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Abstract: This paper study the applicability, and the efficiency of the implicit 

multistep method of order four, resulting in the system of first order nonlinear 

ordinary differential equations (ODEs). A system of first order nonlinear ODEs 

have been considered with initial conditions which are Lotka-Volterra prey-

predator model. The model has been solved by implicit multistep method of order 

four using different step size, h with the help of MATLAB. The absolute error 

analyzed are also carried out explicitly in the framework. The numerical results of 

the model have been calculated and compared with Runge-Kutta method of order 

four and MATLAB ODE solver (ode45). Moreover, for the Lotka-Volterra prey-

predator model, a comparison of the computation is compared and is worked out 

to illustrate the general advantage of proposed method. 
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1. Introduction 

A system of differential equations is a finite set of differential equations such a system can be either 

linear or non-linear. Also, such a system can be either a system of ordinary differential equations (ODEs) 

or a system of partial differential equations (PDEs). The prey-predator equation is another name for the 

set of first order nonlinear differential equations known as the Lotka-Volterra equations. To describe 

the dynamics of ecological systems where one species acts as a predator and the other as a prey, the 

Lotka-Volterra model is frequently utilized.  

The Lotka–Volterra model is numerically solved using Runge-Kutta-Fehlberg method (RKF) and 

Laplace Adomian decomposition method (LADM) in [1]. It is found out that RKF have high rate of 
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accuracy in comparison to LADM. Authors in [2] demonstrated that, over time the Lotka-Volterra 

model, either the competitive exclusion maintains, resulting in the extinction of one species, or the two 

species create a coexistence equilibrium. [3] outlined two accurate, model-based techniques for solving 

the fractional-order Lotka-Volterra population model system based on the Morgan-Voyce (MV) 

functions. 

The following general Lotka–Volterra model is used for n species, and the equations might describe 

prey-predator or competition cases. 

1

( ), 1,2, , ; .
n

i
i i ij j

j

dN
N N i n i j

dt
 



                   Eq. 1 

where, idN

dt
 indicates the two populations observed growth rates over time, t  and , ,   and  are 

parameters describing the interaction of the two species. 

Based on [4], system of ODEs can be solved analytically and numerically. Due to some limitations 

of analytical method especially for solving difficult and complicated problems, numerical methods have 

been chosen to overcome this limit. Numerical methods consist of one-step and multistep methods. The 

accurate one-step methods for example Runge-Kutta method of order four required more function 

evaluation. Hence, it is less efficient. The multistep methods with the same order can give the accurate 

solution with less function evaluation. An implicit method will be used because it is more accurate. [5] 

concentrated their research on implicit multistep numerical technique for real-time modelling of stiff 

systems which resulting that using an implicit multistep approach cuts down on the amount of time it 

takes to calculate. First-order delay differential equations were solved using hybrid block Adams 

Moulton techniques (BHAMM) for step number, along with two and three off-grid locations, without 

applying the interpolation condition in [6]. 

A multistep, m-step approach to solving the initial-value problem 

' ( , ), , ( ) ,y f t y t b y a                     Eq. 2 

a difference equation that can be used to get an approximate value 1iy   at the mesh point 1it   

represented by the following equation, where m is an integer greater than 1: 

1 1 2 1 0 1

1 1 1 0 1 1[ ( , ) ( , ) ( , )],

i n i n i i n

n i i n i i i n i n

y a y a y a y

h b f t y b f t y b f t y

     

      

   

   
            Eq. 3 

for 1, , , 1,i n n N    where 
( )

,
h b a

h
N


   the 0 1 1, , , na a a   and 0 1, , , nb b b  are constants, 

and the starting values 

0 1 1 2 2 1 1, , , , n ny y y y                       Eq. 4 

are specified. When 0mb  , the method of Eq. 3 is called explicit and when 0mb   the method is 

called implicit. An implicit multistep method of order four method will be used in this project. 

The objectives of this study were to examine Lotka-Volterra prey predator model that appropriate 

for numerical analysis. Next, to solve Lotka-Volterra prey-predator model using implicit multistep 

method of order four and compare the solution of Lotka-Volterra prey-predator model using implicit 

multistep method of order four with Runge-Kutta method of order four and MATLAB ODE (ode45). 
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2. Materials and Methods 

2.1 Lotka-Volterra prey-predator model 

Referring to general Lotka-Volterra model in Eq. 1, the case of two species that will be using for 

this study, which is defined as follows (Source [7]) 

1
1 2

2
2 1

( )

( )

dN
N N

dt

dN
N N

dt

 

 

 

 

               Eq. 5 

with the initial conditions 1 2(0) 0 and (0) 0.N N   Prey species have a population size of 𝑁1 , 

whereas predator species have a population size of 𝑁2. The per capita decrease in prey per predator is 

shown in  , while the per capita increase in predator per prey is shown in  . Prey and predator species 

have death rates of   and  , respectively. The parameters , , ,     are all positive. 1dN

dt
 and 

represent 2dN

dt
 the growth rates of the prey and predator species over time, t, respectively. 

2.2 Implicit Multistep Method of Order Four 

Multistep approaches used the estimation at several previous mesh points to ascertain the estimation 

at the following point. By the Eq. 3, when 2,m  the starting values Eq. 4 are 

𝑤0 = 𝛼, 𝑤1 = 𝛼1, 𝑤2 = 𝛼2,               Eq. 6 

with  

1 1 1 1 1 2 2

9 19 5 1
( , ) ( , ) ( , ) ( , )

24 24 24 24
i i i i i i i i i iw w h f t w f t w f t w f t w      

 
     

 
.          Eq. 7 

For each 𝑖 = 2, 3, . . . , 𝑁 − 1, is the implicit multistep method of order four, which is an implicit three-

step procedure. In the above equation, the initial values must be defined, usually by assuming 𝑤0 = 𝛼 

and calculating the starting values using the any one-step methods. The values in function  ,f t w  of 

the above equation are calculated based on the model in Eq. 5. 

 

3. Results and Discussion 

This section demonstrates the solutions of the system of first order nonlinear ODEs using the 

proposed method. The Lotka-Volterra prey predator model includes numerous cases, each one comes 

with a unique case where the value for a specific parameter is different. 

3.1 Test Problem 

This study considered only one case of two species Lotka-Volterra prey-predator model. By 

referring to the model in Eq. 5 with the initial conditions of 1(0) 4N  , 2 (0) 9N   and the time interval, 

0 15t  . The parameters in this case are 0.1, 0.0014, 0.08, 0.0012       [8]. 
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The problem is tested with two different step sizes, h to determine its accuracy. The step size that 

we will be considering are when 1h   due to the suitability with time interval, t  and will be compared 

with a smaller step size, 0.1h  . The numerical solutions then compared with Runge-Kutta method of 

order four and MATLAB ODE solver (ode45). 

 

3.2 Numerical Result 

This section discussed the results for the Lotka-Volterra prey-predator. The model is solved 

numerically by using implicit multistep method of order four in which will be compared with Runge-

Kutta method of order four and MATLAB ODE solver (ode45). All the calculation are performed using 

MATLAB software. 

 

Table 1 and Table 2 show the numerical results and Table 3 shows the absolute error of the Lotka-

Volterra prey-predator model using the proposed method which compared to Runge-Kutta method of 

order four and MATLAB ODE solver (ode45) for step size, 0.1h  . 

 

Table 1: Numerical results of Lotka-Volterra prey predator model using MATLAB ODE solver 

(ode45) at 0.1h   

t 
Matlab ODE solver (ode45) 

N1 N2 

0 4.000000000000 9.000000000000 

1 4.355229552958 12.555900623896 

2 4.712661174290 18.024508997048 

3 5.050392184670 26.610324316665 

4 5.330192556619 40.280871902782 

5 5.489826045430 62.089349336158 

6 5.440087091765 96.190336033097 

7 5.082754369499 146.697496885459 

8 4.370549062258 214.351254270641 

9 3.389576928911 292.358203405037 

10 2.357849082424 367.302605267776 

11 1.490888425561 427.249404224656 

12 0.878177689395 468.371766373612 

13 0.494118837149 493.566885596673 

14 0.270673309217 507.856073405226 

15 0.146063225774 515.517256259041 

 

Table 2: Numerical results of Lotka-Volterra prey predator model using implicit multistep method of 

order four and Runge-Kutta method of order four at 0.1h   

 

t 
Implicit multistep method of order 4 Runge-Kutta of order 4 

N1 N2 N1 N2 

0 4.000000000000 9.000000000000 4.000000000000 9.000000000000 

1 4.355235051243 12.555649553729 4.355235059104 12.555649195405 

2 4.712662386733 18.024454386442 4.712662415852 18.024453092060 

3 5.050399790528 26.609972649007 5.050399858094 26.609969734022 

4 5.330202571060 40.280605331115 5.330202693103 40.280600324379 

5 5.489867261262 62.087258166895 5.489867421240 62.087252386325 

6 5.440183812449 96.185554570723 5.440183901724 96.185553640119 

7 5.082884447443 146.690626300172 5.082884297429 146.690637063475 

8 4.370829517966 214.337793620024 4.370829251947 214.337806532510 

9 3.389811432429 292.349224883110 3.389811583313 292.349214956297 
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10 2.358040465916 367.298256897160 2.358041018923 367.298232586068 

11 1.491056795316 427.246353362950 1.491057139557 427.246345732528 

12 0.878483254299 468.359643264537 0.878483250659 468.359653563711 

13 0.494371679431 493.559445834347 0.494371565065 493.559459331503 

14 0.270778418006 507.860459954810 0.270778342264 507.860469535929 

15 0.146108808574 515.525647669339 0.146108788920 515.525653522268 
 

Table 3: Absolute error at 0.1h   

 

t 
Implicit multistep method of order 4 Runge-Kutta of order 4 

N1 N2 N1 N2 

0 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 

1 5.498285e-06 2.510702e-04 5.506146e-06 2.514285e-04 

2 1.212443e-06 5.461061e-05 1.241562e-06 5.590499e-05 

3 7.605858e-06 3.516677e-04 7.673424e-06 3.545826e-04 

4 1.001444e-05 2.665717e-04 1.013648e-05 2.715784e-04 

5 4.121583e-05 2.091169e-03 4.137581e-05 2.096950e-03 

6 9.672068e-05 4.781462e-03 9.680996e-05 4.782393e-03 

7 1.300779e-04 6.870585e-03 1.299279e-04 6.859822e-03 

8 2.804557e-04 1.346065e-02 2.801897e-04 1.344774e-02 

9 2.345035e-04 8.978522e-03 2.346544e-04 8.988449e-03 

10 1.913835e-04 4.348371e-03 1.919365e-04 4.372682e-03 

11 1.683698e-04 3.050862e-03 1.687140e-04 3.058492e-03 

12 3.055649e-04 1.212311e-02 3.055613e-04 1.211281e-02 

13 2.528423e-04 7.439762e-03 2.527279e-04 7.426265e-03 

14 1.051088e-04 4.386550e-03 1.050330e-04 4.396131e-03 

15 2.804557e-04 8.391410e-03 2.801897e-04 8.397263e-03 

 

Figure 1 and Figure 2 represent the graph of numerical results and the absolute error of Lotka-

Volterra prey-predator model using the proposed method which compared to Runge-Kutta method of 

order four and MATLAB ODE solver (ode45) for step size, 0.1h  . 
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Figure 1: Graph of Lotka-Volterra prey-predator model for step size 0.1h   

 
 

Figure 2: Graph of Absolute error for step size 0.1h   

 

Table 3 and Table 4 show the numerical results and Table 5 shows the absolute error of Lotka-

Volterra prey-predator model using the proposed method which compared to Runge-Kutta method of 

order four and MATLAB ODE solver (ode45) for step size, 1h  . 

 
Table 4: Numerical results of Lotka-Volterra prey predator model using Matlab ODE solver (ode45) 

at 1h   

t 
Matlab ODE solver (ode45) 

N1 N2 

0 4.000000000000 9.000000000000 

1 4.355229776948 12.555890294999 

2 4.712661400917 18.024498777693 

3 5.050391525657 26.610350762125 

4 5.330193163149 40.280848556941 

5 5.489824896778 62.089419233143 

6 5.440094602381 96.189916340317 

7 5.082748760910 146.697800693637 

8 4.370549762065 214.351166683359 

9 3.389564460698 292.358907382199 

10 2.357846041633 367.302847903709 

11 1.490888700074 427.249413503344 

12 0.878176707665 468.371939231285 

13 0.494132124755 493.565920506169 

14 0.270664116881 507.856711649955 

15 0.146063105902 515.517252498891 
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Table 5: Numerical results of Lotka-Volterra prey predator model using implicit multistep method of 

order four and Runge-Kutta method of order four at 1h   

t 
Implicit multistep method of order 4 Runge-Kutta of order 4 

N1 N2 N1 N2 

0 4.000000000000 9.000000000000 4.000000000000 9.000000000000 

1 4.355242939374 12.555348766033 4.355242939374 12.555348766033 

2 4.712689203880 18.023402381916 4.712689203880 18.023402381916 

3 5.050468951661 26.607178383083 5.050468951661 26.607178383083 

4 5.330445168287 40.267674588109 5.330360358623 40.274050499578 

5 5.490483632560 62.051753806123 5.490194038425 62.073355962023 

6 5.441460953561 96.115192875002 5.440787853570 96.159409596116 

7 5.085197157515 146.602749534306 5.083842982486 146.648930445045 

8 4.374401890399 214.339150115103 4.372073544093 214.285095570400 

9 3.392424202012 292.615124714805 3.391075946038 292.301522319712 

10 2.352351789403 367.779695476227 2.359085311592 367.269869256001 

11 1.475289148385 427.439219761252 1.491943960934 427.231877538224 

12 0.866360124844 467.857144298690 0.879367552862 468.347597847525 

13 0.495743801020 492.677911402956 0.495239030340 493.549704543580 

14 0.278654846788 507.146251034196 0.271531268562 507.858786989459 

15 0.151786283782 515.110150067667 0.146690827534 515.535426202571 
 

Table 6: Absolute error at 1h   

 

t 
Implicit multistep method of order 4 Runge-Kutta of order 4 

N1 N2 N1 N2 

0 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 

1 1.316243e-05 5.415290e-04 1.316243e-05 5.415290e-04 

2 2.780296e-05 1.096396e-03 2.780296e-05 1.096396e-03 

3 7.742600e-05 3.172379e-03 7.742600e-05 3.172379e-03 

4 2.520051e-04 1.317397e-02 1.671955e-04 6.798057e-03 

5 6.587358e-04 3.766543e-02 3.691416e-04 1.606327e-02 

6 1.366351e-03 7.472347e-02 6.932512e-04 3.050674e-02 

7 2.448397e-03 9.505116e-02 1.094222e-03 4.887025e-02 

8 3.852128e-03 1.201657e-02 1.523782e-03 6.607111e-02 

9 2.859741e-03 2.562173e-01 1.511485e-03 5.738506e-02 

10 5.494252e-03 4.768476e-01 1.239270e-03 3.297865e-02 

11 1.559955e-02 1.898063e-01 1.055261e-03 1.753597e-02 

12 1.181658e-02 5.147949e-01 1.190845e-03 2.434138e-02 

13 1.611676e-03 8.880091e-01 1.106906e-03 1.621596e-02 

14 7.990730e-03 7.104606e-01 8.671517e-04 2.075340e-03 

15 5.723178e-03 4.071024e-01 6.277216e-04 1.817370e-02 

 

Figure 3 and Figure 4 represent the graph of numerical results and the absolute error of Lotka-

Volterra prey-predator model using the proposed method which compared to Runge-Kutta method of 

order four and MATLAB ODE solver (ode45) for step size, 1h  . 
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Figure 3: Graph of Lotka-Volterra prey-predator model for step size 1h   

 

 

Figure 4: Graph of Absolute error for step size 1h   

 

Table 1, Table 2, Table 4 and Table 5 shown that the implicit multistep method of order four is 

reliable to solve Lotka-Volterra prey-predator model. It can be proved by the graph in Figure 1 and 

Figure 3 where the solutions of implicit multistep method of order four are coincide with MATLAB 

ODE solver (ode45) also with Runge-Kutta method of order four. The absolute in Table 3 and Table 6 

errors have calculated based on MATLAB ODE solver (ode45) results and it was found out as in Figure 

2 and Figure 4 that implicit multistep method of order four and Runge-Kutta method of order four are 

comparable. However, implicit multistep method of order four is more efficient since Runge-Kutta 

method of order four need more function evaluation to obtain the result for the same step of solution. 
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4. Conclusion 

This study emphasized on solving Lotka-Volterra prey-predator model using the implicit multistep 

method of order four. The results are compared with Runge-Kutta method of order four and MATLAB 

ODE solver (ode45). MATLAB software is used to calculate the solutions using various step sizes. The 

results showed that decreasing the step size improved the numerical output. It can be concluded that the 

implicit multistep method of order four can be used to solve nonlinear ODEs and is more efficient than 

Runge-Kutta method of order four. 
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