
 
Enhanced Knowledge in Sciences and Technology Vol. 3 No. 1 (2023) 037-046 

 

© Universiti Tun Hussein Onn Malaysia Publisher’s Office 

 

EKST 
 

Homepage: http://publisher.uthm.edu.my/periodicals/index.php/ekst 

 

e-ISSN : 2773-6385 
 

*Corresponding author: slkek@uthm.edu.my 
2023 UTHM Publisher. All rights reserved. 
publisher.uthm.edu.my/periodicals/index.php/ekst 

 

  Mathematical Modelling of Inviscid Fluid Flows 

in Thin Stenosed Elastic Tube Using Reductive 

Perturbation Method 
 

Zoey Loh1, Yaan Yee Choy2, Sie Long Kek3* 
 
1, 3 Department of Mathematics and Statistics, 

Faculty of Applied Sciences and Technology, 

Universiti Tun Hussein Onn Malaysia (Pagoh Campus) 

84600 Pagoh, Muar, Johor, MALAYSIA. 

 
2 School of Mathematics and Science, Singapore Polytechnic,  
500 Dover Road, 139651 SINGAPORE.  

 

*Corresponding Author Designation 

 
DOI: https://doi.org/10.30880/ekst.2023.03.01.005 

Received 15 January 2023; Accepted 20 March 2023; Available online 3 August 2023 

 

Abstract: Mathematical modelling of the wave propagation of blood flow gives 

useful information to medicine. This paper presents an analytical study on the wave 

propagation of blood flow in the stenosed artery. First, the artery is treated as a thin-

walled prestressed elastic tube with stenosis. By considering blood as an 

incompressible inviscid fluid, a mathematical model of nonlinear wave propagation 

in the thin-walled elastic tube with stenosis is proposed. Then, by applying the 

reductive perturbation method to the nondimensional equations of tube and fluid, a 

set of various orders of differential equations is obtained. As a result, the partial 

differential equation for the incompressible inviscid fluid flow in the stenosed tube is 

proved to be the Korteweg-de Vries (KdV) equation with variable coefficients, and 

its analytical solution is determined. From graphical outputs, the fluid passes through 

the stenosis, and the amplitude of the wave and fluid pressure decreases as time 

increases, but the amplitude of the wave and fluid pressure increases as time increases 

after the fluid passes through the stenosis. In addition to this, when the height of 

stenosis is higher, the wave speed is lower. Finally, the increase in circumferential 

stretch causes the wave speed to decrease, and the peak-to-peak of the wave also 

becomes wider. 

 

Keywords: Inviscid Fluid, Thin-Walled Elastic Tube, Stenosis, Reductive 

Perturbation Method, Korteweg-de Vries Equation 
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1. Introduction 

A blood circulatory system involves organs such as the heart and the whole network of blood vessels 

in the human body. There are two circuits, which are the pulmonary system and the systemic system, 

and both circuits start and finish in the heart [1]. 

Thomas Young made important contributions to hemodynamics. He calculated the pressure wave 

speed in an incompressible liquid filled in an elastic tube. Unfortunately, Young's analysis was cryptic, 

and the wave speed was not explicitly stated, so his work was undiscovered until the German brothers 

Weber unearthed it almost half a century later [2]. In 2007, Demiray studied wave propagation in fluid-

filled elastic tubes with stenosis. In his study, the arteries are treated as thin-walled prestressed elastic 

tubes with stenosis, whereas the blood is an inviscid fluid. Based on the balance between nonlinearity 

and dispersion, the variable coefficients KdV and modified KdV equations are acquired by using the 

reductive perturbation method. The results in the study showed that wave speeds are maximum at the 

centre of stenosis and the values decreases when it goes away from the stenosis.  

Yang, Song and Yang [3], investigated the propagation of pulse wave in a deformable artery filled 

with inviscid blood using the reductive perturbation technique and found that the higher order nonlinear 

and dispersion terms lead to the distortion of the wave, while the initial deformation of the tube wall 

will influence the wave amplitude and wave width. Dhange, Sankad and Bhujakkanavar [4] investigated 

the model of blood flow with stenosis and discovered that arterial stenosis lowers arterial blood flow. 

In recent years, there is a growing interest in studying the nonlinear wave propagation of blood flow 

in the artery. Mostly, the research primarily focused on the wave propagation in the artery without the 

stenosis. In the human body, there exists a phenomenon of narrowing arteries, which can be due to lipid 

deposits or plaque in arteries, which affects the blood flow throughout the body. As a result, the artery 

is treated as an incompressible, inhomogeneous, isotropic, and pre-stressed uniform thin elastic tube 

with stenosis in it, and the blood is treated as an incompressible inviscid fluid.  

Therefore, in our study, the reductive perturbation method is applied to investigate the propagation 

of solitary waves in incompressible, inhomogeneous, isotropic, and pre-stressed thin elastic tube with 

stenosis filled with inviscid fluid. With this aim, three objectives of the study are planned. The first 

objective is to derive the nonlinear partial differential equation of wave propagation in inviscid fluid 

filled in thin elastic tube with stenosis. The second objective is to obtain the progressive wave solution 

for nonlinear partial differential equation. The third objective is to analyse the solution of progressive 

wave on the variation of radial displacement, wave speed and fluid pressure. The progressive wave 

solutions are then presented graphically using MATLAB and are discussed.  

2. Basic Equations 

In this section, some basic equations for wave propagation of blood flow are given.  

2.1  Equation of Tube 

The artery is identified as the thin elastic tube with stenosis. The model for the incompressible, 

inhomogeneous, isotropic, and pre-stressed thin elastic tube with stenosis is shown in Figure 1, 𝑟0 is the 

deformed radius at the coordinate system’s origin, 𝑍∗ is the axial coordinate before deformation, the 

axial coordinate after static deformation is denoted as 𝑧∗, 𝑓(𝑧∗) is a function which characterizes the 

axially symmetric stenosis on the surface of the arterial wall and 𝑢∗ is the dynamical radial displacement. 

The equation motion of tube in the radial direction [5] is expressed as  



Loh et al., Enhanced Knowledge in Sciences and Technology Vol. 3 No. 1 (2023) p. 37-46 
 

39 
 

−
𝜇

𝜆𝓏

𝜕Σ

𝜕𝜆2
+ 𝜇𝑅0

𝜕

𝜕𝓏∗

{
 
 

 
 

(−𝑓∗′ +
𝜕𝑢∗

𝜕𝓏∗
)

[1 + (−𝑓∗′ +
𝜕𝑢∗

𝜕𝓏∗
)
2

]

1
2

 
𝜕Σ

𝜕𝜆1

}
 
 

 
 

+
𝑃∗

𝐻
(𝑟0 − 𝑓

∗ + 𝑢∗) = 𝜌0
𝑅0
𝜆𝓏

𝜕2𝑢∗

𝜕𝑡∗2
 Eq. 1 

 

 

Figure 1: Geometry of thin elastic tube with stenosis [5] 

where 𝜇 is the shear modulus of the material of tube, 𝜆𝑧 is the axial stretch, 𝜆1 and 𝜆2 are the stretch 

ratios along the meridional and circumferential curves, 𝛴 is the strain energy density of the membrane, 

𝑅0 is the radius of circularly cylindrical tube, 𝑧∗ is the axial coordinate after static deformation, 𝑓∗ is a 

function that characterizes the axially symmetric stenosis on the surface of arterial wall, 𝑢∗  is the 

dynamical radial displacement, 𝑃∗ is the inner pressure applied by the fluid, 𝐻 is the thickness in the 

undeformed configuration, 𝑟0 is the deformed radius at the origin of the coordinate system, 𝜌0 is the 

mass density of tube, and 𝑡∗ is the time parameter.  

2.2  Equation of Fluid 

The blood is identified as the incompressible inviscid fluid. The equations of inviscid fluid [5] are 

expressed by  

𝜕𝑤∗

𝜕𝑡∗
+𝑤∗

𝜕𝑤∗

𝜕𝓏∗
+
1

𝜌𝑓

𝜕𝑃∗

𝜕𝓏∗
= 0 Eq. 2 

2
𝜕𝑢∗

𝜕𝑡∗
+ 2𝑤∗ (−𝑓∗′ +

𝜕𝑢∗

𝜕𝓏∗
) + (𝑟0 − 𝑓

∗ + 𝑢∗)
𝜕𝑤∗

𝜕𝓏∗
= 0 Eq. 3 

where 𝑤∗ is the averaged axial fluid velocity, 𝜌𝑓 is the mass density of fluid, and 𝑃∗ is the averaged 

fluid pressure. 

2.3  Nondimensionalised Equations 

Equations 1-3 are dimensional equations. The introduction of nondimensional quantities is 

convenient to convert the dimensional equations into nondimensional equations [5]. The 

nondimensionalised quantities introduced by Demiray [5] to eliminate the dimensional quantities are 

written as follows. 
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𝑡∗ = (
𝑅0
𝑐0
) 𝑡, 𝓏∗ = 𝑅0𝓏, 𝑢∗ = 𝑅0𝑢, 𝑚 =

𝜌0𝐻

𝜌𝑓𝑅0
, 𝑤∗ = 𝑐0𝑤,

𝑓∗ = 𝑅0𝑓, 𝑟0 = 𝑅0𝜆𝜃, 𝑃∗ = 𝜌𝑓𝑐0
2𝑝, 𝑐0

2 =
𝜇𝐻

𝜌𝑓𝑅0
 

Eq. 4 

Equation 4 is utilized into Eq.1 – Eq. 3 by applying the chain rule. The nondimensionalized 

equations of tube and fluid are obtained as below, 

𝑝 =
𝑚

𝜆𝑧(𝜆𝜃 − 𝑓 + 𝑢)

𝜕2𝑢
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)

[1 + (−𝑓′ +
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2

]

1
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𝜕Σ
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Eq. 5 

𝜕𝑤

𝜕𝑡
+ 𝑤

𝜕𝑤

𝜕𝑧
+
𝜕𝑝

𝜕𝑧
= 0. Eq. 6 

2
𝜕𝑢

𝜕𝑡
+ 2𝑤 (−𝑓′ + 2

𝜕𝑢

𝜕𝑧
) + (𝜆𝜃 − 𝑓 + 𝑢)

𝜕𝑤

𝜕𝑧
= 0. Eq. 7 

The stretched coordinates introduced by Demiray [5] is expressed as 

𝜉 = 휀
1
2(𝑧 − 𝑔𝑡), 

𝜏 = 휀
3
2𝑧 

Eq. 8 

Eq. 9 

where ε is a small parameter that measures the weakness of nonlinearity and dispersion, and 𝑔 is the 

scale parameter that will be obtained from the solution. From Eq.9, 𝑧 is solved in terms of 𝜏, which is 

𝑧 = ε−
3
2𝜏 Eq. 10 

Introducing Eq. 9 into the expression for the function 𝑓(𝑧) to be  

𝑓(𝑧) = ℎ(휀, 𝜏). Eq. 11 

The differential relations are introduced as follows, 

𝜕

𝜕𝑡
→ −휀

1
2𝑔

𝜕

𝜕𝜉
,         

𝜕

𝜕𝓏
→ 휀

1
2
𝜕

𝜕𝜉
+ 휀

3
2
𝜕

𝜕𝜏
. Eq. 12 

By assuming that the function ℎ(휀, 𝜏)  and the field variables 𝑢 , 𝑤 , and 𝑝  can be written as 

asymptotic series [5] as follows,  

ℎ = 휀ℎ1(𝜏) + 휀
2ℎ2(𝜏) + ⋯ , 

𝑢 = 휀𝑢1(𝜉, 𝜏) + 휀
2𝑢2(𝜉, 𝜏) + ⋯ , 

𝑤 = 휀𝑤1(𝜉, 𝜏) + 휀
2𝑤2(𝜉, 𝜏) + ⋯ , 

𝑝 = 𝑝0 + 휀𝑝1(𝜉, 𝜏) + 휀
2𝑝2(𝜉, 𝜏) + ⋯. Eq.13 

Now, introducing differential relations and expansion Eq. 13 into Eq. 5 – Eq. 7, various orders of 

differential equations are obtained. 

Ο(휀) equations: 

−𝑔
𝜕𝑤1
𝜕𝜉

+
𝜕𝑝1
𝜕𝜉

= 0, Eq. 14 

−2𝑔
𝜕𝑢1
𝜕𝜉

+ 𝜆𝜃
𝜕𝑤1
𝜕𝜉

= 0, Eq. 15 

𝑝1 = 𝛽1(𝑢1 − ℎ1). Eq. 16 
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Ο(휀2) equations: 

−𝑔
𝜕𝑤2
𝜕𝜉

+ 𝑤1
𝜕𝑤1
𝜕𝜉

+
𝜕𝑝2
𝜕𝜉

+
𝜕𝑝1
𝜕𝜏

= 0, Eq. 17 

−2𝑔
𝜕𝑢2
𝜕𝜉

+ 2𝑤1
𝜕𝑢1
𝜕𝜉

+ 𝜆𝜃
𝜕𝑤2
𝜕𝜉

+ 𝜆𝜃
𝜕𝑤1
𝜕𝜏

− ℎ1
𝜕𝑤1
𝜕𝜉

+ 𝑢1
𝜕𝑤1
𝜕𝜉

= 0, Eq. 18 

𝑝2 = (
𝑚𝑔2

𝜆𝜃𝜆𝑧
− 𝛼0)

𝜕2𝑢1
𝜕𝜉2

+ 𝛽1(𝑢2 − ℎ2) + 𝛽2(𝑢1 − ℎ1)
2. Eq. 19 

 

2.4  Solution of the Field Equations 

From the solution of Eq. 14 – Eq. 16, the following equations are obtained 

𝑢1 = 𝑈(𝜉, 𝜏), Eq. 20 

𝑝1 =
2𝑔2

𝜆𝜃
(𝑈 − ℎ1). Eq. 21 

𝑤1 =
2𝑔

𝜆𝜃
 [𝑈 + �̅�1(𝜏)]. Eq. 22 

Equations 20 – 22 are then introduced into Eq. 17 – Eq. 19 yields the following equations. 

−𝑔
𝜕𝑤2
𝜕𝜉

+
4𝑔2

𝜆𝜃
2  [𝑈 + �̅�1(𝜏)]

𝜕𝑈

𝜕𝜉
+
𝜕𝑝2
𝜕𝜉

+
2𝑔2

𝜆𝜃
(
𝜕𝑈

𝜕𝜏
−
𝑑ℎ1
𝑑𝜏
) = 0, Eq. 23 

−2𝑔
𝜕𝑢2
𝜕𝜉

+
4𝑔

𝜆𝜃
[𝑈 + �̅�1(𝜏)]

𝜕𝑈

𝜕𝜉
+ 𝜆𝜃

𝜕𝑤2
𝜕𝜉

+ 2𝑔 (
𝜕𝑈

𝜕𝜏
+
𝑑�̅�1
𝑑𝜏

) −
2𝑔

𝜆𝜃
ℎ1
𝜕𝑈

𝜕𝜉
+
2𝑔

𝜆𝜃
𝑈
𝜕𝑈

𝜕𝜉
= 0, Eq. 24 

𝑝2 = (
𝑚𝑔2

𝜆𝜃𝜆𝑧
− 𝛼0)

𝜕2𝑈

𝜕𝜉2
+ 𝛽1(𝑢2 − ℎ2) + 𝛽2(𝑈 − ℎ1)

2. Eq. 25 

Eliminate 𝑤2 from Eq. 23 and Eq. 24 will obtain 

−
2𝑔2

𝜆𝜃

𝜕𝑢2
𝜕𝜉

+
𝜕𝑝2
𝜕𝜉

+
4𝑔2

𝜆𝜃

𝜕𝑈

𝜕𝜏
+
10𝑔2

𝜆𝜃
2 𝑈

𝜕𝑈

𝜕𝜉
+
2𝑔2

𝜆𝜃
2
(4�̅�1 − ℎ1)

𝜕𝑈

𝜕𝜉
+
2𝑔2

𝜆𝜃

𝑑

𝑑𝜏
(�̅�1 − ℎ1)  = 0. Eq. 26 

Next, substitute Eq. 25 into Eq. 26 gives 

4𝑔2

𝜆𝜃

𝜕𝑈

𝜕𝜏
+ (

10𝑔2

𝜆𝜃
2 + 2𝛽2)𝑈

𝜕𝑈

𝜕𝜉
+
𝜕𝑈

𝜕𝜉
(
8𝑔2

𝜆𝜃
2 �̅�1 −

2𝑔2

𝜆𝜃
2 ℎ1 + 2𝛽2ℎ1) + (

𝑚𝑔2

𝜆𝜃𝜆𝑧
− 𝛼0)

𝜕3𝑈

𝜕𝜉3

+
2𝑔2

𝜆𝜃

𝑑

𝑑𝜏
(�̅�1 − ℎ1) = 0. 

Eq. 27 

Thus, Eq. 27 must even be valid when 𝑈 = 0, which corresponds to steady flow. Thus, KdV 

equation with variable coefficients is written as 

𝜕𝑈

𝜕𝜏
+ 𝜇1𝑈

𝜕𝑈

𝜕𝜉
+ 𝜇2

𝜕3𝑈

𝜕𝜉3
+ 𝜇3ℎ1(𝜏)

𝜕𝑈

𝜕𝜉
= 0, Eq. 28 

where the coefficients 𝜇1, 𝜇2 and 𝜇3 are 

𝜇1 =
5

2𝜆𝜃
+
𝛽2
𝛽1
, 𝜇2 =

𝑚

4𝜆𝑧
−
𝛼0
2𝛽1

, 𝜇3 =
3

2𝜆𝜃
−
𝛽2
𝛽1
. Eq. 29 

 

2.5  Progressive wave solution 

An analytical solution for the KdV equation with variable coefficient is suggested in the following 

form [6]: 
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𝑈 = 𝑓(휁), 

휁 = 𝛽[𝜉 − φ(τ)], 

Eq. 30 

Eq. 31 

where 𝛽 is constant, and 𝜑(𝜏) is unknown function of the variable 𝜏 which is determined from the 

solution of differential equation. Introducing Eq. 30 and Eq. 31 into Eq. 28 results in 

휁 = (
𝜇1𝑐

12𝜇2
)

1
2
[𝜉 − 𝜇3∫ ℎ1(𝑠)𝑑𝑠

𝜏

0

+
1

3
𝑐𝜇1𝜏]. Eq. 32 

According to Demiray [6], the progressive wave solution has a hyperbolic function in the form of 

𝑈 = 𝑐 sech2(휁), Eq. 33 

where 𝑐 represents the amplitude of wave, and the equation of wave speed is obtained as 

𝑣𝑝 =
𝑑𝜏

𝑑𝜉
=

1

𝜇3ℎ1(𝜏) +
1
3𝜇1𝑐

. Eq. 34 

2.6  Numerical Results 

In this section, the subsequent analysis will need the explicit expressions of the coefficients of 𝛼0, 

𝛽1, and 𝛽2. Thus, the constitutive equation for soft biological tissues shall be utilized as proposed by 

Demiray [7]. The constitutive equation is expressed as 

Σ =
1

2𝛼
{exp [𝛼 (𝜆𝜃

2 + 𝜆𝑧
2 +

1

𝜆𝜃
2𝜆𝑧

2
− 3)] − 1}. Eq. 35 

where 𝛼 is the material constant.  

The explicit expressions of the coefficients 𝛼0, 𝛽1 and 𝛽2 are given as follows [5]: 

𝛼0 =
1

 𝜆𝜃
(𝜆𝑧 −

1

𝜆𝜃
2𝜆𝑧

3)𝐹, 

𝛽1 = [
4

𝜆𝜃
5𝜆𝑧

3 + 2
𝛼

𝜆𝜃𝜆𝑧
(𝜆𝜃 −

1

𝜆𝜃
3𝜆𝑧

2
)

2

] 𝐹, 

𝛽2 = [−
10

𝜆𝜃
6𝜆𝑧

3 +
𝛼

𝜆𝜃𝜆𝑧
(𝜆𝜃 −

1

𝜆𝜃
3𝜆𝑧

2
)(1 +

11

𝜆𝜃
4𝜆𝑧

2
) + 2

𝛼2

𝜆𝜃𝜆𝑧
(𝜆𝜃 −

1

𝜆𝜃
3𝜆𝑧

2
)

3

]𝐹. 
Eq. 36 

where F is a function represented by 

𝐹 = exp [𝛼 (𝜆𝜃
2 + 𝜆𝑧

2 +
1

𝜆𝜃
2𝜆𝑧

2
− 3)]. Eq. 37 

 

3. Results and Discussion 

In this section, a quantitative analysis towards the radial displacement, wave speed and the fluid 

pressure are presented. The value of the material constant, α is set as 1.948, which is extracted from 

Demiray [5], which compares the present model with the experimental measurements on canine 

abdominal artery by [8]. 

3.1  Radial Displacement 

The wave amplitude, 𝑐 = 1, the circumferential stretch, 𝜆𝜃 = 1.45, the axial stretch, 𝜆𝑧 = 1.6, the 

height of stenosis, 𝛿 = 0.01, and 𝑚 = 0.1 are fixed to obtain the graph of radial displacement. Figure 

2 presents the variation of the radial displacement with the space, 𝜏, for different values of the time, 𝜉. 
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Figure 2: Radial displacement, 𝑼, against space variable, 𝝉, for different time at 𝜹 = 𝟎. 𝟎𝟏 with the 

presence of stenosis. 

From Figure 2, the space at 𝜏 = 0 indicates the location of the stenosis. The ranges −80 < 𝜏 < 0 

represents pre-stenosis and 0 < 𝜏 < 80 represents post-stenosis. The curves of wave on the left side 

represent the haemodynamic of blood before passes through the stenosis. The curves of wave on the 

right side represent the haemodynamic of blood after passes through the stenosis. 

At the locations 𝜏 = −80 until 𝜏 = 0, it is noticed that the amplitude of wave decreases as the time 

increases. However, when the fluid passes through the stenosis, the opposite characteristics happens. 

After the fluid passes through the stenosis, when the time increases, the amplitude of wave increases. 

When blood flow through stenosed artery, there exist kinetic energy, and this energy is determined 

by its amplitude and frequency. This means that the higher amplitude of wave has higher kinetic energy. 

In order for the lowest amplitude of wave to pass through the stenosis, it has to generate more energy. 

So, after the fluid passes through the stenosis, this wave becomes the highest amplitude of wave. As for 

the highest amplitude of wave, it requires minimum energy for the fluid to pass through the stenosis. 

Therefore, after it passes through the stenosis, it is the lowest amplitude of wave. 

3.2  Wave Speed 

The wave amplitude, 𝑐 = 1, the circumferential stretch, 𝜆𝜃 = 1.45, the axial stretch, 𝜆𝑧 = 1.6, 

𝑚 = 0.1 are fixed and the different height of stenosis is set as 0.01, 0.02, and 0.03 to obtain the graph 

of wave speed. Figure 3 shows the wave speed over the space, 𝜏 at different height of stenosis, 𝛿.  

Before the fluid passes through the stenosis, the lowest stenosis, 𝛿 = 0.01 has the highest wave 

speed compared to other higher stenosis. However, when the fluid passes through the stenosis, the 

lowest stenosis, 𝛿 = 0.01 reaches its maximum wave speed due to the minimum of resistance for blood 

flow in the stenosed artery. Therefore, it can be concluded that when the height of stenosis increases, 

the wave speed decreases. 

The wave speed of the fluid (blood) is affected by the resistance in the artery. The greater the 

resistance, the slower the speed of wave. The highest stenosis that impacts the wave with greater 

resistance has the lowest wave speed as the wavelength is smallest compared to other height of stenosis 

and vice versa. Viscosity of an inviscid fluid is extremely low and can be considered negligible. There 

is no damping effect on the speed of wave. Therefore, before and after the fluid passes through the 

stenosis, the speed of wave is the same.  
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Figure 3: Wave speed, 𝒗𝒑, against space variable, 𝝉, for different height of stenosis, 𝜹.  

3.3  Fluid Pressure 

The wave amplitude, 𝑐 = 1, the circumferential stretch, 𝜆𝜃 = 1.45, the axial stretch, 𝜆𝑧 = 1.6, the 

height of stenosis, 𝛿 = 0.01, and 𝑚 = 0.1 are fixed to obtain the graph of fluid pressure. Figure 4 

illustrates the results for the fluid pressure over the space, 𝜏 at different time, 𝜉. 

 

Figure 4: Fluid pressure, 𝒑, against space variable, 𝝉, for different time at 𝜹 = 𝟎. 𝟎𝟏 with the presence of 

stenosis. 

Before the blood passes through the stenosis, the curves of wave are found to be decreasing. It 

means the fluid pressure decreases as time increases. However, the opposite characteristics happens 

when the fluid passes through the stenosis where when the time increases, the fluid pressure increases. 

This is due to the presence of energy in the fluid (blood). Since wave has energy, this shows that the 

higher the kinetic energy, the higher the fluid pressure. 

In the wave, there exists kinetic energy. Before passing through the stenosis, the fluid pressure at 

time 𝜉 = 0.01 has the lowest pressure, which is also the lowest amplitude of wave, needs greater energy 

to pass through the stenosis. Therefore, after the wave passes through the stenosis, the fluid becomes 
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the highest pressure. As for the fluid pressure at time 𝜉 = 0, has the highest amplitude of wave, it needs 

minimal energy for the fluid to pass through the stenosis, therefore is becomes the lowest pressure after 

the fluid passes through the stenosis. 

3.4  Effect of Variation of Circumferential Stretch, 𝜆𝜃, towards Wave Speed. 

The wave amplitude, 𝑐 = 1, the axial stretch, 𝜆𝑧 = 1.6, height of stenosis, 𝛿 = 0.5, and 𝑚 = 0.1 

are fixed. The variation of circumferential stretch, 𝜆𝜃 is set as 1.45, 1.55, and 1.65 to show the effect of 

variation of circumferential stretch, 𝜆𝜃, towards wave speed. Figure 5 shows the graph of wave speed 

in different circumferential stretch, 𝜆𝜃. 

 

Figure 5: Wave speed, 𝒗𝒑, against space variable, 𝝉, for different values of circumferential stretch, 𝝀𝜽, at 

𝜹 = 𝟎. 𝟓 with the presence of stenosis. 

It is shown that when the value of 𝜆𝜃  increases, the speed of the wave decreases. The 

circumferential stretch with the highest value, 𝜆𝜃 = 1.65 will peak the earliest before passing through 

the stenosis, and after the fluid passes through the stenosis, the wave speed peaks last. As for the 

circumferential stretch with the lowest value, 𝜆𝜃 = 1.45 peaks last before the fluid passes through the 

stenosis, and peaks first after passing through the stenosis. Therefore, when the circumferential stretch 

increases, the wave speed decreases, and the peak-to-peak of the wave become wider. 

The volume of blood flow is the same in different condition of circumferential. The dispersion 

effect causes the fluid (blood) to spread to a wider area and causes the wave speed to decrease. Thus, 

the smallest circumferential stretch, 𝜆𝜃 = 1.45, has the highest wave speed as there is lesser dispersion 

effect compared to the biggest circumferential stretch, 𝜆𝜃 = 1.65, which has the smallest wave speed.  

4. Conclusion 

In conclusion, the solitary wave propagation in a thin stenosed elastic tube filled with inviscid fluid 

has been studied using the reductive perturbation method. From the graphical output for radial 

displacement, the amplitude of the wave has inverse properties before and after the fluid passed through 

the stenosis, where the lowest amplitude of the wave before passing through the stenosis became the 

highest amplitude of the wave after passing through the stenosis and vice versa as time increased since 

this is due to the kinetic energy in the wave. For the wave speed, when the height of stenosis increased, 

the wave speed decreased, and the space between the peak-to-peak of the wave became smaller. The 

same properties were applied to the fluid pressure like the radial displacement. Lastly, the increase in 

circumferential stretch affected the wave speed to decrease, and the peak distance of the wave increased. 
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