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Type-1 diabetes is a chronic autoimmune condition impacting insulin 
production, a crucial hormone for regulating blood sugar levels. Caused 
by the immune system mistakenly attacking insulin-producing beta cells 
in the pancreas, this leads to insulin deficiency and elevated blood sugar 
levels. Globally, approximately 9 million people, representing 0.1% of 
the population, grapple with type-1 diabetes. With technological 
advancements, a need arises for the blood glucose prediction model to 
help monitor and manage type-1 diabetes patients. Deep learning, 
particularly Long Short-Term Memory (LSTM) networks, proves its 
ability to grasp long-term dependencies in sequential data however, 
creating an accurate model for a time-series blood glucose prediction is 
a complex challenge that requires further research and exploration in 
the modeling. Thus, leveraging the Cobelli model to simulate blood 
glucose data in type-1 diabetes patients, the primary goal is to utilize an 
LSTM network for better prediction of glucose levels. Ten datasets 
containing information on blood glucose levels, insulin, and meal intake 
are employed to train both univariate and multivariate models. The 
univariate model relies solely on glucose data, while the multivariate 
model integrates insulin and meal intake variables. Two prediction 
horizons (5- and 10-minute) are utilized to assess and compare model 
performance. Performance evaluation includes regression analysis 
metrics of Mean Absolute Error (MAE), Root Mean Squared Error 
(RMSE), and MAE. From the result, it is found that the multivariate 
model has shown a better prediction performance compared to the 
univariate model, with the best mean error scores of 0.8777 [mg/dl] for 
the MAE, 0.958024 [mg/dl] for the RMSE and 1.9875 [mg/dl] for the 
MSE with the 5-minute prediction horizon outperformed the 10-minute 
prediction horizon. Based on the findings, a better understanding of 
designing a high-performance LSTM deep learning model for blood 
glucose prediction has been achieved, which could promote better 
diabetes treatment. 
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1. Introduction 

With approximately 34.7 million diagnosed cases worldwide [1], diabetes disrupts glucose homeostasis, leading 
to chronic conditions. Monitoring blood sugar is vital for identifying metabolic disorders, assessing treatment 
efficacy, and preventing long-term complications [1]. Typically arising from insufficient insulin production or 
utilization, diabetes manifests in various types, with type-1 and type-2 being the most common. Type-1 diabetes, 
starting early in life, results from pancreatic cells failing to produce insulin. Symptoms include increased thirst, 
weight loss, fatigue, and frequent infections, requiring lifelong insulin therapy, diet management, and regular 
exercise [2]. Type-2 diabetes, often emerging in middle or old age, stems from insulin resistance or inadequate 
insulin production. Genetic and lifestyle factors like obesity and poor diet contribute to its development, sharing 
symptoms with type-1 diabetes [2]. 

Currently, diabetes cannot be fully cured but can be stabilized using drugs or insulin. Predicting blood 
glucose levels is crucial for timely and effective treatment. Continuous Glucose Monitoring (CGM) is a method to 
manage blood glucose levels in type-1 diabetics. This involves wearing a device that periodically checks glucose 
levels in interstitial fluid, providing a real-time record with measurements every 5 minutes, totalling 288 per 
day [3].  

Continuous monitoring enhances treatment assessment and enables anticipation of future blood glucose 
levels [3]. In the era of big data, where vast volumes of data are generated in every facet of science and industry 
[4], innovative machine learning and artificial intelligence approaches are crucial for data analysis and 
interpretation [4]. Deep learning (DL), a distinct subset of Machine Learning (ML), is gaining considerable focus, 
characterized by neural networks with three or more layers [5]. DL's key attributes include its adaptability to 
features and autonomous learning from data [5]. Both ML and DL algorithms offer benefits and find applications 
in the diagnosis and prediction of diseases [5]. 

The deep learning process typically involves several stages. Initially, high-throughput data with numerous 
features is introduced into the learning process [5]. Subsequently, the data undergoes preprocessing to 
eliminate outliers and reduce dimensionality by excluding disjointed data or identifying relevant information 
[5]. Algorithms are then tailored to align with the study's objectives [5]. The model is tested on external data, 
and its performance is evaluated using various metrics such as the Receiver Operating Characteristic Curve 
(ROC), Area Under Curve (AUC), Mean Absolute Relative Difference (MARD), Root-Mean-Square Error (RMSE), 
Mean Squared Error (MSE), accuracy, precision, recall, log loss, among others [5]. 

Various deep learning (DL) methods are utilized for predicting blood glucose levels, with algorithms applied 
to control, classify, predict, and manage diabetes. Long Short-Term Memory (LSTM), a type of Recurrent Neural 
Network (RNN), is employed for data-driven blood glucose patterns and diabetes and hypoglycemia prediction 
[5]. RNN models, including LSTM, handle time-dependent sequence data by incorporating previous state 
information through looping in a chain structure [5]. LSTM introduces memory cells, enhancing prediction 
feasibility by integrating memories with inputs and allowing the network to learn order dependence [5]. The 
forget gate in LSTM determines which information from the old state should be retained [3]. LSTM-based 
networks, known for faster learning capabilities, have shown promising results in time series prediction and 
understanding physiological models of blood glucose behavior [3]. In this research, an LSTM-based deep neural 
network is employed to predict blood glucose levels based on multivariate data. 

2. Problem Statement 

Fig. 1 shows the general steps of the research methodology. The work begins with a comprehensive study on the 
Cobelli type 1 diabetic model and various deep-learning techniques. Following this, a MATLAB program analyzes 
and studies Cobelli model parameters, generating a blood glucose dynamics dataset. This dataset forms the basis 
for a simulation system designed using Python-based software with an LSTM prediction model for blood glucose 
level predictions. Data preparation involves processes like splitting and windowing to fit the LSTM model. The 
subsequent steps include univariate and multivariate modeling of the LSTM network by determining the 
architecture. Achieving an effective model involves considering critical parameters, including the number of 
layers such as LSTM and hidden layers. The depth of the LSTM network is determined by the number of layers, 
with more layers needed for complex tasks to capture patterns and trends. The hidden layer specifies the 
number of memory cells in each LSTM layer, enabling the network to learn complex datasets at the cost of 
increased computational requirements. According to Karsten Eckhardt et al., there are no definite ways to 
calculate how much layer is needed for a LSTM network to choose. Very often a trial and error will give the best 
result for each individual model [6]. Additional parameters like sequence length, input shape, batch size, and 
optimizer are crucial for determining the LSTM architecture, ensuring the model has the capacity to effectively 
learn and represent patterns. The trained LSTM model predicts blood glucose values, and performance analysis 
involves evaluating error metrics such as mean absolute error (MAE), mean squared error (MSE), and root mean 
squared error (RMSE). 



Evolution in Electrical and Electronic Engineering Vol. 5 No. 1 (2024) p. 276-285 278 

 

 

 
Fig. 1 General steps of the research methodology 

 

2.1 The dataset Generation using Simulink Model of Open-Loop Delivery System in 
Cobelli Virtual Type-1 Diabetic Model 

The Cobelli model was chosen over competitors like the Hovorka model for investigating type I diabetes due to 
its comprehensive physiological foundation, encompassing variables affecting insulin secretion, glucose 
absorption, and utilization. This model demonstrates improved accuracy in modeling blood glucose levels, 
providing a realistic response to varied inputs. Its endorsement by a recognized regulatory organization adds 
confidence for researchers and physicians. The model's compatibility with MATLAB simplifies its application, 
allowing effective simulation of blood glucose dynamics. Fig. 2 shows MATLAB Simulink model, spanning 24 
hours, employs various blocks, including a diabetes block created using the S-function block to describe 
mathematical equations of the Cobelli model. This open-loop setup facilitates the study of the model's behavior. 
The Signal Builder block designs the meal disturbance and insulin inputs in the Cobelli model dataset simulation. 
Insulin and meal input are represented in 5-minute step input boluses for a body weight of 76.37 kg. Additional 
parameters include Glucose Set Point, Glucose Hyperglycemia, and Glucose Hypoglycemia. Fig. 2 illustrates the 
open-loop system for insulin input with five inputs for breakfast, lunch, evening snack, dinner, and night snack. 
Carbohydrate intake values accompany each meal, causing blood glucose levels to peak 30 minutes after 
consumption. The insulin input signal block regulates insulin supply, restoring blood glucose levels to normal. 

 
Fig. 2 Open-Loop insulin delivery system for MATLAB Simulink design 
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2.2 LSTM Deep Learning Design  

One of the critical steps in ensuring that the research can proceed as smoothly as possible is designing the 
experiments. Fig. 3 shows the flowchart of the LSTM deep learning model design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 LSTM Design deep learning model 

  Ten datasets generated from the Cobelli model were imported into Google Colab, a cloud-based tool. These 
datasets are stored in Google Drive and mounted to Colab for easy access. Data preprocessing using 
'MinMaxScaler' is crucial for deep learning, normalizing input features to enhance model reliability. The 
'create_multivariate_dataset' code segment transforms time series data into a multivariate format using a sliding 
window approach for input-output pairs. 'Lookback' determines past steps, and 'horizon' sets future steps for 
prediction. Data splitting into training and test sets is essential for optimizing and validating deep learning 
models, providing an unbiased estimate of generalization on new data. 
 The LSTM is a type of recurrent neural network (RNN), effectively captures long-term dependencies in 
sequential data. Its architecture facilitates the flow of information through memory cells and gates, making it 
adept at learning patterns in sequential data. Stacking multiple LSTM layers is common to increase model 
capacity and complexity. The 'MultivariateLSTM' model is created using information as in Table 1 where the 
input size of 3 (features: 'Glucose', 'Insulin', 'Meal') and one LSTM layer with 50 neurons. Hyperparameters like 
the number of layers and output size are tuned. Mean Squared Error (MSE) serves as the loss function, 
measuring the squared difference between predictions and actual targets. PyTorch's 'DataLoader' handles 
batching for training data, improving memory efficiency. This code segment establishes the crucial steps for 
setting up the LSTM architecture, vital for training the deep learning model. 

Table 1 Hyperparameter of LSTM Model 

Categories Hyperparameter 

Optimizer 
Number of input size 

Number of LSTM layers 
Number of hidden layers 

Number of output size 

Optim.Adam 
3 
1 

50 
Horizon 

 
 Training the dataset involves adjusting model parameters to minimize the difference between predictions 
and actual values. A list is employed to store Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root 
Mean Squared Error (RMSE) for each input ('Glucose', 'Insulin', 'Meal'). The 'epoch' is set to 4, indicating the 
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model iterates through the data four times. The epoch setting undergoes trial and error to find the optimal 
number, preventing overfitting.Overfitting happens when the number of epochs used to train a neural network 
model is more than necessary, the training model learns the patterns that are specific to a great extent and 
making the model incapable of performing well on new dataset [7]. The model continues to learn and refine its 
parameters within the epochs. 

The training process iteratively adjusts parameters to minimize the difference between predictions and 
actual values, enhancing the model's accuracy on unseen data. 'model.train()' initiates training mode, and 
'append' stores actual and predicted values in a list for evaluation and loss calculation. 'loss = loss_fn(y_pred, 
y_batch)' computes the loss between predicted and actual values. Two training methods are employed to 
compare accuracy: univariate and multivariate. Univariate uses only 'Glucose' as input, predicting its future 
value. Multivariate utilizes 'Glucose', 'Insulin', and 'Meal' as inputs, predicting 'Glucose' values. Different time 
horizons (5 and 10 minutes) are set for each model to assess performance. Evaluation metrics (RMSE, MAE, 
MSE) will gauge the model's accuracy. 
         The LSTM model using Python Google Collab was employed to predict the blood glucose levels. Fig. 4 
illustrates the variables for the model input such as Glucose, Insulin and Meal from Dataset 1. The table gives 
better visualisations for all datasets. The graph explains the input used in the LSTM model. On the top left was 
the time input in blue which on the y-axis represents the time in second for total of 1440 second consisting 24 
hours of period and the x-axis is the representation of the data step which consists of 28802 numbers of data. 
For every data there is interval of 0.05 second, means that 0.05 interval x 28802 data = 1440 second (24 hours). 
The top right of the graph illustrates the value of glucose in red and the bottom left of the graph represents the 
value of insulin in green while at the bottom right of the graph represents the meal in purple taken by the 
patient. As the whole, the graphs show the changes in blood glucose in milligram per deciliter (mg/dL). 
 

 
Fig. 4 Simulation result of normal range blood glucose level. 

3. Result and discussion 

The simulation results of the Cobelli model, a 24-hour open-loop glucose-insulin regulation system for type-1 
diabetes management, are discussed. Ten datasets, simulating hyperglycemia and normal blood glucose levels, 
are included, illustrating the model's output for blood insulin, glucose levels, and insulin administration. The 
subsequent section delves into the results of deep learning Long Short-Term Memory (LSTM) models. The 
impact of epochs on model training is analyzed, and model performance for univariate and multivariate cases is 
evaluated. Comparison is made for prediction horizons of 5 minutes and 10 minutes using various metrics such 
as MSE, RMSE, and MAE. The effectiveness of LSTM models, especially the multivariate version, in predicting 
blood glucose levels is highlighted by the findings. Due to page limitations, only the waveform results from 
Dataset 1 are shown in this paper. 

3.1 Cobelli Model Simulation Results 

The Cobelli model is a 24-hour simulation of an open-loop glucose-insulin regulation system, depicting the 
management of type-1 diabetes patients with insulin therapy. The model considers five meals with varying 
carbohydrate values and consumption rates, yielding results for blood insulin, glucose levels, and insulin 
administration. Ten datasets were created, five for hyperglycemia and five for normal blood glucose levels. Fig. 5 
illustrates the simulation of normal blood glucose levels, with the red line indicating the hyperglycemia 
threshold. When the green line surpasses it, hyperglycemia occurs, signifying insufficient insulin. The black line 
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represents the set point value, and the blue line signifies the threshold for hypoglycemia, indicating blood 
glucose below the standard range. 
 

 
Fig. 5 Simulation result of normal range blood glucose level. 

Table 2 Graphs of epoch analysis for univariate and multivariate LSTM model to find the best-fitted epoch for each 
of the models at 5-minute prediction horizon 

3.2 Deep Learning LSTM Results 

3.2.1 Epoch analysis of the univariate and multivariate LSTM models 

The evaluation metrics MSE, RMSE, and MAE were employed to analyse the impact of epochs on the LSTM 
model's training and testing, aiding in determining the optimal epoch for predicting blood glucose levels. This 

 Univariate Multivariate 

MAE 

  

MSE 

  

RMSE 
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analysis is crucial for identifying potential underfitting or overfitting issues. Two sets of models were 
considered: univariate (based on glucose data only) and multivariate (based on glucose, insulin, and meal data) 
for 5-minute and 10-minute prediction horizons. 
 

For both univariate and multivariate models, the number of epochs was determined through epochs 
analysis by setting the epoch from 0 to 9. Table 2 and Table 3 present graphs of MSE, RMSE, and MAE vs. the 
number of epochs for the univariate at 5-minute and 10-minute prediction horizons, respectively. According to 
Table 2 and 3 for univariate and multivariate models respectively, RMSE, MSE, and MAE decrease across epochs 
for both training and test sets, indicating continuous learning and improvement of the model over time and 
approximately from the epoch of 2 in both cases of 5-minute and 10-minute prediction horizon, the error scores 
started to reach a plateau. Thus, based on this analysis, the prediction of blood glucose levels for the univariate 
and multivariate LSTM models were conducted at epoch of 3. 

Table 3 Graphs of epoch analysis for univariate and multivariate LSTM model to find the best-fitted epoch for each 
of the models at 10-minute prediction horizon  

3.2.2 Performance evaluation of the univariate and multivariate LSTM models 

This section provides the result for the prediction of blood glucose univariate and multivariate LSTM model for 
5-minute and 10-minutes prediction horizons. Univariate means that the model only takes Glucose as it input 
and predicts the values of the future value of the glucose. The multivariate aspect indicates that the model takes 
Glucose, Insulin, and Meal as inputs to predict future glucose values. Two different time horizons which are 5-
minutes and 10-minutes was applied to assess the performance between two sets of the horizon at epoch of 3.   

The result was then plotted to provide a better understanding of the result. Table 4 shows the result of both 
predictions for datasets with 10-minute and 5-minute predictions horizon for the univariate LSTM model and 
Table 5 details the predictions for both 10-minute and 5-minute horizons for the multivariate LSTM model. The 
graph shows the predicted value (red line) plotted against the actual glucose (blue line) for both the training and 
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test datasets. The model generally captures the overall trend and the actual glucose value especially for the 5-
minute horizon, but there are some notable disparities. For the 10-minute time horizon, the predicted value still 
follows the trend with good accuracy but there is larger disparity than the 5-minute horizon. This is likely 
because it is more challenging for the model to predict further into the future. indicating that the model had 
effectively captured the pattern and trend of the actual value.  

Table 4 Prediction of blood glucose univariate LSTM model for 5 and 10-minute prediction horizons 

Dataset 5-minute prediction horizon 10-minute prediction horizon 

1 

  

Table 5 Prediction of blood glucose multivariate LSTM model for 5 and 10-minute prediction horizons 

Dataset 5-minute prediction horizon 10-minute prediction horizon 

 
 
 
 
 

1 

  

3.2.3 Performance evaluation of the univariate and multivariate LSTM models 

Evaluating the performance of LSTM models for the glucose prediction is crucial to ensure the accuracy and 
generalisability in real-situation applications. The metrics of MSE, RMSE and MAE were also used to provide 
valuable insight into how effectively the model predicts unseen data. Lower values of the metrics such as MSE, 
RMSE and MAE indicate better alignment between predicted and actual glucose values, implying a better model 
accuracy. MAE quantifies the average absolute disparity between the predicted and actual blood glucose values. 
MSE calculates the average squared difference between the predicted and actual blood glucose values. RMSE is 
the square root of MSE, which offers a more understandable metric in the same units as the predicted values. 

 Table 6 Values of MAE, MSE, and RMSE for univariate with 5-minute prediction 

Dataset MAE MSE RMSE 

Train Test Train Test Train Test 
1 0.6733 0.3916 0.9943 0.1753 1.1015 0.4773 
2 0.7851 0.3360 2.0887 0.6059 1.3045 0.4290 
3 0.5909 0.2291 1.1962 0.1453 1.0213 0.2911 
4 1.0412 1.3606 1.2276 0.3350 1.3460 1.4210 
5 1.1033 1.4612 0.9655 0.1862 1.3112 1.5106 
6 1.4010 1.6548 6.9462 0.7082 2.3123 1.7536 
7 1.1407 0.4885 17.3023 20.0373 1.7505 0.5986 
8 0.7290 1.3950 1.4045 1.2158 1.1779 2.1810 
9 0.5390 1.8706 0.7932 2.3763 0.8136 2.0934 

10 0.9841 5.1796 3.2213 6.2597 1.4621 5.2194 
Mean 0.8988 1.4367 3.614 3.2045 1.3601 1.5975 
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Table 7 Values of MAE. MSE, and RMSE for multivariate with 5-minute prediction horizon 

Dataset MAE MSE RMSE 

Train Test Train Test Train Test 
1 1.1808 0.2503 8.0696 0.1045 2.8407 0.323337 
2 0.8702 0.1468 3.7578 0.0363 1.9385 0.190420 
3 0.8135 0.7305 3.3119 0.5445 1.8199 0.737934 
4 0.7168 0.1881 2.4360 0.0528 1.5608 0.229709 
5 0.7938 0.5477 2.6571 0.3130 1.6301 0.559457 
6 1.6934 0.6566 16.4891 0.5049 4.0607 0.710592 
7 1.5652 1.0825 14.5005 1.8826 3.8080 1.372090 
8 0.9285 0.3778 3.9518 0.1550 1.9879 0.393727 
9 0.7953 0.9996 2.4391 1.4771 1.5618 1.215378 

10 1.5212 3.7970 10.8179 14.8040 3.2891 3.847595 
Mean 1.0879 0.8777 6.8431 1.9875 2.4498 0.958024 

 
Table 6 and Table 7 show all the values of RMSE, MSE and MAE for 5- minute prediction horizon using both 

the univariate and multivariate models. These metrics are used to measure the difference between the model’s 
prediction and the actual values of the targeted variable. The data was taken at the final selection of epoch at 3 
for both models which includes the train data and test data for performance analysis. Comparing the 
multivariate and univariate, it appears that multivariate model has better performance than the univariate 
model. This could be because of the increased number of the predictor variable.  

Meanwhile, Table 8 and Table 9 shows the evaluation metric (MAE, MSE and RMSE) of the univariate and 
multivariate for the 10-minute prediction horizon. The error scores in the multivariate are also smaller 
compared to the univariate model. Moreover, from the results in Table 6 to Table 9, it can be observed that the 
prediction with 5-minute prediction horizon is better that those from the 10-minute prediction horizon, for both 
models. 

Table 8 Values of MAE, MSE, and RMSE for Univariate with 10-minute prediction horizon 

Dataset MAE MSE RMSE 

Train Test Train Test Train Test 
1 1.1899 0.7281 4.3138 4.6489 1.9122 0.9107 
2 1.5591 2.1578 3.2962 1.5582 2.0258 2.2624 
3 1.1686 0.6869 3.5282 0.3102 1.8055 0.8642 
4 1.1770 0.9883 3.4733 1.4030 1.8734 1.1543 
5 1.1029 0.7791 4.0890 0.5460 1.6565 0.9741 
6 2.0077 3.0550 10.2641 8.2113 3.0217 3.1771 
7 1.5325 1.9106 7.8796 1.8897 2.5247 2.5980 
8 1.5148 1.6745 5.9218 5.5305 2.1023 1.9235 
9 1.1990 2.3467 1.9598 8.4862 1.6228 2.7147 

10 1.3484 8.5585 4.7426 38.1772 2.1876 8.7180 
Mean 1.38 2.2886 4.9468 7.0761 2.0733 2.5297 

Table 9 Values of MAE, MSE, and RMSE for Multivariate with 10-minute prediction horizon 

Dataset MAE MSE RMSE 

Train Test Train Test Train Test 
1 1.0381 0.7119 3.6606 0.5332 1.9133 0.730185 
2 1.0084 1.3325 3.4875 1.7979 1.8675 1.340845 
3 0.8894 0.5503 3.6402 0.3422 1.9079 0.584973 
4 1.1141 0.3531 4.6729 0.1591 2.1617 0.398927 
5 0.9316 0.8360 3.0405 0.8032 1.7437 0.896235 
6 2.1686 5.8326 22.5883 35.5949 4.7527 5.966144 
7 1.6119 1.3572 11.2511 2.7852 3.3543 1.668880 
8 1.0892 0.6774 4.1998 0.5246 2.0493 0.724300 
9 1.2218 2.5857 5.2904 9.2137 2.3001 3.035413 

10 1.9035 7.5694 15.6290 58.6318 3.9534 7.657138 
Mean 1.2977 2.1806 7.746 11.0386 2.6004 2.300304 
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4. Conclusion 

In conclusion, this study presents an effective deep learning algorithm based on the LSTM for time-series blood 
glucose prediction in univariate and multivariate input models at 5-minute and 10-minute prediction horizon, 
focusing on type-1 diabetes patients. The models were trained and tested using ten datasets generated from the 
Cobelli type 1 diabetic model and were evaluated using performance metrics of MSE, MAE, and RMSE. which 
have provided a quantitative insight into the precision of the deep learning models. Considering the overall 
performance across both the "Train" and "Test" sets, the 5-minute forecasting consistently outperformed the 10-
minute in terms of MAE, MSE, and RMSE and the multivariate seems more reliable in predicting the blood 
glucose levels. Essentially, the success of this work helps to add contributions to the field of diabetes 
management, potentially to be implemented in real world applications. 
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