ( )N S t I t R t   .                                                Eq. 24 

In the classical SIR model, there are three classes, which are susceptible, infected and removed 

individuals. These three classes are also known as three compartments. The susceptible individuals, 

denoted by S, are the class of individuals who are healthy but can contract the disease. The infected 

individuals, denoted by I, are the class of individuals who have contracted the disease and are now sick 

with it. The recovered or removed individuals, denoted by R, are the class of individuals who have 

recovered and cannot contract the disease again. In this study, the total population is assumed as the 

total population of Malaysia.  

According to [17], the relationships between compartment models presented are based on four 

fundamental assumptions. First, the vital dynamics are neglected and the size of the population is 

constant. Second, the population is assumed to be a homogeneous continuum, meaning that all people 

have an equal number of contacts, the probability of the transmission of the disease between a 

susceptible and an infectious people during their contact remains constant and the infected people are 

equally distributed among the population. Third, the rate of flow between compartments 𝐼 and 𝑅 is 

directly proportional to the size of compartment 𝐼. Fourth, the recovered people acquire immunity and 

cannot spread the infection. Those who fall victim to the disease are treated as recovered. 

Here,  represents the effective transmission rate and   represents the recovered rate. Using these 

parameters, the basic reproduction ratio  

0R



                                                                Eq. 25 

can be used to calculate the average number of new infections from a single infection. In particular, 

when 
0 1,R   the infection will spread in a population.  
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The dynamics of the SIR model in (Eq. 21- Eq. 23) are interpreted as follows. The rate of change 

in susceptible is negative because susceptible individuals will be infected when in contact with the 

infected individual. So, the number of susceptible individuals is decreased with time. While the rate of 

change in infected depends on differences between the number of susceptible individuals to be infected 

and the number of infected individuals who recovered from the disease. The transition from susceptible 

to infected increases the number of infected individuals, whereas the transition from infected to 

recovered decreases the number of infected individuals. On the other hand, the rate of change in 

recovery is positive since infected individuals who recovered from the disease increase the number of 

recovered individuals.  

3.2 Parameter Estimation of SIR Model with COVID-19 Real Data 

Using the real data of COVID-19 from the GitHub website (https://github.com/MoH-

Malaysia/covid19-public), the model parameters, which are the effective transmission rate  and the 

recovered rate  , were estimated through the Gauss-Newton computation approach. The result of the 

parameter estimation is shown in Table 1.  

Table 1: Optimal parameter estimates 

Model Parameter Symbol Value 

Effective transmission rate  4.694510-3 

Recovered rate   1.702110-3 

 

The transmission rate of  = 4.694510-3 indicates that the susceptible individuals are infected on 

an average of 4.694510-3 in the period from 1 January 2022 until 30 September 2022. While the 

recovered rate of  = 1.702110-3 reveals that the individuals are recovered from the infection on an 

average of 1.702110-3 in the period mentioned. Hence, the SIR model with these parameter estimates 

is given as follows, 

3( ) ( ) ( )
4.6945 10

dS t S t I t

dt N

                                          Eq. 26 

3 3( ) ( ) ( )
4.6945 10 1.7021 10 ( )

dI t S t I t
I t

dt N

                                 Eq. 27 

3( )
1.7021 10 ( )

dR t
I t

dt

                                               Eq. 28 

Figure 1 shows the solution of the SIR model in (Eq. 26 - Eq. 28). This solution could predict 

closely the real data of COVID-19 with the root-mean-square error (RMSE) is 6448.3. In addition, 

Figure 2 shows the estimation error for the infected and recovered cases from 1 January 2022 until 30 

September 2022. Here, our aim is to provide a full visualization between the estimated and actual values. 

Hence, the accuracy of the solution from the SIR model is satisfactorily accepted since the real data of 

COVID-19 involves large values. Moreover, the performance of the Gauss-Newton computational 

approach was verified by the RMSE value. The basic reproductive number R0 is 2.7581. This value 

indicates that COVID-19 in Malaysia will highly spread in the following days and the number of 

infected cases will be increasing.   
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Figure 1: Prediction of infected and recovered cases, 01 Jan-30 Sep 2022 

 

 

Figure 2: Estimation error of infected and recovered cases, 01 Jan-30 Sep 2022 

 

3.3 Prediction of COVID-19 with SIR Model 

Now, apply the SIR model with parameter estimates as given in (Eq. 26 - Eq. 28) to predict the total 

cumulative infected cases for the following 61 days, which are from 01 October 2022 to 30 November 

2022. For this aim, the effective transmission rate 𝛽 and the recovered rate 𝛾 that are given in Table 1 

are not changed. Figure 3 shows the prediction result of infected cases and is compared with the real 

data of COVID-19 for these two months. On the 334th day, the predicted total cumulative infected cases 

were 5.3176 million, and the real total cumulative infected cases were 4.9922 million. The prediction 

result was higher than the real COVID-19 cases due to the SIR model does not consider the policies 

that have been taken into action by the government, for example, the vaccination plan, social distancing, 

and wearing a face mask.  
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Figure 3: Prediction for infected cases in the following 61 days 

 

In addition, the prediction of the spread of COVID-19 in the following 16 years is shown in Figure 

4. Our aim is to have a full visualization of the spreading trend of disease through observation of the 

graphical result of the SIR model. It is noticed that in the following 937 days, which is within 2.5 years, 

the total cumulative infected cases are predicted to reach a peak of 8.1493 million. After that, the 

infected cases will reduce gradually due to the total cumulative of the susceptible cases being decreased 

and the recovered cases being increased. There are expected to have a total cumulative of 2.7794, 

0.02757 and 29.857 million for susceptible, infected and recovered cases after 10 years. These numbers 

of cases indicate the steady state of COVID-19 in Malaysia. 

 

 

Figure 4: Prediction result from SIR model 
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4. Conclusion 

In this paper, the classical SIR model was applied to predict the spreading trend of COVID-19 in 

Malaysia. Using the real data of COVID-19 from 1 January 2022 until 30 September 2022, the 

transmission and recovery rates were estimated through the Gauss-Newton computation approach, and 

the SIR model with these parameter estimates was solved using the Runge-Kutta fourth-order method. 

Prediction results showed that the infected cases of COVID-19 in Malaysia will reach a peak of 8.1493 

million in 2.5 years (937 days) and tend to stay at steady states of 2.7794, 0.02757 and 29.857 million, 

respectively, for the expected total cumulative for susceptible, infected and recovered cases after 10 

years. For future study, it is recommended to use complex mathematical models to study the spread of 

COVID-19 in Malaysia, whereby the number of compartments in the epidemic modelling can be 

increased and more possible influence factors should be considered to present the nearly real outbreak 

of COVID-19. The computational method used should be able to give a smaller root-mean-square error, 

and any ill conditions during the computation procedure ought to be resolved. Thus, more accuracy of 

prediction results could be given. 
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