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Predicting glucose levels remains a significant challenge in diabetes 
management, with various factors influencing regulation. Modern 
technologies like AI and ML offer potential solutions by implementing 
prediction systems. This study focuses on utilising the Vector 
Autoregression (VAR) method to make accurate predictions, 
considering factors such as insulin and meal intake. Ten datasets, 
including blood glucose levels, carbohydrate intake, and insulin intake, 
were collected using MATLAB Simulink simulations. Python was then 
used to build predictive models with a 70:30 and 80:20 ratio for 
training and testing. The VAR model's prediction performance was 
evaluated using metrics like MAE, RMSE, and MSE. The 80:20 data split 
with binary insulin values yielded better results for blood glucose 
prediction, with MAE of 11.25808, RMSE of 12.36846, and MSE of 
184.3054. This study offers insights into time series prediction of blood 
glucose using the VAR machine learning model, potentially enhancing 
diabetes care. 
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1. Introduction 

The regulation of blood glucose levels is crucial for maintaining overall health, and the pancreas plays a key role 
by secreting hormones to control these levels [1]. Diabetes mellitus, a metabolic disorder, disrupts this balance, 
with Type 1 diabetes characterized by insufficient insulin secretion and Type 2 diabetes by a diminished response 
to insulin [2]. Managing diabetes involves careful monitoring of blood glucose levels, often requiring external 
insulin administration [3]. However, the complexity of insulin dosage adjustments and the risk of hypoglycemia 
pose significant challenges [4]. Continuous glucose monitoring (CGM) and machine learning techniques offer 
promising solutions [5]. While traditional methods involve manual adjustments and routine checks, machine 
learning algorithms, such as the Vector Autoregression (VAR) model, have shown effectiveness in real-time blood 
glucose prediction. By integrating various factors like insulin sensitivity, diet, and exercise into personalized 
algorithms, these models have the potential to revolutionize diabetes care, easing the burden of self-management 
and improving overall patient outcomes [6]. 

The global rise in diabetes diagnoses has underscored the need for innovative approaches in treatment. 
Machine learning, with its ability to adapt and improve through data-driven algorithms, is reshaping diabetes 
management [7]. The VAR model, particularly effective in multivariate time series analysis, is a promising tool for 
predicting blood glucose levels [3]. Integrating real-time data and predictions through closed-loop systems or 
CGM devices offers a more automated and precise insulin delivery mechanism [8]. By providing personalized 
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recommendations based on individual factors like insulin sensitivity and lifestyle habits, these models aim to 
enhance glycemic control, reduce the risk of hypoglycemia, and ultimately improve the quality of life for 
individuals with Type 1 diabetes. Blood glucose prediction models, driven by machine learning, emerge as critical 
tools in optimising treatment plans and empowering individuals to manage their condition more effectively. 

2. Design and Methods 

2.1 Study Framework and Diabetic Model in Simulation using an Open-Loop Insulin 
Delivery System 

The study methodology as shown in Fig. 1 is the process flow of the work starts with a review of relevant literature 
to provide context and background for this study and to better comprehend the current state of knowledge and 
concepts in the field of machine learning. The blood glucose dataset was generated using a simulation of a type 1 
diabetic model, specifically the Cobelli diabetes model, through MATLAB Simulink simulation. Cobelli's glucose-
insulin model is approved by the Food and Drug Administration approved as an alternative to animal testing for 
glucose-insulin interactions. Following this, a cointegration test will be performed. Subsequently, the dataset will 
undergo preprocessing before being utilised for designing the machine learning model for time series blood 
glucose prediction. 
 

 

Fig. 1 Process flow of the work 
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The variables are presumed stationary in VAR models, meaning their statistical characteristics do not alter 
over time. The variables are tested for stationary behavior using techniques like the Augmented Dickey-Fuller 
(ADF) test. If the variables are discovered to be nonstationary, stationarity can be induced using differencing or 
other modification techniques. Then, the data will split into training and testing sets to train and evaluate the 
machine learning model. This training and testing set is carried out to assess its performance to ensure that it 
meets the required criteria before reaching the end of the flowchart process. To develop a time- series blood 
glucose prediction model for this work, the VAR method will be used. The data will be cleaned and analysed to 
determine the optimal values where Yt represents a vector of variables at time t, α is the intercept, a constant 
term, and β1, β2 until βp are the coefficients of the lags of Y until the p order. Then, the VAR model will be trained 
on the data and utilized to predict future blood glucose values using multivariate models. The model's 
performance will be evaluated through regression performance metrics such as MAE, MSE, and RMSE. 

To obtain the required data, the Simulink block diagram feature within the MATLAB Simulink software has 
been utilized. Fig. 2 depicts the comprehensive Simulink model that is created using MATLAB to simulate the 
model in an open-loop configuration. The simulated system model encompasses a duration of 24 hours, which is 
equivalent to 1440 minutes. Numerous blocks are employed within the MATLAB Simulink model, and the diabetic 
block is specifically constructed utilizing the S-function block to represent the mathematical equations of the 
model. These equations are subsequently solved using the MATLAB ODE solver function ode 45. The main block 
involved in this system is a virtual diabetic model, a mathematical model that explains the dynamics of blood 
glucose levels. This block is represented by this block, an insulin input block based on the selected dosing regimen. 
This block determines the profile of insulin administration; for the meal disturbance input block, this block and 
blood glucose plot simulate the impact of meals or carbohydrate intake on blood sugar levels represented in the 
graph. 

 

Fig. 2 Open-Loop insulin delivery system for MATLAB Simulink design 

2.2 Vector Autoregression (VAR) 

An approach for time series forecasting called vector autoregression (VAR) expands autoregression (AR) to 
include multiple variables. Each variable in a VAR is represented as a linear combination of its historical values 
and the historical values of every other variable in the system. It is extensively employed in finance and 
econometrics to simulate the dynamic interdependencies between several time series. 

2.2.1 Importing Libraries and Coing Integration Test 

Google Colab comes pre-loaded with libraries, eliminating the need for extra installations. Importing necessary 
libraries at the beginning ensures access to required functions and classes, making coding easier. Google Drive 
authentication is essential for data access, followed by uploading datasets to it. Importing libraries like pandas, 
numpy, matplotlib, and statsmodels facilitates data processing, numerical calculations, and statistical operations. 
Carbohydrate and insulin data in actual and binary values are used for VAR predictive model analysis. This allows 
comprehensive examination and validation under different conditions. Binary values represent presence (1) or 
absence (0) of insulin or carbohydrate intake in the datasets. 
 The Python code utilises the coint_johansen function from statsmodels.tsa.vector_ar.vecm to perform 
Johansen's Cointegration Test. This function accepts a panda DataFrame of time series variables and conducts the 
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test, identifying significant columns at a specified significance level. Test statistics and critical values are extracted, 
and significant columns are determined by comparing these values. The function then returns a list of significant 
columns, which are retained, while non-significant columns are dropped from the dataset. 

2.2.2 VAR Model Testing and Data Processing, and Dataset Splitting for Training and 
Testing 

Initially, before employing a Vector Autoregression (VAR) model, confirming the stationarity of time series 
variables is crucial. Stationary series are easier to predict and lead to more accurate predictions. Time series 
analysis validity relies on stationarity, and deviating from this assumption can result in unreliable data and 
inaccurate model predictions. The Augmented Dickey-Fuller (ADF) test is commonly used to verify stationarity by 
evaluating the presence of unit roots in variables. The p-value from the ADF test is compared to a significance level 
(e.g., 0.05) to decide whether to reject the null hypothesis [1]. Insulin appears stationary based on the ADF test, 
while blood glucose requires further investigation or differencing to achieve stationarity, as indicated by its p-
value nearing the significance level. Once the VAR model has been developed and trained, the dataset is divided 
into training and testing sets.  

The testing set is a subset used to assess the model's predicted performance on untested data. To make it 
easier to split a dataset into training and testing sets for later uses, such training and assessing a model, the 
provided code creates the split_and_display function. The function for dataset splitting requires two parameters: 
"nobs" indicating the number of observations for the testing set, and "data" representing the dataset. The dataset 
was divided into 70:30 and 80:20 ratios for ease of comparison. Subsequently, the VAR model will be developed 
using the training data frames, and its performance will be tested and evaluated. 

2.2.3 Interpretation, Lag Order Selection, Training and Forecasting with Python VAR 
Model using Statsmodels  

Before training the VAR predictive model, analysis of the Vector Autoregression (VAR) model was conducted using 
key metrics such as Bayesian Information Criterion (BIC), Hannan-Quinn Information Criterion (HQIC), Akaike 
Information Criterion (AIC), log likelihood value, Final Prediction Error (FPE), and asymptotic covariance matrix 
(Det(Omega_mle)). Additionally, determination of the optimal lag order, representing the historical time points 
considered for each variable, was necessary. 

Using the VAR model, future values were forecasted based on recent lagged observations to find the optimal 
lag order. The provided Python code segment employs the VAR class from statsmodels.tsa.api to train the VAR 
model on train_data with the optimal lag order. It generates forecasts for both training and test datasets, 
displaying a summary of the model's key information. Forecasted values are presented for both datasets, 
underscoring the VAR model's utility in time series forecasting, especially with interrelated variables. An inverse 
transformation procedure is then applied to return predicted values to their original scale. Subsequently, 
predicted and actual values are compared to evaluate forecast accuracy, employing metrics such as Mean Absolute 
Error (MAE), Root Mean Squared Error (RMSE), and Mean Squared Error (MSE) for variables like glucose and 
insulin. Then, the code defines a function, calculate_accuracy, to compute accuracy metrics for the VAR model. This 
function takes the fitted model, forecasted values, and actual data as inputs and returns accuracy metrics for 
'Glucose' and 'Insulin'. The function is applied to both training and test sets, with the results printed, providing 
insights into the VAR model's forecasting accuracy for 'Glucose' and 'Insulin' variables in each dataset. 

2.2.4 Durbin Watson Test 

This analysis evaluates autocorrelation presence and direction in residuals for each variable in both training and 
test datasets, aiding in VAR model adequacy assessment and autocorrelation issue identification. The Durbin-
Watson statistic is computed for each variable's residuals in VAR models fitted to training (train_data) and test 
(test_data) datasets. Utilising the durbin_watson function from statsmodels.stats.stattools, this statistic measures 
autocorrelation in regression model residuals, ranging between 0 and 4. A value near 2 indicates no 
autocorrelation, while values significantly less or greater than 2 suggest positive or negative autocorrelation, 
respectively. Residuals of VAR models are stored as residuals_train and residuals_test for training and test 
datasets, respectively. The code iterates through each dataset column, computes the Durbin-Watson statistic for 
each variable's residuals, and prints the results. 
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3. Results and Discussion 

3.1 Cobelli Model Simulation Results 

The Cobelli model is a 24-hour simulation of an open-loop glucose-insulin regulation system, depicting the 
management of type-1 diabetes patients with insulin therapy. The model considers five meals with varying 
carbohydrate values and consumption rates, yielding results for blood insulin, glucose levels, and insulin. The 
simulation is initiated by configuring insulin input and meal disturbance parameters. It generates three types of 
graphs: blood insulin, insulin administration, and glucose concentration. Fig. 3 shows the glucose concentration 
with hyperglycemia, indicated by the red line's upper boundary, reflects elevated blood glucose due to insufficient 
insulin. Conversely, hypoglycemia, denoted by the blue line's lower boundary, signifies blood glucose levels below 
the normal range. The black line represents the Set Point value, aiming to maintain blood glucose levels within the 
desired range. 
 

 

Fig. 3 Simulation results of a normal blood glucose level 

3.2 Machine Learning Modelling using VAR 

3.2.1 Interpreting VAR Model 

In this study, a train-test split ratio of 70:30 and 80:20 is utilised for dataset partitioning, enabling comparative 
analysis of outcomes. Fig. 4 shows the VAR model summary. These ratios are well-established, facilitating 
evaluation of model performance across different training and testing proportions. Analysis of the Vector 
Autoregression (VAR) model using the 70:30 ratio reveals robustness, with 28,772 observations and key metrics 
like BIC, HQIC, and AIC indicating good performance. A log likelihood value of 308,946 signifies strong fit, while 
low FPE and Det(Omega_mle) values underscore prediction accuracy and model reliability. Regarding lag order 
parameter selection, coefficients reflect past values impact on current states, with significant contributions from 
Insulin to its current values. Optimal lag order at 29 highlights past 29 periods relevance in predictions, 
warranting ongoing diagnostics for model adequacy and reliability as shown in Fig. 5. 

 

 

Fig. 4 VAR model summary 
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Fig. 5 Results on the lag order parameter selection 

3.2.2 Prediction Values 

The results of predicting blood glucose levels and insulin intake using a Vector Autoregression (VAR) model with 
70:30 and 80:20 training and testing data ratios based on actual insulin values are presented here. The dataset 
comprises real-world continuous observations, capturing the complexities of the phenomenon. Table 1 presents 
the graphical representations compare actual and predicted values for the glucose and the insulin with the actual 
values, illustrating trends for both training and testing datasets. The graph portrays the trends actual glucose 
levels (depicted by the blue line), predicted glucose values for training set (illustrated in red line) and predicted 
glucose values for the testing se (represented by the purple line, as well as actual insulin levels (depicted by the 
green line), predicted insulin values for training set (illustrated by the yellow line) and predicted insulin values 
for testing set (represented by the dark blue line). The analysis underscores the model's predictive performance 
on real-world datasets, revealing discrepancies between actual and predicted glucose levels, potentially attributed 
to the model's inability to precisely capture glucose trends. 

Table 1 Graphs for prediction and actual data for 70:30 and 80:20 ratio with the actual insulin values 

Dataset 70:30 ratio 80:20 ratio 

Data 1 

 
 

 Table 2 presents results of predicting blood glucose levels and insulin intake for 70:30 and 80:20 training 
and testing data ratios, using binary-transformed insulin values for comparison. Graphs depicting glucose and 
insulin differ from those of the standard method, reflecting binary insulin representation. Mean Absolute Error 
(MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) outcomes were compared with those 
from the standard method. Binary transformation allows distinct evaluation of data representation impact on both 
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graphs and performance metrics, providing insights into analytical outcomes. Overall, the model's performance 
indicates inaccuracies in predicting glucose levels as observed in Table 2. 

Table 2 Graph for prediction and actual data for 70:30 and 80:20 ratio with the binary insulin values  

Dataset 70:30 ratio 80:20 ratio 

Data 1 

  

3.2.3 VAR Performance Evaluation  

The Performance evaluation of machine learning models, crucial for effectiveness, involves data splitting to 
prevent overfitting, especially in Vector Autoregression (VAR) models. Key metrics like Mean Squared Error 
(MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) quantify model accuracy by comparing 
predictions with actual values. MSE measures average squared differences, MAE calculates average absolute 
differences, and RMSE combines these while considering squared values. Discrepancies in MAE and MSE values 
may stem from factors beyond graph stability, including data scale, outliers, error distribution, model sensitivity, 
and data quality. Comparing actual and binary datasets, evaluation tables (3,4 for 70:30 ratios; 5,6 for 80:20 
ratios) reveal superior performance of the binary dataset in predicting blood glucose levels using VAR models. 
Consistently lower MAE, RMSE, and MSE values are observed for the binary dataset across both training and 
testing sets. The 80:20 ratio generally outperforms the 70:30 ratio, indicating its superiority in predictive accuracy 
for this analysis.  

Table 3 Values of MAE, RMSE, and MSE for blood glucose level prediction of 70:30 ratio with actual insulin values 

Dataset MAE RMSE MSE 
Train Test Train Test Train Test 

1 24.36264 10.50467 28.01810 12.32716 785.01404 151.95894 
2 26.17147 8.55065 30.29566 10.67967 917.82718 114.05546 
3 21.28252 14.63334 25.55630 16.04498 653.12458 257.44143 
4 24.59856 14.19516 28.98936 16.70034 840.38326 278.90147 
6 39.17604 13.95423 45.31954 14.37934 2053.8607 206.76547 
7 33.69495 17.51296 38.34486 21.19715 1470.3287 449.31924 
8 26.87649 11.68037 31.31135 14.57714 980.40071 212.49319 
9 35.30920 26.57007 41.26480 32.96705 1702.7840 1086.8267 

10 42.77852 24.27208 47.93155 24.46536 2297.4340 598.55418 
Mean 30.47227 15.76373 35.22572 18.14869 1300.12857 372.92401 
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The analysis of results from Table 3, Table 4, Table 5 and Table 6 highlights that predictions from the binary 
dataset consistently outperform those from the actual dataset. Transforming insulin values into a binary format 
led to the improved model accuracy. Across metrics like Mean Absolute Error (MAE), Root Mean Squared Error 
(RMSE), and Mean Squared Error (MSE), the binary dataset consistently shows lower error values, indicating 
enhanced predictive capabilities. This suggests a better balance between fitting training data and generalizing to 
unseen data with the binary dataset. Overall, employing the binary representation for insulin values improves 
accuracy and efficiency in the prediction model. 

Table 4 Values of MAE, RMSE, and MSE for blood glucose levels prediction of 70:30 ratio with binary insulin values 

Dataset MAE RMSE MSE 
Train Test Train Test Train Test 

1 24.36278 10.50521 28.01843 12.32741 785.03259 151.96527 
2 26.17156 8.55066 30.29562 10.67975 917.82478 114.05711 
3 21.28272 14.63376 25.55637 16.04537 653.12835 257.45407 
4 24.59846 14.19415 28.98923 16.69973 840.37556 278.88119 
6 39.17552 13.95569 45.31957 14.38070 2053.86370 206.80455 
7 33.69452 17.51220 38.34474 21.19685 1470.31957 449.30678 
8 26.87782 11.68136 31.31188 14.57751 980.43442 212.50389 
9 35.30651 26.57453 41.26344 32.97200 1702.67185 1087.15303 

10 42.77961 24.27020 47.93189 24.46347 2297.46659 598.46152 
Mean 30.47217 15.7642 35.22569 18.1492 1300.12416 372.95416 

Table 5 Values of MAE, RMSE, and MSE for blood glucose levels prediction of 80:20 ratio with actual insulin values 

Dataset MAE RMSE MSE 
Train Test Train Test Train Test 

1 21.45182 6.55221 26.02893 7.10703 677.5055 50.50998 
2 23.36802 5.59965 28.09522 7.06475 789.3418 49.91073 
3 18.80541 9.40050 24.07436 10.48447 579.5750 109.92423 
4 21.65390 10.66852 26.97644 11.53813 727.7287 133.12860 
6 36.88045 9.85641 43.17460 11.56464 1864.0461 133.74090 
7 29.88284 12.45492 35.43472 13.45941 1255.6196 181.15586 
8 24.21584 7.68065 29.23370 8.20196 854.6092 67.27227 
9 35.69185 24.11729 41.14647 26.20514 1693.0326 686.70954 

10 42.59234 14.98205 46.66417 15.67784 2177.5452 245.79467 
Mean 28.2825 11.25691 33.4254 12.36704 1179.8893 184.23853 

Table 6 Values of MAE, RMSE, and MSE for blood glucose levels prediction of 80:20 ratio with binary insulin values 

Dataset MAE RMSE MSE 
Train Test Train Test Train Test 

1 21.45201 6.55178 26.02868 7.10676 677.49237 50.50614 
2 23.36701 5.59798 28.09558 7.06330 789.36195 49.89033 
3 18.80529 9.40017 24.07424 10.48392 579.56908 109.91275 
4 21.65379 10.66901 26.97665 11.53871 727.73974 133.14188 
6 36.88061 9.85622 43.17457 11.56453 1864.04417 133.73840 
7 29.88340 12.45539 35.43489 13.45998 1255.63188 181.17122 
8 181.17122 7.68131 29.23393 8.20254 854.62274 67.28171 
9 35.68855 24.12440 41.14307 26.21378 1692.75264 687.16237 

10 42.59021 14.98642 46.66268 15.68259 2177.40570 245.94379 
Mean 45.72134 11.25808 33.42492 12.36846 1179.8467 184.3054 

4. Conclusion 

In conclusion, the research on "Multivariate Modelling for Prediction of Time-Series Blood Glucose Level Using 
Vector Autoregression (VAR)" systematically addressed its objectives, beginning with the analysis of blood 
glucose data using the Cobelli model, providing insights into blood glucose dynamics. The developed Vector 
Autoregression (VAR) machine learning model demonstrated robust performance in predicting blood glucose 
levels and insulin intake. Evaluation metrics like Mean Squared Error (MSE), Mean Absolute Error (MAE), and 
Root Mean Squared Error (RMSE) consistently favored the binary representation of insulin values. The preference 
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for the 80:20 ratio over 70:30 underscored the significance of data splitting for optimal accuracy. Despite 
moderate performance, the study highlights the importance of VAR modeling and appropriate data representation 
in predicting blood glucose levels in individuals with Type 1 diabetes. 
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