
 

EVOLUTION IN ELECTRICAL AND ELECTRONIC 
ENGINEERING  
e-ISSN: 2756-8458 
 
 

EEEE 

Vol. 5 No. 1 (2024) 332-340 
https://publisher.uthm.edu.my/periodicals/index.php/eeee 

   
 

© 2024 UTHM Publisher.  
This is an open access article under the CC BY-NC-SA 4.0 license. 

 

 

Improved Particle Swarm Optimization (IPSO) Based 
Mobile Robot Navigation for Path Planning  

Kogileswaran Naidu1,  Rohaida Mat Akir1* 

1  Department of Electrical Engineering, Faculty of Electrical and Electronic Engineering, 
Universiti Tun Hussein Onn Malaysia, Batu Pahat, 86400, Johor, MALAYSIA. 

 
*Corresponding Author: rohaida@uthm.edu.my  
DOI: https://doi.org/10.30880/eeee.2024.05.01.042 

Article Info Abstract 

Received: 11 January 2024 
Accepted: 15 March 2024 
Available online: 30 April 2024 

This research delves into the advancement of mobile robot path 
planning within indoor environments, leveraging the Particle Swarm 
Optimization (PSO) algorithm. The significance of mobile robots spans 
diverse applications, ranging from surveillance and exploration to 
rescue operations and industrial automation. The objective of this 
study is to formulate a resilient and efficient path planning 
methodology tailored for mobile robots navigating through unknown 
and dynamic environments. Integration of the PSO algorithm with 
renowned path planning algorithms like A* and Dijkstra is undertaken 
to optimize navigation by refining obstacle avoidance, minimizing path 
length, and enhancing overall efficiency within real-time constraints. 
The investigation encompasses a comprehensive exploration of mobile 
robot navigation principles, an in-depth analysis of obstacle avoidance 
efficacy, and the development of an algorithm adept at navigating with 
reduced turns. The implementation utilizes the Python programming 
language to craft path planning and navigation algorithms. Ultimately, 
this research aims to contribute a dependable and optimized solution 
for path planning, fostering autonomous navigation proficiency in 
intricate indoor settings. 

Keywords 

Particle Swarm Optimization (PSO), 
A* algorithm, Dijkstra algorithm 

1. Introduction 

The introduction provides a comprehensive overview of the burgeoning field of mobile robotics, underscoring its 
remarkable growth and widespread applications across diverse sectors. Mobile robots, endowed with versatile 
capabilities, are increasingly substituting humans in tasks such as surveillance, planetary exploration, patrolling, 
emergency rescue operations, industrial automation, and more. The intricate process of mobile robot navigation 
involves four stages: perception, localization, cognition and path planning, and motion control. The significance of 
safe path planning is emphasized, necessitating obstacle identification and avoidance as robots traverse from the 
starting point to their destination, meeting specific criteria like distance and smoothness of the path. Two distinct 
types of navigation, global and local, cater to varying environmental familiarity levels. Path planning, a dynamic 
process, encompasses classical algorithmic methods (A*, Dijkstra, RTT, artificial potential field) and heuristic 
approaches (differential evolution, genetic algorithm, ant colony algorithm, artificial fish swarm algorithm, and 
PSO). The Particle Swarm Optimization (PSO) algorithm stands out for its exceptional search capability, rapid 
convergence speed, and efficiency. Its reliance on minimal hyper-parameters and simplicity without the need for 
advanced knowledge contribute to its widespread adoption in both practical applications and theoretical studies 
of mobile agent path planning. The project's central focus is on developing a robust path planning method for 
mobile robots operating in unknown and dynamic environments. This involves integrating the PSO algorithm with 

mailto:rohaida@uthm.edu.my


333 Evolution in Electrical and Electronic Engineering Vol. 5 No. 1 (2024) p. 332-340 

 

 

traditional path planning algorithms such as A* and Dijkstra. The objectives include enhancing obstacle avoidance, 
reducing path length, and optimizing navigation efficiency, all while considering real-time constraints. The 
overarching goal is to contribute significantly to the field of mobile robotics, providing a reliable and optimized 
solution for autonomous navigation in complex environments. Further, the research aims to delve into the realm 
of mobile robot path planning using the Python programming language. The proposed approach involves a 
meticulous exploration of algorithms dedicated to charting the shortest paths within unknown indoor 
environments. An in-depth analysis of obstacle avoidance performance and the optimization of smoothness, 
specifically reducing the number of turns required to reach the destination, are key components of the research 
objectives. The scope extends to addressing limitations inherent in path planning for mobile robot navigation 
within urbanized areas. The project's multi-faceted approach encompasses fundamental concepts of navigation 
planning, the implementation of path planning using the PSO technique, and the development of an Improved PSO 
method incorporating A* and Dijkstra algorithms. Throughout this process, the Python programming language 
serves as the primary tool, facilitating the implementation of path planning algorithms and contributing 
advancements to the field of mobile robot navigation. 

2. Classical Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population-based stochastic optimization algorithm that was proposed by 
Kennedy and Eberhart in 1995 [1]. It is inspired by the collective behavior of bird flocking or fish schooling, where 
individuals coordinate their movements to achieve a common goal. PSO utilizes a swarm of particles, each 
representing a potential solution, to explore the search space and find the optimal solution. Each particle adjusts 
its position based on its own experience and the collective experience of the swarm. The algorithm iteratively 
updates the velocity and position of each particle until a termination condition is met. The classical PSO is simple 
to implement and has few adjustment parameters when it is used in the path planning method [2]. However, this 
classic PSO is prone to poor searchability, falls into the optimal local solution, reduced particle diversity, low 
convergence precision, and low accuracy of path planning. Equation (1) shows the PSO algorithm. The parameter 
W is the inertia weight, and it is a positive constant. It is for balancing global search known as exploration (when 
higher values are set) and local search as exploitation (when lower values are set).   
 

𝑉𝑖
𝑡+1 = 𝑊. 𝑉𝑖

𝑡 + 𝑐1𝑈1
𝑡(𝑃𝑏1

𝑡 − 𝑃𝑖
𝑡) + 𝑐2𝑈2

𝑡(𝑔𝑏1

𝑡 −  𝑃𝑖
𝑡)   ………... (1) 

 

2.1 Comparison between existing Path Planning Algorithms 

There are various types of algorithms that exist for path planning. Among those algorithms PSO, A* and Dijkstra 
are the three most effective algorithms for path planning. So, by combining the PSO algorithm with A* and Dijkstra 
algorithms, more effective path planning algorithms can be created.  Table 1 shows types of algorithms that are 
commonly used for path planning and table 2 shows types of algorithms that are exist in PSO. 

Table 1 Literature Review for Path planning 

Author Types of Algorithms Explanations 

O.A Gbadamosi and D. R. 
Aremu, 2020 [3] 

Dijkstra This algorithm alone can’t use within dynamic 
environments and need to handle negative edges. 

S. A. Gunawan, G. , A. 
Cahyadi2019 [4] 

A* With the development of Artificial Intelligence, the A* 
algorithm has been improved robot path planning. 

Song Yong, Gao Tengteng, 
L. G. (2020). [5] 

Artificial Potential 
Field (APF) 

Provide effective motion planning method but the 
robot is easily caught at local minimum before 
achieving its goal. 

F.Qu, W. Yu, K. Xiao and C. 
Liu,2022 [6] 

Ant Colony 
Optimization 

Has defects of low search efficiency and slow 
convergence speed. 

S. Gao and Y. Wen, 2018 
[7] 

Artificial Fish 
algorithm (AFO) 

Slow convergence in the late time and limited 
precisions. 

L. Zhang, Y. Zhang and Y. 
Liu, 2021 [8] 

Particle Swarm 
Optimization (PSO) 

Less parameters adjustments and fast search speed. 

 

 

https://www.semanticscholar.org/author/S.-A.-Gunawan/115361662
https://www.semanticscholar.org/author/G.-Pratama/23187003
https://www.semanticscholar.org/author/A.-Cahyadi/145690996
https://www.semanticscholar.org/author/A.-Cahyadi/145690996


Evolution in Electrical and Electronic Engineering Vol. 5 No. 1 (2024) p. 332-340 334 

 

 

Table 2 Literature Review for PSO Algorithm 

Author Types of Algorithms Explanations 

X. Li, D. Wu, J. He, M. 
Bashir and M. Liping, 
2020 [9] 

Classical PSO Simple to implement but prone to poor searchability, 
low accuracy of path planning 

B. Song, Z. Wang, L. Xu, L. 
Zou and F.E Alsaadi, 2019 
[10] 

Modified Particle 
Swarm Optimization 

(MPSO) 

Can obtain a smooth path but does not improve the 
efficiency of the particle diversity.  

 P. Chen, Q. Li, C. Zhang, J. 
Cui and H. Zhou, 2019 
[11] 

Ant Colony Particle 
Swarm Optimization 

(AC-PSO) 

Particle global search efficiency is restricted.  

L. Zhen Du, S. Ke , Z. Wang, 
J. Tao, L. Yu and H. Li, 
2019 [12] 

Genetic Particle Swarm 
Optimization (GA-PSO) 

Number of parameters are lot 

M. N. A. Wahab, C.M. Lee, 
M.F Akbar and F.H Hassan, 
2020 [13] 

Fringe Search Particle 
Swarm Optimization 

(PSOFS) 

Shorter, smoother, and safer pathways is created in 
unfamiliar interior situations. 

X. Li, D. Wu, J. He, M. 
Bashir and M. Liping, 
2020 [14] 

Improved Particle 
Swarm Optimization 

(IPSO) 

IPSO can yield better optimum outcome with fewer 
iteration steps  

 
Based on Table 2 among the path planning algorithms A* and Dijkstra shows better performance in path 

planning based on the authors. While based on Table 3, among the types of PSO algorithms, IPSO yields better 
performance in path planning. So, combining the A* or Dijkstra with PSO algorithms can produce better IPSO 
algorithm for robot path planning.  

3. Methodology 

The Improved Particle Swarm Optimization (IPSO) based mobile robot navigation for path planning, comparing 
the A* algorithm and Dijkstra algorithm using MATLAB, involves several steps. First, the environment is modelled 
using a grid-based representation, where obstacles and target positions are defined. Then, the A* algorithm and 
Dijkstra algorithm will be implemented to find the optimal paths from the robot's initial position to the target 
position. The algorithms use heuristic functions and weight factors to determine the most efficient paths. Next, 
the IPSO algorithm is applied to optimize the paths obtained from both algorithms, by adjusting the particle swarm 
optimization parameters. The IPSO algorithm enhances the exploration and exploitation capabilities of the swarm, 
improving the path planning performance. Finally, the paths generated by both algorithms, before and after the 
IPSO optimization, are compared based on criteria such as path length, execution time, and smoothness. This 
methodology allows for a comprehensive evaluation of the A* and Dijkstra algorithms in terms of their 
performance and efficiency for mobile robot navigation and path planning when combining with PSO. 

3.1 Flowchart   

As shown in Fig.1 firstly it defines a Particle class representing particles in the PSO algorithm, a cost function to 
calculate the distance between a position and a goal, and a function to check if a point is within obstacles. The PSO 
function initializes particles, updates their positions and velocities based on a PSO update rule, and handles 
obstacle avoidance. The code also includes functions to generate a continuous Bezier curve passing through path 
waypoints and to visualize the path with Matplotlib. An example scenario is provided, where a PSO algorithm is 
used to find the optimal path from a start position to a goal while avoiding specified obstacles. The script prints 
the final position and visualizes the path with obstacles using Matplotlib. Adjustments to grid size, obstacles, and 
parameters can be made for different scenarios. 

 

 



335 Evolution in Electrical and Electronic Engineering Vol. 5 No. 1 (2024) p. 332-340 

 

 

 

Fig. 1 Flowchart of Implementation of Algorithms combinations 

3.1 Implementation of PSO 

The Particle Swarm Optimization (PSO) algorithm is a population-based optimization technique where a group of 
particles explores a multidimensional solution space to find the optimal solution. Each particle's position in space 
is continuously adjusted based on its own historical best-known position) (particle.best_position) and the global 
best-known (best_particle.best_positon). The velocity of each particle is updated using the inertia weight (w), 
acceleration constants (c1&c2) and random values (r1&r2). The Particle Swarm Optimization (PSO) algorithm is 
characterized by several key parameters. The swarm size (num_particles) denotes the number of particles in the 
population, influencing the thoroughness of exploration. The number of iterations (max_iterations) determines 
how many times particles update their positions, impacting the convergence behavior. The inertia weight (w) 
balances the impact of previous velocities on current velocities, crucial for exploration and exploitation trade-off. 
The cognitive coefficient (c1) emphasizes a particle's historical best-known position, fostering local exploitation, 
while the social coefficient (c2) guides movement based on the global best-known position, encouraging global 
exploration. These parameters, such as the size of the swarm and coefficients, play pivotal roles in tailoring the 
PSO algorithm's performance for specific optimization tasks by adjusting the trade-off between exploration and 
exploitation. Default values for these parameters are set. Table 3 shows the parameters that were set for the 
exploration and exploitation of the environment. 

Table 3 Parameters for Algorithms 

Parameters Value 

Number of particles 100 
Number of Iteration 500 

Inertia Weight 0.5 

Cognitive Coefficient 1.5 
Social Coefficient 1.5 

3.2 Dijkstra Algorithm and Particle Swarm Optimization 

In the Particle Swarm Optimization with Dijkstra (PSOD) algorithm, the integration of Dijkstra's algorithm and 
Particle Swarm Optimization (PSO) is evidenced through a combination of Dijkstra's path-finding approach and 



Evolution in Electrical and Electronic Engineering Vol. 5 No. 1 (2024) p. 332-340 336 

 

 

PSO's dynamic optimization capabilities. The core of the integration lies in the update of particle positions. 
Dijkstra's algorithm, as implemented in the Dijkstra function, calculates the shortest path from the current particle 
position to the goal node. The equation tentative_cost = current.cost + 1 represents the tentative cost of reaching 
a neighbor node in Dijkstra's algorithm, and the comparison if tentative_cost < neighbor.cost ensures the selection 
of the most cost-efficient path. The PSO update rule involves equations such as particle.vx = w * particle.vx + c1 * 
r1 * (particle.best_position[0] - particle.x) + c2 * r2 * (goal.x - particle.x), where w, c1, and c2 are adjustable 
parameters, and r1 and r2 are random factors. This equation guides particles to update their velocities based on 
both their personal best-known position and the global best-known position (the goal node), balancing 
exploration and exploitation. The synergy of these equations harmonizes the global search capabilities of PSO with 
the local optimization strengths of Dijkstra, resulting in an effective and adaptable PSOD algorithm for path 
planning in complex environments. 

3.3 A * Algorithm and Particle Swarm Optimization 

The combination of A* and PSO involves applying A* to each particle's current position within the 2D grid, where 
A* computes a local optimal path considering obstacles. The PSO algorithm concurrently optimizes particle 
movements by updating their velocities and positions based on inertia weight (w), acceleration constants (c1 & 
c2) and random values (r1 & r2). The velocity update equations incorporate the particle's best-known position 
and the global best-known position, guiding particles towards promising regions. After updating velocities, A* is 
used to find local optimal paths for each particle, and if a valid path is obtained, the particle's position is updated 
accordingly. This iterative process continues for a predefined number of iterations, aiming to combine A*'s path-
finding precision with PSO's exploration capabilities to discover an optimized path through a dynamic and 
obstacle-filled environment. The equations (2) govern the velocity and position updates are as follows. 
 
 

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑣𝑥 = 𝑤 × 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑣𝑥 + 𝑐1 × 𝑟1 × (𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑏𝑒𝑠𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[0] − 

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑥) + 𝑐2 × 𝑟2 × (𝑔𝑜𝑎𝑙. 𝑥 − 𝑝𝑎𝑟𝑡𝑖𝑙𝑐𝑒. 𝑥) 

 

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑣𝑦 = 𝑤 × 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑣𝑦 + 𝑐1 × 𝑟1 × (𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑏𝑒𝑠𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛[1] − 

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑦) + 𝑐2 × 𝑟2 × (𝑔𝑜𝑎𝑙. 𝑦 − 𝑝𝑎𝑟𝑡𝑖𝑙𝑐𝑒. 𝑦) 

 

 

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑦 = 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑦 + 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑣𝑦  

 

 

                                                               𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑥 = 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑥 + 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑣𝑥 ……………………. (2) 
   

Python programming code Particle Swarm Optimization with A* Algorithm (PSOD) integrates the A* (A-star) 
pathfinding algorithm with the Particle Swarm Optimization (PSO) technique to navigate a 2D grid with obstacles 
from a designated start node to a goal node. The A* algorithm efficiently explores nodes while considering obstacles, 
and the PSO algorithm refines the solution by updating particle positions based on their best-known positions and 
velocities. The code employs modular structures, including a ̀ Node` class for representing grid nodes, various helper 
functions for A* pathfinding, a `Particle` class for PSO, and visualization functions using Matplotlib. The example 
usage demonstrates the combined A* with PSO approach on a specified grid, showcasing the final position and 
visualizing the discovered path while considering obstacles. The flexibility and modularity of the implementation 
allow for easy experimentation and adaptation. 

4. Results and Discussions  

The output shows the Particle Swarm Optimization (PSO) algorithm. In the example scenarios, the Particle Swarm 
Optimization (PSO) algorithm navigates a 2D environment with obstacles represented as circles and rectangles. 
Based on the output obtained in Fig. 2, Fig. 3 and Fig. 4 with all the four and seven obstacle scenario included with 
a circular obstacle with a center at (3.5, 4) and a radius of 1.5, a rectangular obstacle from (6, 2) to (8.5, 5.5), a 
square from (2, 7) to (4, 9), and another circle with a center at (6, 8) and a radius of 1. The other 7 obstacles 
scenario introduces additional circular, rectangular, and square obstacles. The starting point is set at (1, 1), and 
the goal is at (8, 8). The PSO algorithm aims to find an optimized path from the starting point to the goal while 
avoiding collisions with the specified obstacles. The effectiveness of the algorithm in finding the shortest path is 
influenced by obstacle representations, algorithm parameters, and environmental complexity.  
Authors declare that there is no conflict of interests regarding the publication of the paper. 

4.1 Particle Swarm Optimization (PSO) 

Based on Fig.2 output displayed, the robot doesn’t avoid the obstacle and hits it. The robot's failure to find a path 
and collision with obstacles in the provided PSO-based path planning algorithm can be attributed to several 



337 Evolution in Electrical and Electronic Engineering Vol. 5 No. 1 (2024) p. 332-340 

 

 

factors. The simplistic representation of obstacles as circles and rectangles may inadequately capture complex 
shapes, leading to collisions. The lidar sensor's range may be insufficient, causing the robot to detect obstacles too 
late. Poorly tuned algorithm parameters, such as the number of particles and cognitive/social coefficients in PSO, 
can hinder effective exploration of the solution space. Inertia weight and velocity update terms may be 
inadequately balanced, causing the robot to get stuck or move too rapidly. 

  

           
(a)   4 obstacles                                       (b)  7obstacles 

Fig. 2 Particle Swarm Optimization (PSO) with (a) 4 obstacle and (b) 7 obstacles 

 

 

 

(a) 4 obstacles 

 

 
(b) 7 obstacles 

 

Fig. 3 Particle Swarm Optimization with A* Algorithm with (a) 4 obstacles and (b) 7 obstacles 



Evolution in Electrical and Electronic Engineering Vol. 5 No. 1 (2024) p. 332-340 338 

 

 

 

4.2 Particle Swarm Optimization with A* 

The output result of the PSOA (Particle Swarm Optimization with A*) provides a detailed insight into the path 
planning process. It starts by displaying the waypoints of the path discovered by the combined A* and PSO 
algorithms, outlining the coordinates through which the optimized trajectory navigates. The Total distance 
travelled was then determined, considering the Euclidean distance between consecutive waypoints, offering an 
alternative measure of the optimized path length. The graphical visualization enhances the understanding of the 
solution, presenting the grid layout with obstacles marked in distinctive colors such as green for circles, orange 
for rectangles, and blue for squares. The optimized path is illustrated as a smooth curve passing through 
waypoints, and the start and end points are highlighted by green and red dots, respectively. This visual 
representation aids in assessing the effectiveness of the combined algorithm in navigating around obstacles to 
reach the specified goal. If no viable path is found, the code appropriately communicates the absence of a solution. 
This combined algorithm was set to find the shortest path in two different environments which is one with 4 
obstacles and another with 7 obstacles. This combined algorithm successfully found its endpoint without colliding 
the obstacles where total distance travelled in environment with 4 obstacles is 11.07 and for 7 obstacles 
environment is 12.73 as shown in Fig.3.   

4.3 Particle Swarm Optimization with Dijkstra 

 

 

(a) 4 obstacles  

 

 
(c) 7 obstacles 

 

Fig. 4 Particle Swarm Optimization with Dijkstra Algorithm with (a) 4 obstacles and (b) 7 obstacles 

Based on Fig. 4 result of the PSOD (Particle Swarm Optimization with Dijkstra) algorithm represents the 
combination of Dijkstra's algorithm and Particle Swarm Optimization (PSO) to find a path from a defined start 
node to a goal node in a 2D grid with obstacles. The algorithm successfully discovers a path, which is visualized 
on a plot showing the grid, obstacles, and the trajectory represented by a continuous Bezier curve passing through 



339 Evolution in Electrical and Electronic Engineering Vol. 5 No. 1 (2024) p. 332-340 

 

 

the computed waypoints. The initial path, obtained through Dijkstra's algorithm, is refined using PSO to optimize 
the trajectory, considering the obstacles' influence. The transparency of obstacle shapes can be adjusted for better 
visualization. The program prints the found path and the total distance traveled, providing valuable insights into 
the effectiveness of the Dijkstra-PSO hybrid algorithm in navigating through obstacles to reach the goal. This 
combined algorithm was set to find the shortest path in two different environments which is one with 4 obstacles 
and another with 7 obstacles. This combined algorithm successfully found its endpoint without colliding the 
obstacles where total distance travelled in environment with 4 obstacles is 11.07 and for 7 obstacles environment 
is 11.90. 

Based on Table 4, the PSO algorithm itself fails to create mapping in both environments while combination of 
PSOA and PSOD have value for shortest distance travelled for both type environments. For non-complex 
environment PSOA has smoother turns but same distance as PSOD.  For complex environment PSOD has the 
shortest path travelled making it suitable combination with PSO for path planning navigation.  

  Table 4 Algorithm Performance Comparison in Path Planning Scenarios 

Algorithm Distance Travelled Based on Number of Obstacles 

4 7 

PSO (Particle Swarm Optimization) No Path Found No Path Found 

PSOA (PSO Combined with A*) 11.07 12.73 

PSOD (PSO Combined with Dijkstra) 11.07 11.90 

 
The findings of this research hold significant implications for the field of mobile robotics, particularly in the 

domain of path planning. The successful integration of the Particle Swarm Optimization (PSO) algorithm with 
established path planning algorithms like A* and Dijkstra demonstrates a promising approach to enhance the 
efficiency and robustness of mobile robot navigation in complex indoor environments. The optimized paths 
generated by the PSO algorithm contribute to improved obstacle avoidance, reduced path lengths, and overall 
enhanced navigation performance. This research not only expands our understanding of mobile robot navigation 
strategies but also provides a practical and applicable solution for real-world scenarios. The implications of these 
findings extend to various industries, including surveillance, exploration, and industrial automation, where 
autonomous mobile robots must navigate dynamically changing environments with precision and efficiency. The 
outcomes of this study paved the way for the development and deployment of more sophisticated and reliable 
autonomous mobile robots capable of seamlessly navigating through challenging indoor spaces. 

Acknowledgement 

This research is supported Faculty of Electrical and Electronic Engineering, University Tun Hussein Onn Malaysia 
(UTHM). 

Conflict of Interest 

Authors declare that there is no conflict of interests regarding the publication of the paper. 

Author Contribution 

The authors confirm responsibility for the following: study conception and design, data collection, analysis and 
interpretation of results, and manuscript preparation. 

References 

[1] Slowik, A. (2011). Particle Swarm Optimization. The Industrial Electronics Handbook - Five Volume Set, May 
2011. https://doi.org/10.1007/978-3-319-46173-1_2. 

[2] Li, X., Wu, D., He, J., Bashir, M., & Liping, M. (2020). An Improved Method of Particle Swarm Optimization for 
Path Planning of Mobile Robot. Journal of Control Science and Engineering, 2020.   
https://doi.org/10.1155/2020/3857894 

[3] Gbadamosi, O. A., & Aremu, D. R. (2020). Design of a Modified Dijkstra’s Algorithm for finding alternate routes 
for shortest-path problems with huge costs. 2020 International Conference in Mathematics, Computer 
Engineering and Computer Science, ICMCECS 2020. https://doi.org/10.1109/ICMCECS47690.2020.240873 

[4] Gunawan, S. A., Pratama, G. N. P., Cahyadi, A. I., Winduratna, B., Yuwono, Y. C. H., & Wahyunggoro, O. (2019). 
Smoothed a-star algorithm for nonholonomic mobile robot path planning. 2019 International Conference on 

https://doi.org/10.1007/978-3-319-46173-1_2
https://doi.org/10.1155/2020/3857894
https://doi.org/10.1109/ICMCECS47690.2020.240873


Evolution in Electrical and Electronic Engineering Vol. 5 No. 1 (2024) p. 332-340 340 

 

 

Information and Communications Technology, ICOIACT 2019, 654–658. 
https://doi.org/10.1109/ICOIACT46704.2019.8938467 

[5] Wang Di, Li Caihong, Guo Na, Song Yong, Gao Tengteng, L. G. (2020). Local Path Planning of Mobile Robot 
Based on Artificial Potential Field. 3677–3682. https://doi.org/10.23919/CCC50068.2020.9189250 

[6] Qu, F., Yu, W., Xiao, K., Liu, C., & Liu, W. (2022). Trajectory Generation and Optimization Using the Mutual 
Learning and Adaptive Ant Colony Algorithm in Uneven Environments. Applied Sciences (Switzerland), 
12(9). https://doi.org/10.3390/app12094629 

[7] Gao, S., & Wen, Y. (2018). An Improved Artificial Fish Swarm Algorithm and its Application. Proceedings - 
17th IEEE/ACIS International Conference on Computer and Information Science, ICIS 2018, Meici, 649–652. 
https://doi.org/10.1109/ICIS.2018.8466458 

[8] Zhang, L., Zhang, Y., & Li, Y. (2021). Mobile Robot Path Planning Based on Improved Localized Particle Swarm 
Optimization. IEEE Sensors Journal, 21(5), 6962–6972. https://doi.org/10.1109/JSEN.2020.3039275 

[9] Li, X., Wu, D., He, J., Bashir, M., & Liping, M. (2020). An Improved Method of Particle Swarm Optimization for 
Path Planning of Mobile Robot. Journal of Control Science and Engineering, 2020. 
https://doi.org/10.1155/2020/3857894 

[10] Song, B., Wang, Z., Zou, L., Xu, L., & Alsaadi, F. E. (2019). A new approach to smooth global path planning of 
mobile robots with kinematic constraints. International Journal of Machine Learning and Cybernetics, 10(1), 
107–119. https://doi.org/10.1007/s13042-017-0703-7 

[11] Chen, P., Li, Q., Zhang, C., Cui, J., & Zhou, H. (2019). Hybrid chaos-based particle swarm optimization-ant 
colony optimization algorithm with asynchronous pheromone updating strategy for path planning of landfill 
inspection robots. International Journal of Advanced Robotic Systems, 16(4), 1–11. 
https://doi.org/10.1177/1729881419859083 

[12] Du, L. zhen, Ke, S., Wang, Z., Tao, J., Yu, L., & Li, H. (2019). Research on multiload AGV path planning of weaving 
workshop based on time priority. Mathematical Biosciences and Engineering, 16(4), 2277–2292. 
https://doi.org/10.3934/mbe.2019113 

[13] Wahab, M. N. A., Lee, C. M., Akbar, M. F., & Hassan, F. H. (2020). Path Planning for Mobile Robot Navigation in 
Unknown Indoor Environments Using Hybrid PSOFS Algorithm. IEEE Access, 8, 161805–161815. 
https://doi.org/10.1109/ACCESS.2020.3021605 

[14] Li, X., Wu, D., He, J., Bashir, M., & Liping, M. (2020). An Improved Method of Particle Swarm Optimization for 
Path Planning of Mobile Robot. Journal of Control Science and Engineering, 2020. 
https://doi.org/10.1155/2020/3857894 

https://doi.org/10.1109/ICOIACT46704.2019.8938467
https://doi.org/10.23919/CCC50068.2020.9189250
https://doi.org/10.3390/app12094629
https://doi.org/10.1109/ICIS.2018.8466458
https://doi.org/10.1109/JSEN.2020.3039275
https://doi.org/10.1155/2020/3857894
https://doi.org/10.1007/s13042-017-0703-7
https://doi.org/10.1177/1729881419859083
https://doi.org/10.3934/mbe.2019113
https://doi.org/10.1109/ACCESS.2020.3021605
https://doi.org/10.1155/2020/3857894

