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Abstract: Drug concentration is pivotal in treating a disease. However, applying 

unsuitable drug concentrations to treatment will not cure patients and may delay their 

recovery. This research describes a drug concentration problem through a 

mathematical model that is a system of nonlinear ordinary differential equations. In 

solving this model, a simplified model is proposed to characterize the actual drug 

concentration problem. Then, a loss function, which measures the differences 

between the simplified model and the real problem, is defined. A state space 

representation showing the linear relation between drug circulation and metabolism 

is expressed. Using a gradient method, parameters in the simplified model are updated 

iteratively until convergence is achieved. With these optimal parameters, the 

analytical solution of the simplified model, which approximates the result of the 

actual drug concentration, is obtained. In addition, by adding a control input to the 

simplified model, the optimal decision of drug concentration is suggested to speed up 

the process of drug circulation and metabolism. Hence, the time taken decreased for 

the drug to beat its target site and fasten the recovery. In conclusion, the efficiency of 

the simplified model with control input for handling the drug concentration problem 

is highly demonstrated. 
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1. Introduction 

Pharmacology is a branch of medicine, biology and pharmaceutical sciences that concerns drug or 

medication action, where it is defined as the science of how drugs act on biological systems and how 

the body responds to the drug [1]. There are two primary branches in pharmacology that are 

pharmacodynamics and pharmacokinetics. Basically, pharmacodynamics is the study of how a drug 

affects an organism, and concerns the interactions of chemicals with biological receptors. While, 

pharmacokinetics is the study of how the organism affects the drug, and refers to the absorption, 

distribution, metabolism and excretion (ADME) of chemicals from biological systems [2].  

A drug is a chemical substance with a known structure that has a biological effect and can alter the 

physiology or psychology of an organism when consumed [3], whereas the concentration of a drug is 

defined as the amount of the drug divided by the volume, where the drug is distributed [4]. The drug 

can exert its effect when the drug concentration in the blood is higher than a certain concentration, but 

it should not exceed the maximum drug concentration or else it will produce a toxic effect. The drug 

concentration in the blood will gradually decrease over time until it cannot be detected. So, the term 

half-life is generally used to describe the half-period of the circulation process of a drug in the body 

from the highest drug concentration. For example, the half-life of a drug concentration is three hours 

indicating that the time the drug concentration drops to half of the highest concentration is three hours. 

Hence, the optimal drug concentration is the lowest dose that will control symptoms, where long-term 

side effects are monitored and treated.  

The proper dosage of the drug concentration cannot be determined since every patient has different 

responses to the drug concentration. Therefore, it is always based on the medication record in the past 

and the experiences of a doctor to give the drug concentration. The dosage of the medication for therapy 

purposes can be adjusted to a suitable level to achieve the therapeutic goal through mathematical models. 

However, the formulation of a mathematical model for drug concentration is a complex process. The 

rate of changes in the drug concentration to the body responses is presented in a nonlinear relation, and 

the parameters in drug concentration are unknown exactly. Moreover, solving nonlinear models will 

take a long time to obtain the model solution and approximating the result of a nonlinear model is costly. 

Due to these reasons, a simplified model is necessarily required for handling the nonlinear model of the 

concentration of a drug. Hence, in this research, the state space computational approach is proposed to 

solve the simplified model for which the solution of the nonlinear model for drug concentration can be 

approximated iteratively. So, the optimal decision on the drug concentration can be made. 

 Therefore, three objectives of the study are established. First, to describe a mathematical model for 

the drug concentration problem in nonlinear ordinary differential equations. Second, to suggest a 

simplified model for solving the drug concentration problem through the state space computational 

approach. Third, to provide an optimal decision for using the suitable dosage of the drug concentration 

in treatment. For illustration, a mathematical model of the anticancer drug, namely tirapazamine, is 

studied. The simulation results show the tractability of the simplified model used in this study, and the 

efficiency of the state-space computational approach is proven.  

 

2. Materials and Methods 

Consider a general model of drug concentration [5], 

( ) ( ( ), )x t f x t t                                                             Eq.1 

where 
nx  is a state vector and t is time; while x  is the rate of change of the state with respect to 

time, and : n nf    is the function dynamics. Suppose the initial value of the state is 
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0(0)x x , the solution of the model Eq.1 can be obtained numerically. However, because model Eq.1 

is nonlinear and complex, obtaining the solution of the model Eq.1 is difficult and costly.  

Therefore, we propose a simplified model, which is a set of linear differential equations [6], given 

as follows, 

( ) ( )x t Ax t ,                                                               Eq.2 

with 
n nA   is a transition matrix that has unknown elements. Here, our aim is to solve the simplified 

model Eq.2 iteratively so that the state trajectory ( )x t  can be determined by estimating the transition 

matrix A, in turn, to approximate the solution of the nonlinear system Eq.1. This problem is known as 

the parameter estimation problem of a nonlinear system based on state error and is referred to as 

Problem (A).  

2.1 State Space Computational Approach 

Referring to model Eq.2, the linear state equation is written as  

( ) ( ) 0x t Ax t  .                                                          Eq.3 

Multiplying the exponential term 
Ate

 to Eq.3 for both sides giving 

 ( ) 0Atd
e x t

dt

  .                                                         Eq.4 

Then, integrating both sides of Eq. 4 to obtain 

( ) (0) 0Ate x t x   .                                                      Eq.5 

Hence, the solution to Eq.2 is given by 

0( ) Atx t e x .                                                            Eq.6 

Here, Eq.6 is the analytical solution to the state equation Eq.2 and is known as the state space approach.  

In addition, we verify that the analytical solution Eq. 6 is the solution to Eq. 2 through the following 

result, 

0 0( ) ( ) ( ) ( ).At Atd d
x t x t e x Ae x Ax t

dt dt
                                    Eq.7 

By the way, the exponential term 
Ate  is called the matrix exponential and is represented by the sum of 

the infinite matrix power series  

0 !

k
At k

k

t
e A

k






2 3

2 3

1! 2! 3! !

k
kt t t t

I A A A A
k

                  Eq.8 

The matrix exponential has some properties [5] as given below. 

(a) If A is a zero matrix, then 
0Ate e I  ; I is the identity matrix. 

(b) If A = I, then .It te e I  

(c) If A has an inverse matrix 1A , then .A Ae e I   
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(d) 
( ) ,mA nA m n Ae e e   where m, n are arbitrary real or complex numbers. 

(e) The derivative of the matrix exponential is given by 

( ) .At Atd
e Ae

dt
  

(f) Let B be a nonsingular linear transformation. If 
1,A BMB  then  

1.At Mte Be B  

2.2 Transition Matrix Estimation 

To solve Problem (A), let us define an optimization problem [7] given as follows,  

T1
Minimize      ( ) ( ( ) ) ( ( ) )

2
seJ A f x Ax f x Ax                                     Eq.9 

subject to the simplified model Eq.2, where seJ  is the loss function, which represents the sum of square 

errors. Consider the first-order derivative with respect to the transition matrix A, that is,   

T( ) ( ( ) )seJ A f x Ax x    .                                               Eq.10 

This derivative is the gradient to the loss function seJ . Then, the transition matrix A can be updated by  

( 1) ( ) ( )( )i i i

seA A a J A    ,                                               Eq.11 

where , 0a a   is a real number, i represents the iteration number and the initial transition matrix 

(0)A  is given as Jacobian matrix at the initial x0. Note that Eq.9 is known as the least-squares 

optimization problem and Eq.11 is named the gradient descent method.  

 Assume that *A  is the optimal transition matrix, which minimizes the loss function seJ  in Eq.9. 

When the convergence is achieved, we have * ( 1) ( )i iA A A  , where the elements in the optimal 

transition matrix *A  are estimated satisfactorily. Thus, the simplified model Eq.2 becomes  

*( ) ( )x t A x t .                                                           Eq.12 

So, the analytical solution Eq.12 shall give the solution to the nonlinear system Eq.1, and Eq.12 is 

known as the linear state space representation [8] to the general model Eq.1.  

2.3 Linear Optimal Control Design 

Now, for proposing the optimal drug concentration in Eq.1, the control input 
mu  is considered 

in the state equation Eq.12  

*( ) ( ) ( )x t A x t Bu t                                                       Eq.13 

where 
n mB   is a control coefficient matrix. Hence, a set of the control 

*u  shall be determined on 

time [0, T] so that the performance index in the quadratic criterion  

T T T

0

1 1
( ) ( ) ( )

2 2

T

J x T S T x T x Qx u Ru dt                                Eq.14 
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is minimized over the linear dynamic system Eq.13. Here, S, Q, R are weighting matrices and T is the 

terminal time. The superscript T is the transpose operator for a matrix. This problem is a linear optimal 

control problem [9], [10].   

Define the Hamiltonian function 

T T T1
( ) ( ) ( )

2
H t x Qx u Ru Ax Bu                                        Eq.15 

where 
n  is the multiplier to be determined. Then, the necessary conditions [10], [11] are provided 

as follows,  

(a) Stationary condition  

T0
H

Ru B
u




  


.                                                        Eq.16 

(b) State equation 

H
x Ax Bu




  


.                                                         Eq.17 

(c) Costate equation 

TH
Qx A

x
 


   


.                                                      Eq.18 

From Eq.16, the control input is given by   

1 Tu R B   .                                                           Eq.19 

Then, applying the sweep method [10], [12] 

( ) ( ) ( )t S t x t  ,                                                          Eq.20 

and taking the derivative to have  

Sx Sx   .                                                             Eq.21 

Substitute Eq.17 into Eq.21 to yield   

( )Sx S Ax Bu    ,                                                    Eq.22 

and consider the control input Eq.19, the derivative of the costate in Eq.22 can be written as   

1 T( )S SA SBR B S x    .            Eq.23 

Notice that Eq.18 and Eq.23 are equivalent, which gives 

TQx A Sx  1 T( )S SA SBR B S x   .                                    Eq.24 

As such, a matrix Riccati differential equation  

T 1 TS SA A S SBR B S Q                                                 Eq.25 

with the final condition ( )S T  is obtained. Therefore, the control input Eq.19 becomes  
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u Kx                                                                    Eq.26 

where  

1 TK R B S                                                              Eq.27 

is the Kalman feedback gain. Follow from this, the state equation Eq.13 can be written as 

*( ) ( ) ( )x t A BK x t                                                        Eq.28 

and its analytical solution is  

*( )

0( ) A BK tx t e x .                                                      Eq.29 

3. Results and Discussion 

Consider a mathematical model for the drug concentration of tirapazamine [13], which is an 

anticancer drug, given by  

1
1 1

dx
k x

dt
                                                              Eq.30 

max 22
1 1

2m

V xdx
k x

dt K x
 


                                                   Eq.31 

3 max 2

2m

dx V x

dt K x



                                                       Eq.32 

where 1,x  2x  and 3x  are the patch, circulation and metabolism compartments, respectively, whereas 

1k  is the diffusion constant from patch to the circulation, and maxV  is the maximal rate of metabolism 

and mK  is the Michaelis constant that is the substrate concentration at which the rate of metabolism is 

50 percent of the max .V  Here, maxV  and mK  are the standard Michaelis-Menten parameters.  

The values of parameters are 1k  = 0.05, 
6

max 1.5 10 /V M s   and
674.8 10mK M   [14], [15]. 

The initial conditions are 1(0) 100,x  2 (0) 0x   and 3(0) 0x  , while the initial time is 0 0t   and 

the final time is 200.ft    

3.1 The Simplified Model  

Now, introduce a simplified model for the drug concentration mathematical model in Eq.30-Eq.32 

as follows, 

1
1 1

dx
k x

dt
                                                               Eq.33 

2
1 1 2 2

dx
k x k x

dt
                                                          Eq.34 

3
2 2

dx
k x

dt
                                                              Eq.35 
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with 2 max mk V K at 2 (0) 0.x  This simplified model is the initial model before the method 

discussed in Section 2.2 is applied and this model will only provide the linear approximation solution 

to the model in Eq.30-Eq.32. Consider the following final simplified model  

1
10.05

dx
x

dt
                                                           Eq.36 

2
1 2 30.049046 0.010682 0.001158

dx
x x x

dt
                            Eq.37 

3
1 2 30.000954 0.010682 0.001158

dx
x x x

dt
                            Eq.38 

that has resulted after the iterative procedure is implemented. Therefore, solving the final simplified 

model in Eq.36-Eq.38 will approximate the actual solution of the model in Eq.30-Eq.32.  

Table 1 shows the simulation results for the performance of the algorithm used. The mean square 

errors, which present the differences between the solutions from the actual model and the final 

simplified model, have a very small value. This reveals that the solution of the final simplified model 

can be applied to fit the solution of the actual model.   

Table 1: Simulation results for algorithm performance 

Iteration Number Mean Square Errors Elapsed Time (s) 

95 5.9618  10–10 13.3342 

 

 
 

Figure 1: Drug concentration in absorption, circulation and metabolism 

for the nonlinear and final simplified models 

 

Figure 1 shows the graphical solution of the drug concentration for the nonlinear and final 

simplified models in Eq.36-Eq.38. Notice that the solution of the final simplified model overlapped 

with the result of the actual model in Eq.30-Eq.32. This indicates that the solution of the final simplified 

model is identical to the solution of the actual model. The drug concentration is absorbed from the patch 

to the blood at the concentration of 100 M and the absorption rate was decreased over time to close to 
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zero after 100 sec. In the circulation, the drug concentration of the circulation rate increased from zero 

until reaching the maximum drug concentration of 64.193 M at 40 sec before turning down as the 

initial concentration of 100 M was exhausted and metabolized. After 40 sec, the drug concentration 

decreased, and a reduction of 50 percent from the maximum drug concentration was observed at           

116 sec. At this half-life concentration, prescribers will know when the drug concentration loses its 

effectiveness and how often repeated dosing should be provided. In addition, the metabolism rate 

increased with the drug concentration since the therapeutic doses usually used are significantly below 

the saturation level of the enzymes needed for the metabolic pathway to take place. 

As a result, the final simplified model gives an alternative model for handling the nonlinear model 

of the drug concentration of tirapazamine. It is highlighted that the final simplified model has the patch, 

circulation and metabolism compartments in observing the drug concentration for the rate of changes 

for circulation and metabolism. However, in the actual model, only patch and circulation are considered 

in the drug concentration for the rate of change of circulation, and only circulation is considered in the 

drug concentration for the rate of change of metabolism. 

3.2 The Optimal Control Model 

For suggesting an optimal decision to handle the drug concentration, a control input ,u  which 

is a vasodilation drug used to speed up the drug circulation in the human body, is added in the final 

simplified model in Eq.36-Eq.38. Hence, the optimal control model is defined as follows.  

1

1

2
2

3
3

0.05 0 0 0

0.049046 0.010682 0.001158 0.1

0.000954 0.010682 0.001158 0

dx

dt x
dx

x u
dt

x
dx

dt

 
 

     
               
          

 
 
 

              Eq.39 

such that the following performance index in the quadratic criterion 

200
T T

0

1
( )

2
J u x Qx u Ru dt                                              Eq.40 

is minimized, where Q and R are the weighting matrices with   

([0.01,0.01,0.01)Q diag  and R = 100. 

Here, the term diag represents the diagonal matrix.  

Figure 2 shows the graphical solution of the drug concentration for the optimal control model in 

Eq.39-Eq.40. Note that the maximum drug concentration of 60.533 M occurred at 37 sec and the half-

life of the drug concentration was measured at 103 sec. Obviously, the maximum drug concentration 

and its half-life with adding the control input were reached earlier than the maximum and half-life of 

drug concentration without the control input. The drug concentration of the metabolism curve breaks 

down to its active form and exerts its effect on the tumor site so that the drug concentration will be less 

than the previous model. Hence, the model with the control input can increase the speed of drug 

circulation and reduce the time for the drug to its target site, in turn, speed up the recovery of a patient. 

Figure 3 shows the solution of the control input. In the beginning, the control input of 1.0936 M 

was supplied to the drug concentration of the circulation rate, and this control input reduced gradually 

over time toward the value of 0.9015 M. With this control solution, the optimal decision for regulating 



Soh and Kek, Enhanced Knowledge in Sciences and Technology Vol. 3 No. 1 (2023) p. 108-117 

116 
 

the drug concentration of tirapazamine can be suggested as shown in Figure 2. Moreover, this optimal 

decision is guaranteed since the stationary condition was satisfied as shown in Figure 4. The optimal 

cost was 1.4937104 units when applying this optimal decision.  

 
 

Figure 2: Drug concentration in absorption, circulation and metabolism  

for the optimal control model 

 

  

 

Figure 3: Control input for drug  

concentration 

 

 

Figure 4: Stationary condition 

 

4. Conclusion 

This research discussed the mathematical decision of optimal drug concentration with a state-space 

computational approach. The actual model is the nonlinear model, and its solution was obtained by 

solving the simplified model iteratively. When the convergence was achieved, the final simplified 

model provided the approximate solution to the actual model. Moreover, a control input was added to 

the final simplified model to form an optimal control model for the drug concentration. After solving 

this optimal control model, the optimal decision for the drug concentration was suggested to speed up 

the treatment of a patient. Since this study only focuses on a single drug and a single delivery mechanism, 

an exploration of complex drug concentration cases is recommended for future studies. 
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