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Each type of animal meat exhibits distinct color and texture 
characteristics. For instance, beef typically presents a dark red hue with 
a chewy texture, while pork displays a paler red color with a smoother 
fiber. Previous research has utilized methods such as the gray level co-
occurrence matrix (GLCM), hue saturation value (HSV), and color 
intensity for meat classification. In this study, we employed a 
MobileNet-V2 implemented in a Jupyter notebook, utilizing the 
MobileNetV2 model, to classify beef and pork meat. The dataset 
comprised 488 of each meat image after the augmentation process, 
partitioned into training (70%), testing (20%), and validation (10%) 
sets. Before partitioning, images were resized to 128×128 pixels. The 
model was trained using the training dataset with 100 epochs and the 
Adam optimizer, resulting in an accuracy of 96.93%.  
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1. Introduction 

Due to the high price of beef, some vendors have begun to cheat consumers by selling beef with cheaper pork. In 
2021, there are cases in Jakarta, Indonesia where the seller deceives consumers by selling pork, which they claim 
is beef [1]. In Muslim-majority countries, it’s not allowed to eat food with pork. Pork and beef look different—pork 
is paler and smoother, while beef is brighter and rougher [2]. The beef and pork issue underscores the importance 
of ensuring the integrity of meat products in the market. Instances of deceptive practices, such as selling pork as 
beef due to cost considerations, not only impact consumer trust but also raise concerns about adherence to dietary 
restrictions, particularly in Muslim-majority countries where pork consumption is prohibited. Addressing this 
issue requires innovative solutions that leverage technology, such as the implementation of advanced algorithms 
like Convolutional Neural Networks (CNN) in mobile applications. By tackling the beef and pork issue, we aim to 
provide consumers with a reliable tool to distinguish between these meats accurately and uphold transparency in 
the food industry. We have technology that can tell them apart using pictures. One way is using deep learning, 
specifically Convolutional Neural Network (CNN), which works better than other methods. This research suggests 
a solution: using a CNN in an Android app to identify pork and beef through image classification [3].  

This study’s goals are to develop an algorithm for meat classification and design a graphical user interface 
(GUI) for the system that has been created [4]. By creating an Android app using MobileNet V2 for beef and pork 
meat classification. The objectives include training the dataset in Google Colab, saving it as a TFLite file, and 
integrating it into an Android Studio application. The ultimate aim is to provide users with a simple tool for 
distinguishing between beef and pork meats through their smartphones.  
 



293 Evolution in Electrical and Electronic Engineering Vol. 5 No. 1 (2024) p. 292-297 

 

 

1.1 MobileNet-V2 

This experiment on beef and pork classification uses MobileNetV2 via an Android smartphone application to train 
the model on a broad dataset of labeled photos of both beef and pig. Taking use of MobileNetV2's lightweight and 
efficient architecture, I used transfer learning to fine-tune the pre-trained model for my specific dataset. This 
method allowed the model to learn the distinct properties of beef and pork, resulting in reliable categorization 
findings. 

Following model training, the MobileNetV2 model was effortlessly integrated into the Android application via 
TensorFlow Lite for efficient deployment. The application's intuitive interface allows users to effortlessly take or 
select meat photographs from their device's gallery. Following image selection, the application sends the image to 
the MobileNetV2 model for inference, which swiftly analyses the image and returns a classification result 
indicating whether the meat is beef or pork. This user-friendly interface allows for easy and precise meat 
classification using a smartphone. 

2. Materials and Methods 

In this section, 2 stages lead to the success of the work by acknowledging each system development and 
application development. 

2.1 System Overview 

In this system overview, illustrated in Fig. 1, the workflow is divided into system development and application 
development. The initial component involves utilizing an Android smartphone for data upload and collection. 
Visual data is pre-processed, encompassing scaling, augmentation, data separation, and normalization, to prepare 
it for deep learning. This includes shrinking images to an appropriate pixel size and employing techniques like 
rotation, flipping, and skewing to augment the training dataset for robust beef and pork classification systems [5]. 
The preprocessed images are then utilized in training the MobileNetV2 model and formulating the feature 
extraction approach. To implement the model on a smartphone, Android Studio, and TensorFlow Lite are 

employed, contributing to the development of the application system. 

 

 

Fig. 1 System development and Application development process 

2.2 System development 

2.2.1 Training dataset 

Fig. 2 shows the process of training, validation, and testing the dataset. The training data is divided into two 
sections. We use 10% of the data (57 images) to carefully check how well the final model matches the training 
data, while the remaining 70% (488 images) is employed to teach the dataset and improve accuracy. The dataset 
used for this work was sourced from Kaggle and subjected to an augmentation process to enhance its diversity 
and improve the robustness of the model's training 

2.2.2  Data Augmentation  

Fig. 3 shows the process of the augmentation process to increase the value of the dataset because it needs a large 
dataset to be trained. It is to increase the performance throughout the training phase [6]. During the augmentation 
process, the images underwent rotations (20 degrees), flips (horizontal), shears (20%), and zoom (20%) until 

normalization was applied to all of them. 
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Fig. 2 Process to train and test dataset 

 

Fig. 3 The pre-processing of images 

2.2.3 Epochs training and save to Tf.lite file 

The Mobile Net V2 model was imported because this work employs a pre-trained model for transfer learning. The 
findings show that the model obtained 96.93% with 100 epochs after training as shown in Fig 4. The model weight 
and architecture are saved once the confusion matrix has reviewed the performance test data. TensorFlow Lite 
converts the model into a (Tf.lite) file for deployment in smartphone hardware as shown at Fig 5. Tf.lite file is very 
important to upload in the Android studio which is needed to complete the application development process. 

 

Fig. 4 Epochs 100 training 

 

Fig. 5 Model saved into (tflite_model) 

2.3 System development 

2.3.1 Import TensorFlow Lite interpreter 

The model that is saved needs to be uploaded into an Android Studio. A classifier is developed to load the model 
and read the labeled file. The coding was run, and the application was launched on the smartphone. Fig 6 shows 
part of the Java script coding of a classifier to complete this work. 
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Fig. 6 Create a classifier 

2.3.2 Layout of the application 

Before the Java script is run, layout is very important (Fig. 7) and it needs to be set up according to the work. Based 
on this work, the button of camera and upload is needed to classify either by taking photos or uploading. 

 

Fig. 7 Process to build a layout of the application 

3. Result and Discussion 

3.1 Application functionality 

The Android application’s functionalities include a main activity that displays an image, a confidence result, and 
several buttons such as a button to launch the diagnosis, a select photo button, and a start camera button. There 
was also a camera activity that required the user to shoot an image as shown at Fig. 8. 
 

 
Fig. 8 App Interface 
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3.2 Application Info 

The Android app, created with Android Studio, uses a compact 14.64MB TensorFlow Lite model to differentiate 
between pork and beef. It ensures accurate results without taking up much space on your phone. The development 
fine-tuned the model in Android Studio for optimal performance, prioritizing a user-friendly experience. Fig. 9 
displays the app info on Galaxy Tab A8 for beef and pork classification. 
 

 
Fig. 9 Application Info 

3.3 Testing result 

Upon capturing or selecting an image from the gallery, the system resizes it to the precise input dimensions 
(128x128 pixels). The MobileNet V2 model proposed in this study is then applied for image classification. Fig. 10 
presents a preview of a beef image, while Fig. 11 displays a preview of a pork image, both achieving a confidence 
and accuracy level of 100%. Additionally, the application, with a size of 14.64MB, ensures an inference time of 
under 317ms for image display on a smartphone. The testing involved 20 images each for beef and pork. Table 1 
presents the test results conducted on the Galaxy Tab A8, indicating a flawless performance without any errors. 
This suggests that the application is running smoothly, and the dataset has been effectively trained without 
encountering any issues. 
 

  

Fig. 10 Beef testing Fig.11 Pork testing 

Table 1 Results of testing 

Testing images Comment 

Beef (20 images) All beef was classified correctly without error 

Pork (20 images) All pork was classified correctly without error 
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3.4 Epoch 

In our tests, the model did well. At 20 epochs, it got 96.05% accuracy and a perfect 100% validation. When we 
pushed it to 100 epochs, it improved a bit to 96.93% accuracy, still holding strong at 100% validation. This shows 
the model is not just good from the start but also gets even better with more training. Fig. 12 and 13 show the 
result of the accuracy and validation accuracy.  

 

Fig. 12 Epochs 20 

 

Fig. 13 Epochs 100 

4. Conclusion 

In conclusion, this work successfully addresses the challenge of accurately classifying beef and pork through the 
development of an Android application. Leveraging advanced technologies, including the TensorFlow Lite model 
and MobileNet V2, the app provides users with a user-friendly tool to distinguish between these meats 
conveniently. The compact size of 14.64MB ensures minimal impact on device storage, emphasizing efficiency. 
Through rigorous testing and fine-tuning in Google Colab and Android Studio, the application achieves an 
impressive accuracy rate of 96.93%. This work not only contributes to combating deceptive meat practices but 
also aligns with dietary preferences, particularly in Muslim-majority regions. Overall, the developed Android 
application stands as a practical and effective solution, merging technology and user convenience for reliable beef 
and pork classification. 
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