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Abstract: This project study the Internal Measurement Unit (IMU) vibration error 

effect for Autonomous Underwater Vehicles (AUV). As the AUV propeller 

movement speed is induced by a non-uniformity in the flow, it will cause the shaft's 

propulsion to vibrate. Therefore, to ensure the AUV motion control is more reliable, 

the shaft vibration must be eliminated from the collected reading. This project reveals 

the feasible data of position and orientation for navigation, analyses observable errors 

and tests performance of proposed optimization techniques. The main objectives for 

this project are to identify the vibration error of the autonomous underwater vehicle 

(AUV) and integrate the vibration error compensation method for the navigation 

purpose using MATLAB. Using the filtering technique which is known as Extended 

Kalman Filter (EKF) IMU reading, the noise of the vibration error will be reduced. 

The Extended Kalman Filter is used as a system state indicator that uses a preview 

loop from persistent unregulated assumptions. Furthermore, a projection for the next 

state is predicted by using data obtained from previous and present states. This 

prediction is then updated and used based on the observation process, which focuses 

on estimates and measurements. The end-to-end RMS errors of no disturbance 

module for x, y and z are 1.17 meters, 0.99 meters and 0.03 meters. Moreover, the 

end-to-end RMS errors of present disturbance module for x, y and z are 0.57 meters, 

0.53 meters and 0.68 meters. These updated estimates may be used with a new 

statistical calculation. This work will help the AUV to further improve the state 

estimation and navigation performance. 

 

Keywords: Vibration Error Effect, Autonomous Underwater Vehicles, Extended 

Kalman Filter 

 

1. Introduction 

Autonomous Underwater Vehicles (AUV) are robotic vehicles that can dive, travel or glide in the 

sea, depending on configuration, without the human controllers having real-time control. Some AUV 

frequently or continuously communicate with their operators through satellite signals or acoustic 
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lighting underwater to allow these control levels. A wide range of AUV, ranging from tens of kilos 

weighted vehicles to thousands of kilograms that exist. Since the 1960s, the AUV technical 

development and occasional experimental use of AUV has been in nature, and repetitive AUV use has 

been novel for science in recent years [1]. The introduction of AUV led to a growth in investment in 

the production of AUV technology and in successful industrial AUV and AUV services providers. On 

the surface, AUV are programmed and then move on their own through the water by gathering 

information as they go. Compensation for ocean-based research is AUV. Scientists and engineers are 

generating the necessary operation or behavior of the robot, the cross processes that will develop the 

functionality or operation, and the specific design concepts. Devices are proposed to model human 

species, ecosystems, or whole fish populations. Underwater robots may or may not be self-propelled, 

conductivity autonomous powered by on-board batteries or operated by computers [2]. They can enter 

shallower water than boats can and deeper water than many tethered vehicles or human divers can. 

AUV are capable of measuring water physical characteristics, such as temperature, salinity, 

dissolved oxygen, detecting microscopic marine algae chlorophyll, measuring water concentrations of 

small particles, mapping he seafloor, collecting seafloor and mid water photos [3]. AUV are protected 

from bad weather once deployed and submerged and can remain submerged for extended periods of 

time. They are also scalable, or modular, meaning that depending on their research goals scientists may 

choose which sensors to connect to them. Scientists use AUV to study lakes, west coast, and ocean 

floors. A few devices may be provided to AUV to determine the presence of different aspects or 

substances, the absorption or reflection of light and the presence of microscopic life [4]. Autonomous 

underwater vehicles use to investigate air crash investigation such as AUV ABYSS, have been used to 

find wreckage of missing airplanes Air France Flight 447 and the Bluefin21 AUV was used in the search 

for Malaysia Airlines Flight 370. The Applied Physics Lab at the University of Washington has been 

constructing iterations for its Seaglider AUV platform since the1950s. Although iRobot Seaglider was 

designed for oceanographic research, much interest has taken place from institutions like the U.S. in 

recent years [5]. The truth of the matter that these autonomous gliders are easy to reproduce and 

representative of the plurality of AUV systems that will be popular in a variety of applications. 

1.1 Introduction of Inertial Measurement Unit (IMU) 

An inertial measurement unit (IMU) is an electronic unit that measures, calculates and records 

acceleration, orientation, angular momentum, and forces of gravity as shown in Figure 1. 

Figure 1: Inertial Measurement Unit (IMU) [6] 

IMU usually used at the vehicle or system that have heading reference system such as AUV, UGV, 

UAV, mobile mapping, gimbal camera and antenna tracking and SAT OTM. IMU consists of three 

accelerometers, three gyroscopes, and three magnetometers that depending on the heading requirement 

and there are three vehicle axes which are roll, pitch and yaw. In inertial navigation systems, IMUs also 

use raw measurements to determine the attitude, angular speeds, linear velocities, and location of the 

global reference point. The IMU equipped INS is the basis for many commercial and military vehicles 

including manned aircraft, warheads, ships, submarines, and satellites to be navigated and operated. 
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The IMU can be installed in GPS-based vehicles or vehicle-tracking devices, allowing the device the 

ability to count dead and to gather data on the vehicle's current speed, turning velocity, head, inclination, 

and acceleration as well as the wheel speed sensor output and if available, reverse gear sensor output. 

In several consumer goods, in addition to navigational functions IMU also act as orientation sensors. 

Nearly every smartphone and tablet have IMU as its orientation sensors. Fitness trackers and other 

wearables can also have activity measuring IMU, for example service. IMU are also able to  distinguish 

innovations of people in motion by defining the specificity and response of running parameters. The 

data recorded by the IMU are fed to a processor in a navigation system which calculates attitude, speed, 

and location. A standard application called an inertial strap-down system incorporates angular rate from 

the gyroscope for angular location measurement. This is coupled in an Extended Kalman Filter to 

estimate an attitude by the gravities vector determined by the accelerometers. The attitude estimate is 

used to transform calculations of acceleration into an inertia reference frame, where they are combined 

once to get a linear velocity and twice to get a linear position. In conjunction with a mechanical 

document or a digital map database, this guide system could display a pillar where the aircraft is 

positioned at a certain point on a geographical basis, as in case of a GPS navigation system but not 

communicated with any external components including satellites or land radio converters, either 

communicated with or obtained from any external source. This navigation approach is known as dead 

reckoning. 

An IMU is a specific sensor type that occasionally measures the magnet field, angular velocity, and 

intensity. IMU have 6 axes that consist of 3-axis gyroscope and 3-axis accelerometer. They can also 

have an extra three-axis magnetometer that is called an IMU 9-axis. In IMU provide 6 DOF (Degree of 

Freedom) that shown the way of the object able to move. 6 DOF refer to three degree of translation 

movement and three degrees of rotational movement. The translation movement across yaw, pitch and 

roll along each axis while degree of rotational movement coordinates at along x, y, and z at each state. 

The accelerometer is the most common type of movement sensor. It calculates speed along a single 

axis. Accelerometers calculate in each way linear acceleration and gravity can be measured as a 

descending force using an accelerometer. Integrating the acceleration shows once a speed estimation 

and integrating again gives a position estimate. The accelerometer is a not preferred remote estimating 

tool because of the simultaneous integration. Whereas accelerometers can measure linear acceleration 

and does not able to measure twist or rotational movement. However, the gyroscopes calculate the 

angular speed along 3 axes which are pitch (x axis), roll (y axis) and yaw (z axis) as shown in Figure 2. 

                                               Eq.1 

                       Eq.2 

                                                     Eq.3 

 

Figure 2: 6 Degree of Freedom (6DoF) of AUV Coordination [7] 
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2. Methodology 

A standard modelling which is AUV using IMU to estimate the vibration error analysis of the 

vehicle. The modelling will simulate necessary sensor output to measure sensor specifications and 

performance by specifying sensor performance parameters, such as bias, noise and frequency reaction, 

among other things. This project will use the MATLAB software to verify the range of the vibration 

error of the AUV for an IMU sensor device. The sensor will detect the data and the range of the vibration 

and will be calibrated if error occurs. The project configuration of the mathematical modelling, 

MATLAB simulation, and sensor detection as shown in Figure 3. 

 

Figure 3: Flowchart of the Project 

2.1 Extended Kalman Filter Method 

This project will use Extended Kalman Filter (EKF) method to observe the vibration measurement 

over time. The Extended Kalman Filter is a device that predicts the system status by using a predict-

update loop from continuous unverified expectations. In addition, by using data gathered from previous 

and current state, a forecast for the following state is predicted. This forecast is then revised and used 

based on the method observation that depends on forecasts and measurements and uncertainties. A new 

predictive estimate can be made using these revised figures. The state vector will easily describe the 

Extended Kalman Filter formula phase 𝑋𝑘−1 and vector of covariance 𝑃𝑘−1 at time 𝑘− 1, when using 

the following terms 𝑋𝑘 = 𝐹𝑘−1𝑋𝑘−1 + 𝑉𝑘−1 where 𝐹𝑘−1 physical model represents, and 𝑉𝑘−1 will 

depict Gaussian instability. Then the vector observation is defined as 𝑍𝑘 = 𝐻𝑘𝑋𝑘 + 𝑊𝑘 where 𝐻𝑘 

shows the observation process physical model and 𝑊𝑘 will show uncertainty. The two vectors of 𝑉𝑘−1 

and 𝑊𝑘 will depicts the shows of vulnerability. The two vectors of 𝑉𝑘−1 and 𝑊𝑘 is defined as provided 
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by zero-medium Gaussian covariance distributions 𝑄𝑘−1 and 𝑅𝑘. The Extended Kalman Filter State 

Vector can be predicted and modified by using the equations.  

𝑋𝑘|𝑘−1 and 𝑃𝑘|𝑘−1 are the predictive estimates values of the state and covariance vectors, 𝑋𝑘 and 

𝑃𝑘 are the updated estimate values. The 𝑆𝑘 is the variety of the (𝑍𝑘 − 𝐻𝑘𝑋𝑘|𝑘−1) and 𝐾𝑘 the Extended 

Kalman gain. The revised estimation reveals 𝑋𝑘 significant parallels with the forecast 𝑋𝑘|𝑘−1 based on 

the observation differentiation 𝑍𝑘 and the forecast observation 𝐻𝑘𝑋𝑘|𝑘−1. The consequence is the 

Extended Kalman gain and is high if the variance in prediction is different. The result of this distinction 

is subject to the Extended Kalman gain and extensive when the difference of the prediction 𝑃𝑘|𝑘−1 

increases above empirical fluctuations 𝑅𝑘. Consequently, after the observation values are more secure, 

the predictions will be continuously modified by the Extended Kalman Filter. The Extended Kalman 

Filter process to measure and observe the vibration measurement as shown in Figure 4. 

Figure 4: Extended Kalman Filter Processes [8] 

3. Results and Discussion 

The method model for velocity estimation using IMU sensor data is based on Newton's equation of 

motion. Newton’s universal gravity law is typically said that each particle in the universe attracts all 

other particles with a force exactly proportional to its mass product and inversely proportional to the 

square of the distance between its centers. In addition to acceleration, the process model uses angular 



Nor Izwana Abd Jalil et al., Evolution in Electrical and Electronic Engineering Vol. 2 No. 2 (2021) p. 577-587 

582 
 
 

rates to distribute the linear velocity based on the following series of equations of x, y, and z as shown 

in Figure 5. 

Figure 5: The equation of x, y, and z [9] 

The flowchart configuration of the simulation in MATLAB as shown in Figure 6. The IMU sensor 

detect the disturbance and send the measurement to Extended Kalman Filter. Moreover, the Extended 

Kalman Filter generate and initialize the measurement to set the new reading.  

Figure 6: Flowchart of the Simulation 

3.1 Result with No Disturbance Module 

3.1.1 Position X axis with No Disturbance Module 

The graph shows the comparison at the x axis of the estimate position, true position, and position 

different with no disturbance module error as shown in Figure 7. 
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Figure 7: Graph X Axis of The Estimate Position, True Position and Position Different with No 

Disturbance Module 

The graph shows the result of comparison at x axis of the position different between estimate 

position and true position as shown in Figure 7. The starting point of estimate position and true position 

are the same. The estimation position and true position differentiate after the starting point, which is the 

true position and the estimate position have 30% different of the range of the graph. In addition, starting 

point of the different position located at 0 meter. The result shown the graph flow of the position 

different is constant and the highest range of the position different was located at 3 meters. It can be 

concluded that the IMU sensor and GPS fusion had measure the disturbance by using the estimation 

position and true position to estimate and generate the position different. The end-to-end simulation 

position RMS error for x position is 2.27 meters. 

3.1.2 Position Y axis with No Disturbance Module 

The graph shows the comparison at y axis of the estimate position, true position, and position 

different with no disturbance module as shown in Figure 8. 

Figure 8: Graph Y Axis of The Estimate Position, True Position and Position Different with No 

Disturbance Module 

The graph displays the difference between the estimated position and true position at x axis as 

illustrated in Figure 8. Starting point of the estimate position, true position, and position different are 

corresponding which are 0 meter. Moreover, the estimate position and true position enlargement 

afterwards starting point. The non-identical of estimate position and true position are fairly which are 

just 10% different. Position different of the y axis is continuous and the range has slighter fall off when 
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the peak of the estimation position and true position had increased. The consequence of the graph is 

there having a slighter different starting from 645 seconds which means 10.75 minutes between estimate 

position and true position. This differentiate has configure the position different that has constant value. 

The end-to-end simulation position RMS error for y position is 1.72 meters. 

3.1.3 Position Z axis with No Disturbance Module 

The graph shows the comparison at z axis of the estimate position, true position, and position different 

with no disturbance module as shown in Figure 9. 

Figure 9: Graph Z Axis of The Estimate Position, True Position and Position Different with No 

Disturbance Module 

The graph illustrates the comparison at the z axis between the estimate position and the actual 

position as shown in Figure 9. Initial point for the estimate position, true position, and position different 

are at the corresponding point which are 0 meter. The patterns of the estimate position and position 

different are comparable. In addition, there is no difference in estimate and different position. There is 

no point other than estimate point in position different assume as the pattern is fixed and the difference 

position may correspond with an estimated position because the real position has maintained zero. The 

end-to-end simulation position RMS error for z position is 0.01 meters. 

3.2 Result with Present Disturbance Module 

3.2.1 Position X axis with Present Disturbance Module 

The graph shows the comparison at x axis of the pq position, trajectory position and position 

different with disturbance module shown Figure 10. 

 

 

 

 

 

 

 

 

 

Figure 10: Graph X Axis of the Pq Position, Trajectory Position and Position Different with Disturbance 

Module 
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The graph demonstrates a disturbance module as indicated in Figure 3.6 for the comparison of pq 

position, trajectory position, and position different at x axis. The initial point of the pq position and 

trajectory position are 100% equivalent. Moreover, the similarity range of the pq position and trajectory 

position have insignificantly different at 1189 until 2080 seconds which means 19 minutes until 34 

minutes. The graph shown the position different against pq position and trajectory position are uniform. 

In addition, these phenomena had been concluded that the constant range of the position different due 

to the correction that had been done by the disturbance module between the pq position and trajectory 

position. The end-to-end simulation position RMS error for x position is 0.57 meters. 

3.2.2 Position Y axis with Present Disturbance Module 

The graph shows the comparison at y axis of the pq position, trajectory position and position 

different with disturbance module as shown in Figure 11. 

Figure 11: Graph Y Axis of the Pq Position, Trajectory Position and Position Different with Disturbance 

Module 

The graphic displays a disturbance module that compares the pq position, trajectory position and 

position different of z axis as illustrated in Figure 11. The point of origin for pq position and trajectory 

position are equivalent. Moreover, the pq position similarity range was accomplished at 2971 seconds 

that equals 49 minutes. The result of the comparison demonstrates the position different against pq 

position and trajectory position are sustained due to cumulation of the error. Furthermore, these 

occurrences were determined that there is no distinct position between pq position and trajectory 

position, due to the continuous range of both positions. The end-to-end simulation position RMS error 

for y position is 0.53 meters. 

3.2.3 Position Z axis with Present Disturbance Module 

The graph shows the comparison at z axis of the pq position, trajectory position and position 

different with a disturbance module as shown in Figure 12. 

The graph illustrates a disturbance module comparing the pq position, trajectory position and 

position different of the z axis as shown in Figure 12. The initial point of the graphs is almost slightly 

in same range which means 0-2 meters for pq position and trajectory position and position different. 

The same pattern of the pq position with trajectory position have an insignificant different at 6238 until 

7723 seconds equal to 103 until 128 minutes. Pq position against trajectory position had been measured 

the consistent range for the position different due to the cumulation of the environmental noise. The 

end-to-end simulation position RMS error for z position is 0.68 meters. 
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Figure 12: Graph Z Axis of the Pq Position, Trajectory Position and Position Different with Disturbance 

Module 

4. Conclusion 

In this final year project had been tested the AUV and Navigation System Principles by using the 

MATLAB software. The AUV modelling utilize the IMU by estimate the analysis of the underwater 

vehicle vibration inaccuracy. Furthermore, the system had examined the present of the environmental 

noise by using the outlier detection that would ensure there is no distribution and inaccuracy between 

ground truth and estimated position. Hence, the graph pattern of the position different among the 

phenomenon with the present of the environmental noise and without environmental noise which means 

no distribution had been illustrated and configured by using the parameters form the MATLAB 

software. The result of the experimental without distribution module shown that position different at 

axis x,y and z are mostly have a constant pattern. Moreover, there are minimal error of the position 

different at axis x,y and z for the graph that had present the disturbance module due to the continuous 

range of the patterns. From the overall point of view, it can be concluded that the vibration error 

compensation module for autonomous underwater vehicle had achieved the objectives of the system 

The underwater navigation has to implement the operation of the IMU and the GPS fusion to assistance 

the vibration module or any disturbance problems efficiently. 
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