

Applied Information Technology And Computer Science Vol. 3 No. 2 (2022) 032-049

© UniversitiTun Hussein Onn Malaysia Publisher’s Office

AITCS

Homepage: http://publisher.uthm.edu.my/periodicals/index.php/aitcs

e-ISSN :2773-5141

*Corresponding author: zubaile@uthm.edu.my
2022 UTHM Publisher. All rights reserved.
publisher.uthm.edu.my/periodicals/index.php/aitcs

 Comparison of Convolutional Neural Network
and Artificial Neural Network for Android
Botnet Attack Detection

Selvatarasi Balasunthar1, Zubaile Abdullah1*

1Faculty of Computer Science and Information Technology,
Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, 86400, MALAYSIA

DOI: https://doi.org/10.30880/aitcs.2022.03.02.003
Received 24 July 2022; Accepted 06 October 2022; Available online 30 November 2022

Abstract: Mobile devices, such as Androids, are now widely used. Androids are used
for making phone calls, sending text messages, web browsing, social networking, and
online banking transactions. The Android operating system's global popularity makes
it a more appealing target for cyber criminals to gains access on Android device, to
steal valuable data by installing an Android botnet attack. Thus, this research presents
the Android botnet attack detection using deep learning algorithms, Convolutional
Neural Network (CNN) and Artificial Neural Network (ANN). The experiment was
carried out and tested on 1929 botnet dataset and 4873 benign applications using
different categories of permission features. The research covers several performance
metrics like accuracy, precision, recall, f1-score, true-positive and false-positive in
identifying the best performance classifiers. At the end of the study, the ANN
classifier was identified to be best classifiers for Android Botnet attack detection with
the highest detection accuracy 96.35% whereas the detection accuracy obtained by
CNN is 95.44%. In addition, the performance metrics derived from Android botnet
attack detection using CNN and ANN were better than those obtained from prior
studies that employed machine learning algorithms for Android botnet attack
detection.

Keywords: Android Botnet Detection, Deep Learning, Permission Feature, CNN,
ANN

1. Introduction

A botnet is a network of devices that are controlled by a botmaster, a malevolent user, or a group
of malicious attackers. The botnet comes with a Command and Control (C&C) infrastructure, which
allows malicious actors to send commands, updates, and status information to the bots [1]. Android
botnet attacks are more dangerous than other mobile malware such as mobile phishing attacks,
ransomware, spyware and Trojans. This is because they pose dangerous threats to Android devices and
networks [2]. The botmaster can then use the infected Android devices to commit cybercrimes or cyber-
attacks, such as sending spam messages, disrupting networks, launching distributed denial-of-service
(DDoS) attacks, and collecting sensitive data for illegal purposes.

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

33

Due to Android botnet attacks malicious action towards the android users, many researchers have
extensively done research to detect the Android Botnet attack [3]. To detect Android botnet attacks, the
researchers used well-known machine learning methods, but these traditional methods are incapable of
detecting new sophisticated Android Botnet attack. According to research findings, the majority of the
machine learning techniques used in the classification models achieved an overall classification
accuracy of over 85% [4]. As a consequence, attacks and threats of android botnets have increased in
recent days. According to a survey conducted by Azure DDoS protection, the number of Android botnet
threat families has increased significantly in both volume and complexity. In the first half of 2021, the
average daily number of attacks increased by 25% when compared to the fourth quarter of 2020 [2].

Many studies have been conducted to detect Android botnet attacks, but their classification accuracy
can still be improved [5]. Lower accuracy is caused by use of insufficient data or smaller data in the
experiments. Since, machine learning typically requires structured data and implements traditional
algorithms, it is incapable of handling large amounts of unstructured data [6]. The small size of a dataset
is also responsible for poor performances of Android botnet detection [4]. This has an effect on detection
accuracy because as the size of the sample data collection is limited, the confidence in the estimate
reduces and the uncertainty rises, resulting in lower precision. When it comes to achieving high efficacy
of Android botnet detection, developing more data is always a good idea. Furthermore, the use of
untrained data has an impact on the Android botnet detection result [7]. Trained data is the primary and
most important data that machines use to learn and predict. Increasing the amount training data provides
more information and assist in better user fit.

These findings indicate that the proposed method for detecting Android botnet attacks could be
improved further. Many studies have shown that using deep learning algorithms can improve the
detection of android botnet attacks. As a result, this study was proposed to detect android botnet attacks
in order to improve detection accuracy, precision, recall, f1-score, true-positive and false-positive
results. Due to the organized hierarchy of increasing abstraction and complexity, deep learning
algorithm has used in this study. The total 130 permission features extracted from 1,929 botnet dataset,
and 4873 benign applications. These features were then used to perform feature extraction and feature
selection. The Convolutional Neural Networks (CNNs) and Artificial Neural Networks (ANNs)
algorithms used to test and train the datasets to distinguish between botnet and benign applications. The
following are the objectives of this project:

• To study the permission features for Android botnet attack detection.
• To propose Android botnet detection using Convolutional Neural Network and Artificial Neural

Network algorithm.
• To test and validate the proposed model using Accuracy, Recall, Precision, F1- score, True-

Positive and False-Positive.

2. Related Work

2.1 Android Botnet Architecture

The Android botnet is examined using the botmaster's architectural design. Botmaster builds robust and
complex botnets using a variety of topologies and tools. As a result, it is more difficult to detect the
botnet. A botnet can be divided into two parts based on its architectural design which are centralized
and decentralized [4].

Centralized generally employs Hypertext Transfer Protocol (HTTP) and Internet Relay Chat (IRC)
protocols. IRC operates in real time on internet text messages. Due to the flexibility and simple
architecture, IRC bots are popular among botnet owners. The limitation of the IRC botnet is that it can
be easily detected by identifying IRC traffic for regular traffic. HTTP botnet traffic can easily be
disguised as normal traffic. When the HTTP protocol is used for communication, detection becomes

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

34

more difficult. Some well-known botnets that use an HTTP-based model are Click Bot, Bobox, and
Rustock [2].

The vulnerability of the Command-and-Control channel is overcome by decentralized models. In
the decentralized model, a large number of bots can be created in a single botnet, making the detection
extremely difficult. The decentralized model employs P2P protocols that connect all bots. These
protocols are primarily concerned with concealing a Command-and-Control channel. When new
commands are issued, botmaster employs a variety of bots. Bots are reliant on previous bots or any
other bots that are linked to it. P2P architecture is extremely complex and difficult to detect. Slapper,
Phatbot, Sinit, and Nugache are some of the examples for P2P architecture. The hybrid model is a
combination of decentralized and centralized models. Botnet traffic can be hidden using an encryption
key in the hybridized model [2].

2.2 Android Botnet Analysis Techniques

Two common techniques used for Android botnet detection can be categorized into static and dynamic
analysis.

Static analysis is the examination of an application without running it. Static analysis can be
performed directly on the source code of the application or the corresponding binary file, using reverse
engineering techniques to extract specific features and methods invoked from the source code. Manifest
files can be used to investigate features and methods in Android apps. In addition to detecting malicious
payload, extracted features or methods can be used to profile and weigh malware threats [8]. In contrast,
some of the features and methods that are typically extracted from application source code are
Requested Permission, Imported Package, API Calls, Instructions or Operation Code (Opcode), Data
Flow, and Control Flow [9]. Static analysis is simple and effective at detecting and classifying known
Android botnet attacks; however, due to obfuscation and encryption techniques used by Android botnet
authors, it is incapable of detecting unknown or modified Android botnet attacks. Dynamic analysis is
used to detect Android botnet attacks in order to circumvent this limitation.

Rather than examining the source code, dynamic analysis examines the application sample while it
is running in a controlled environment. According to recent research, the application's behaviour can be
monitored using Logged Behavior Sequence, System Calls and Dynamic Tainting, Data Flow and
Control Flow [9], since this statement is prepared for detection analysis by monitoring and logging
every relevant execution operation.

2.3 Deep Learning Algorithm

A deep learning algorithm is a subset of a machine learning algorithm that performs data processing
and calculations on massive amounts of data using multiple layers of neural networks. The deep learning
system can learn from both structured and unstructured data that does not require human involvement.
The way the human brain operates, and functions inspires deep learning algorithms as the deep learning
algorithms rely on neural networks in the same way as the human brain uses millions of neurons to
compute information [1]. There are three different types of layers in deep learning algorithms which are
known as input layer, hidden layer, and output layer. The input features and a well-known dataset are
included in the input layer. Hidden neurons which are known as hidden layers, must be educated in
order for the brain to function properly. The output layer generates the value to be categorized. Deep
learning algorithms can be classified into two categories which are the supervised and unsupervised [3].

Deep learning algorithms that require external assistance are known as supervised deep learning
algorithms. Regression and classification problems are the two most common types of supervised
learning. The goal of classification is to predict a label or class. Classification algorithms are used to
predict a categorical variable, whereas regression algorithms are used to predict a continuous quantity.
When training materials are not classified or labeled, unsupervised deep learning methods are used.

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

35

Unsupervised learning aims to pre-train a model called discriminator or encoder network to be used for
other tasks. Auto-encoder, clustering, learning and generative models are some of the categories from
unsupervised deep learning algorithms.

2.3.1 Convolutional Neural Network (CNN)

The most promising deep learning model development method is the Convolutional Neural Network
(CNN), also known as ConvNets. CNN is skilled at detecting simple patterns in data that are then used
to create more complex patterns in higher layers. Convolutional layer, pooling layer, and fully linked
layer are the three layers that make up a CNN algorithm. The CNN’s performance can be enhanced
depending on the dataset's features, the number of layers, the number of filters (kernels), and the size
of the filters [3]. The required number of layers is determined by the sophistication and non-linearity of
the data, as deeper layers of the CNN recover more abstract features [3]. As the number of layers and
filters increases, so does the computational complexity. Furthermore, with more complex architectures,
the risk of overfitting for the classification algorithm model increased and resulting in poor prediction
accuracy on the testing sets. During model training, techniques like 'dropout' and 'batch regularization'
are used to reduce overfitting.

The CNN classification model as shown in Figure 1 is intended to classify the Android botnet as
well as benign samples. Convolutional layer generates the feature vectors from the pre-processed data.
The pooling layer used to reduce the data dimension by deleting irrelevant data as it has been converted
into feature vectors. Following the pooling layer, the feature vector is flattened by a multidimensional
array. The flattened array is then loaded into CNN algorithm in order to train the model [1].
Accordingly, the final layer of CNN is the data link layer, used to classify the android botnet samples
and benign samples after the CNN model has been trained. A one-dimensional Convolutional Neural
Network can be used to process datasets with a one-dimensional structure (1D CNN). The
dimensionality of the input data and how the filter (feature detector) slides across the data are the main
differences between a 1D and a 2D or 3D CNN. The filters in a 1D CNN only move in one direction
across the input data.

Figure 1: The 1D CNN model to classify Android Botnet attacks [3]

The sigmoid activation function used in 1D CNN model and will be calculated as follows:

𝑆𝑆 = 1
1+𝑒𝑒−𝑥𝑥

 Eq. 1

 The final classification layer generates results that correspond to the 'botnet' or 'benign' classes.
The activation function for ReLU (Rectified Linear Units) is f(x) = max(0, x), which is implemented in

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

36

the convolutional layers. ReLU can help prevent vanishing and exploding gradients. ReLU has been
found to be more efficient in terms of time and cost for training large data sets than traditional non-
linear activation functions such as Sigmoid or Tangent functions.

2.3.2 Artificial Neural Network (ANN)

Artificial Neural Networks (ANN) is a deep learning algorithm that are inspired by biological neurons
in the brain and central nervous system. The ANN's inputs are fed to the artificial neurons in one or
more hidden layers, where they are weighted and processed to determine the next layer's output. Back-
propagation of errors in ANN is based on gradient descent, which allows the weights and biases of
neurons in the hidden layer and output layer to be adaptively modified [3]. Along with its self-adaptive
nature, ANN can capture very complicated and non-linear interactions between dependent and
independent variables without the need for prior information. In a variety of applications, ANN have
been used to solve a wide range of classification problems.

Figure 2: The classification model of ANN [11]

ANN algorithm consists of three layers which are input layer, hidden layer and output layer in
Figure 2. In order to consider compelling to (0-1) range, the input layers and output layers must have
numeric values. As a result, the data is normalized within the (0-1) range before being passed to the
input layer [3]. In the hidden layer, the weight is the set of performance parameters for the feed-forward
neural network. Starting with random weights, bestowing the data, instance by instance, modifying the
weights, imparting the error for each instance, and continuing until the error is very small, the training
method of the ANN is exaggerated. The backpropagation algorithm adjusts the weights for each
instance based on the variance of the actual output and function output.

2.4 Existing Android Botnet Detection Techniques

Table 1 shows the comparison of existing Android botnet detection techniques and proposed research
Table 1: The comparison of existing Android botnet detection techniques

Research
Paper

Approach Dataset Features Classifier Strength

[4] Static
analysis

1365 botnet dataset
from ISCX

Android Botnet
and 1960 Benign
application from

Google Play Store

Requested
permission

and protection
levels

Random Forest,
Multilayer
Perceptron,

J-48 Decision Tree
and Naive Bayes

Promising
Detection

Power

[10] Static
analysis

Benign apps from
open-source site
and Botnet apps

from botnet
repositories

Requested
permission
and used
features

Naive Bayes, A
Statistical Classifier,

Support Vector
Machine, Reduced

Error Pruning

High
accuracy
and low
positive

rate

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

37

Table 1: (cont.)
Research

Paper
Approach Dataset Features Classifier Strength

[8] Static
analysis

1400 botnet
applications from

ISCX Android
Botnet and 1400

Benign application
from Google Play

Store

Permissions,
Broadcast

Receivers and
Background
Receivers

Support Vector
Machine, Random

Forest, Naive
Bayes,

J-48 Decision Tree,
Bagging

Four
separate

layers and
using
MD5

signatures

Proposed Static
analysis

1929 botnet
applications from

ISCX Android
Botnet and 4873

Benign application
from Google Play

Store

Permissions Convolutional Neural
Network, Artificial

Neural Network

Expecting
high

detection
accuracy,

recall,
precision

3. Methodology

The research methodology is perhaps the sequence of measures to be followed during the evaluation of
research studies. The detection framework is made up of basic system components and general
processing steps for detecting Android botnet attacks using CNN and ANN. There are six phases in
total which include raw data, pre-processing, feature extraction and feature selection, classification
algorithm, and performance metrics as shown in Figure 3.

Figure 3: Proposed Android Botnet Attack Detection Methodology

3.1 Raw Data

The term "raw data" refers to the information that has not been filtered or normalized. As a consequence,
to perform Android botnet detection using Convolutional Neural Networks and Artificial Neural
Networks, the Android dataset, also known as the ISCX dataset, which contains 1,929 botnet datasets
from 14 different families, was obtained from an online source (ISCX-AndroidBot). Moreover, this
study also used a total of 4873 benign application downloaded from Google Play Store to facilitate
supervised learning while training the Convolutional Neural Network and Artificial Neural Network
algorithm. The benign applications were found in a variety of categories on the Google Play store.
While downloading the dataset from an online source, the botnet datasets were found in form of .apk
file whereas for benign applications, the name list of applications only provided. The .apk file for each
benign applications were obtained by downloading the specific Google Play applications using the
APKPure. In order to decompress the .apk files of the ISCX botnet dataset and benign applications,
VirusTotal has been used. VirusTotal decompiles the .apk files to source code folders and declares the

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

38

benign applications files to be virus-free and identifies the malware percentage of the botnet for botnet
dataset files. It also provides the detailed information of each dataset file which will be useful to extract
the features.

3.2 Data Pre-Processing

Data pre-processing is the data mining technique which changes the data to an efficient and useful
format. The data is preprocessed to identify those features from the data that play a significant role in
the classification of dependent features, which enables this study to proceed. The data and 130 extracted
permission features from the decompiled .apk file, of 1929 botnet datasets which include 14 types of
botnet families and 4873 benign applications, is loaded and saved as a.CSV (comma delimited) file
with each feature denoted by a '1' or a '0,'. These properties are represented as a binary number feature
vector, with '1' indicating the botnet and '0' indicating the benign [3]. The data file is then preprocessed
for training and testing by removing redundant data. Preprocessing of the botnet dataset and benign
application is essential in identifying relevant data for the study before it's being used to implement it
in the deep learning machine. The RapidMiner and WEKA tools were used to assist with the
preprocessing process by removing the redundant data and applying the nominal filters to the datasets.

3.3 Feature Extraction

The process of extracting features from a dataset is known as feature extraction. Since large datasets
contain many variables, processing them requires a large amount of computing resources. Therefore,
feature extraction involves reducing the number of the variables of the large dataset to get the available
variable for the research. Initially, 130 permission features were extracted for this study from the raw
data, 1929 ISCX(Android-Bot) and 4873 benign applications. To perform the feature extraction on
these 130 permission features, three new features were extracted based on the permission feature’s
protection level. The protection level of permission feature consists of Dangerous permission feature,
Normal permission feature and Signature permission feature as shown in Table 2.

Table 2: The protection level of permission features

Protection Level
Permission Description

Dangerous
A higher-risk permission that grants requesting applications access to
isolated application-level features while posing little risk to other apps, the
system, or the user.

Normal A lower-risk permission that would grant a requesting application access to
private user data or device control, which could be harmful to the user.

Signature
The system will only grant this permission if the requesting application is
registered with the same certificate as the one that declared on the
permission.

These features indicate how the application is concerned with gaining privilege on the target
mobile's resources and accessing more resources. So, the collected dataset and features are extracted
according to the protection level of permission features.

3.4 Feature Selection

Feature selection is a technique for removing redundant and irrelevant features from a dataset. The
Information Gain (IG) algorithm is used to implement the feature selection approach. To ensure the
selection of the most discriminant features, the obtained feature sets are passed through the information
gain (IG) feature selection algorithm. In terms of feature selection and ranking methods, the IG is very
accessible. It is defined as the amount of data provided by the feature items for the document category

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

39

[11]. In order to measure the importance of features for classification, IG is calculated by how much of
a term can be used for classification of information as shown Equation 2.

𝐸𝐸 = −∑ 𝑃𝑃𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑃𝑃𝑖𝑖𝐶𝐶
𝑖𝑖 Eq.2

Approaching feature selection, the list of capabilities is chosen by algorithmic processing on the
WEKA tool by implementing the Information Gain. The top 10 ranked features and top 20 ranked
features were selected for Convolutional Neural Network and Artificial Neural Network model
classification by processing the algorithm.

3.5 Classification Algorithm

A classification algorithm is used to categorize each byte of data in a dataset into one of several
predefined groups. The performance of Android botnet detection was evaluated on the Convolutional
Neural Network and Artificial Neural Network classifier using the extracted features and selected
features of the dataset. The detection model will be classified with the assistance of the WEKA tool.
10-Fold Cross Validation was used to test and train the datasets, since this technique divides the dataset
into ten parts, referred to as "folds," and holds each part in turn before averaging the results. As a result,
each data point in the dataset is tested once and then trained nine times. The goal of cross-validation is
to avoid overfitting and make predictions that are more general.

3.6 Performance Metrics

In this phase, the performance of both CNN and ANN compared in terms of accuracy, precision, recall,
f1-score, true-positive and false-positive as the following equations:
1. Accuracy: The rate of correctly classified instances of both classes is measured by accuracy in

Equation 3. The botnet class is the positive class for Android botnet detection. (TP = True-Positive,
TN = True-Negative, FP = False-Positive, FN = False-Negative)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

 Eq. 3

2. Precision: Measures the percentage of test data that is correctly identified as malicious android bot
application from the malicious android botnet application classes in Equation 4. (TP = True-
Positive, FP = False-Positive)

𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 Eq. 4

3. Recall: The percentage of malicious android botnet application classes that were correctly detected
is measured by recall in Equation 5. (TP = True-Positive, TN = True-Negative)

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

 Eq. 5

4. F1-Score: The F1-score is a test accuracy metric that assesses the balance between precision and
recall in Equation 6.

𝐹𝐹1 − 𝑆𝑆𝐴𝐴𝑙𝑙𝐴𝐴𝑃𝑃 = 2∗𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅∗𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇
𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅+𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇

 Eq. 6

5. True-Positive: The number of botnet applications that are correctly classified is known as true
positive (TP) in Equation 7. (TP = True-Positive, FN = False-Negative)

𝑇𝑇𝐴𝐴𝐴𝐴𝑃𝑃 − 𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 Eq. 7

6. False-Positive : The number of botnet applications classified incorrectly is known as false positives
(FP) in Equation 8. (TN = True-Negative, FP = False-Positive)

𝐹𝐹𝐴𝐴𝑙𝑙𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇

 Eq. 8

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

40

3.7 Software and Hardware

The Waikato Environment for Knowledge Analysis (WEKA) is used since it is a data mining software
that uses a collection of deep learning algorithms. WEKA is a collection of tools for regression,
association, clustering, data preparation, visualization, and classification that can be used together or
separately. The explorer, experimenter, knowledge flow, workbench, and simple CLI are the five
applications available on WEKA. The explorer implements the data mining tasks on row data with a
graphical interface. Aside from that, Rapid Miner was used to pre-process the datasets in order to
remove redundant data. This is due to the fact that Rapid Miner makes ease datasets preparation for
predictive modeling. Table 3 shows the hardware requirement to conduct this research.

Table 3: List of Hardware Requirements

Hardware Description
Swift SF514-54T Processor Intel(R) Core(TM) i5-1035G1 CPU @ 1.00GHz 1.19 GHz

Windows Edition Windows 10 Pro
System Type 64-bit operating system, x64-based processor

Installed RAM 8.00 GB (7.78 GB usable)

4. Results and Discussion

4.1 Experiment Setup

While downloading the 1929 botnet dataset from (ISCX-AndroidBot), the botnet dataset was found in
form of .apk file whereas the 4873 benign applications list was generated from the Google Play Store.
Then, the .apk file for each benign applications were obtained by downloading the specific Google Play
Store applications using the APKPure.

In order to decompress the .apk files of the ISCX botnet dataset and benign applications, VirusTotal
has been used. By uploading the .apk file into VirusTotal, it decompiles the files to source code folders
that provides the detailed information of each dataset file which will be useful to extract the features.
The useful information includes basic properties, permissions, activities, receivers, intent filters by
action, intent filter by category, interesting strings, warning, contents metadata, contained files by type
and contained files by extension. Other than that, VirusTotal also declares the benign applications files
to be virus-free and identifies the malware percentage of the botnet dataset files as shown in Figure 4.

Figure 4: VirusTotal also declares the benign applications files to be virus-free and identifies the malware
percentage of the botnet dataset files

4.2 Data Pre-Processing

The total of 6802 datasets and 130 permission features that obtained from decompiling the .apk file is
loaded and saved as a.CSV (comma delimited) file with each feature denoted by a '1' or a '0,'. These
properties are represented as a binary number feature vector, with '1' indicating the botnet and '0'

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

41

indicating the benign [3]. The data file is then preprocessed for training and testing by removing
redundant data. The 1929 botnet dataset and 4873 benign applications were pre-processed in the Rapid
Miner to identify those features from the data that play a significant role in the classification of
dependent features, making this study possible. As a result, the pre-processing has been completed by
declaring that the datasets are free to use.

Figure 5: Data pre-processing in RapidMiner Studio and data filtering process in the Weka tool.

The preprocessed dataset file from RapidMiner Studio was then loaded and executed in the Weka
tool to apply filters that make data preparation easier as shown in Figure 5. Following that, the nominal
filter was applied to the numeric datasets. This is because a nominal rating indicates the filter's ability
to prevent a specific percentage of solid particles larger than the nominal rating's stated micron size
from passing through. The weight of these particles of each contaminant is then calculated. In addition,
the nominal rating also indicates the degree of filtration or efficiency.

4.3 Feature Extraction

Three new features were extracted from the 130-permission which was obtained from the raw data,
1929 botnet dataset and 4873 benign applications by decompiling the .apk files using Virus Total. These
three new features were extracted by classifying the permission features protection level which are
consist of Dangerous permission feature, Normal permission feature and Signature permission feature.
These features indicate how the application is concerned with gaining privilege on the target mobile's
resources and accessing more resources. The features were extracted as shown in Table 4.

Table 4: Extracted Features based on the Permission Protection Level

Permission Protection Level List of Features

Dangerous

ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION

ACCESS_MOCK_LOCATION
ADD_VOICEMAIL

AUTHENTICATE_ACCOUNTS
CALL_PHONE

CAMERA
GET_ACCOUNTS

PROCESS_OUTGOING_CALLS
READ_CALENDAR
READ_CALL_LOG

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

42

Table 4: (cont.)
Permission Protection Level List of Features

Dangerous

READ_CONTACTS
READ_EXTERNAL_STORAGE

READ_PHONE_STATE
READ_SMS

RECEIVE_MMS
RECEIVE_SMS

RECEIVE_WAP_PUSH
RECORD_AUDIO

SEND_SMS
USE_SIP

WRITE_CALENDAR
WRITE_CALL_LOG
WRITE_CONTACTS

WRITE_EXTERNAL_STORAGE

Normal

ACCESS_LOCATION_EXTRA_COMMANDS
ACCESS_NETWORK_STATE

ACCESS_WIFI_STATE
BLUETOOTH

BLUETOOTH_ADMIN
BROADCAST_STICKY

CHANGE_NETWORK_STATE
CHANGE_WIFI_MULTICAST_STATE

CHANGE_WIFI_STATE
DISABLE_KEYGUARD

EXPAND_STATUS_BAR
FLASHLIGHT

GET_PACKAGE_SIZE
GET_TASKS
INTERNET

KILL_BACKGROUND_PROCESSES
MANAGE_ACCOUNTS

MODIFY_AUDIO_SETTINGS
NFC

PERSISTENT_ACTIVITY
READ_HISTORY_BOOKMARKS

READ_PROFILE
READ_SOCIAL_STREAM
READ_SYNC_SETTINGS

READ_SYNC_STATS
READ_USER_DICTIONARY

RECEIVE_BOOT_COMPLETED
REORDER_TASKS

RESTART_PACKAGES
SET_ALARM

SET_TIME_ZONE
SET_WALLPAPER

SET_WALLPAPER_HINTS
SUBSCRIBED_FEEDS_READ
SUBSCRIBED_FEEDS_WRITE

USE_CREDENTIALS

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

43

Table 4: (cont.)
Permission Protection Level List of Features

Normal

VIBRATE
WAKE_LOCK

WRITE_HISTORY_BOOKMARKS
WRITE_PROFILE

WRITE_SMS
WRITE_SOCIAL_STREAM
WRITE_SYNC_SETTINGS

WRITE_USER_DICTIONARY

Signature

ACCESS_CHECKIN_PROPERTIES
ACCESS_SURFACE_FLINGER

ACOUNT_MANAGER
BATTERY_STATS

BIND_ACCESSIBILITY_SERVICE
BIND_APPWIDGET

BIND_DEVICE_ADMIN
BIND_INPUT_METHOD
BIND_REMOTEVIEWS
BIND_TEXT_SERVICE
BIND_VPN_SERVICE
BIND_WALLPAPER

BRICK
BROADCAST_PACKAGE_REMOVED

BROADCAST_SMS
BROADCAST_WAP_PUSH

CALL_PRIVILEGED
CHANGE_CONFIGURATION

CHANGE_COMPONENT_ENABLED_STATE
CLEAR_APP_CACHE

CLEAR_APP_USER_DATA
CONTROL_LOCATION_UPDATES

DELETE_CACHE_FILES
DELETE_PACKAGES

DEVICE_POWER
DIAGNOSTIC

DUMP
FACTORY_TEST

FORCE_BACK
GLOBAL_SEARCH
HARDWARE_TEST

INJECT_EVENTS
INSTALL_LOCATION_PROVIDER

INSTALL_PACKAGES
INTERNAL_SYSTEM_WINDOW

MANAGE_APP_TOKENS
MASTER_CLEAR

MODIFY_PHONE_STATE
MOUNT_FORMAT_FILESYSTEMS

MOUNT_UNMOUNT_FILESYSTEMS
READ_FRAME_BUFFER

READ_INPUT_STATE

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

44

Table 4 : (cont.)
Permission Protection Level List of Features

Signature

READ_LOGS
REBOOT

SET_ACTIVITY_WATCHER
SET_ALWAYS_FINISH

SET_ANIMATION_SCALE
SET_DEBUG_APP

SET_ORIENTATION
SET_POINTER_SPEED

SET_PREFERRED_APPLICATIONS
SET_PROCESS_LIMIT

SET_TIME
SIGNAL_PERSISTENT_PROCESSES

STATUS_BAR
SYSTEM_ALERT_WINDOW

UPDATE_DEVICE_STATS
WRITE_APN_SETTINGS

WRITE_GSERVICES

WRITE_SECURE_SETTINGS
WRITE_SETTINGS

4.4 Feature Selection

Feature selection processes have been carried out to identify the top ranked 10 features and 20 features
from the 130 permission features. To identify the top ranked features using the full training dataset, 130
permission features were executed in the WEKA tool. The ‘Select Attributes’ function has been chosen
for the feature selection process. The Information Gain attribute were applied to ensure that the most
discriminating features were selected. Figure 6 shows the feature selection process using the WEKA
tool. Once the feature selection process is done, the list of capabilities features is chosen by manual
judgment. The top ranked of 10 features and top ranked of 20 features were selected and tabled for
Convolutional Neural Networks and Artificial Neural Networks model classification by processing the
algorithm as shown in Table 5 and Table 6.

Figure 6: The features selection process using WEKA tool

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

45

Table 5: Selected Top 10 Ranked Features

Selected Features Information Gain (IG) Value Protection Level
SEND_SMS 0.356793041 Dangerous

READ_PHONE_STATE 0.244543876 Dangerous
RECEIVE_SMS 0.235831666 Dangerous

READ_SMS 0.229583984 Dangerous
INTERNET 0.217653419 Normal

WRITE_SMS 0.159735306 Normal
CALL_PHONE 0.119759904 Dangerous

ACCESS_NETWORK_STATE 0.106684474 Normal
RECEIVE_BOOT_COMPLETED 0.104624444 Normal

READ_CONTACTS 0.101539954 Dangerous

Table 6: Selected Top 20 Ranked Features

Selected Features Information Gain (IG) Value Protection Level
SEND_SMS 0.356793041 Dangerous

READ_PHONE_STATE 0.244543876 Dangerous
RECEIVE_SMS 0.235831666 Dangerous

READ_SMS 0.229583984 Dangerous
INTERNET 0.217653419 Normal

WRITE_SMS 0.159735306 Normal
CALL_PHONE 0.119759904 Dangerous

ACCESS_NETWORK_STATE 0.106684474 Normal
RECEIVE_BOOT_COMPLETED 0.104624444 Normal

READ_CONTACTS 0.101539954 Dangerous
BIND_DEVICE_ADMIN 0.078817724 Signature
RESTART_PACKAGES 0.075427169 Normal

WRITE_APN_SETTINGS 0.057685673 Signature
WRITE_CONTACTS 0.057490069 Dangerous

WRITE_HISTORY_BOOKMARKS 0.054544365 Normal
READ_HISTORY_BOOKMARKS 0.049460075 Normal
WRITE_EXTERNAL_STORAGE 0.049106294 Dangerous

ACCESS_WIFI_STATE 0.048171406 Normal
MOUNT_UNMOUNT_FILESYSTEMS 0.044971003 Signature

READ_LOGS 0.037499214 Signature

4.5 Classification Algorithm

The classification algorithm is used to categorize each byte of data in a dataset into one of several
predefined groups. The performance of Android botnet detection using the extracted features and
selected features were evaluated on the Convolutional Neural Network and Artificial Neural Network
classifiers. In total there were six types of classification algorithm models with different types of
features were trained on each classification algorithm, Convolutional Neural Network and Artificial
Neural Network. 10-Fold Cross Validation was used and therefore it divides the dataset into ten parts,
known as "folds," and holds each part in turn before averaging the results. As a result, each data point
in the dataset is tested and trained nine times. The classification models for Android Botnet Detection
using Convolutional Neural Network and Artificial Neural Network are shown in Table 7.

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

46

Table 7: The Classification Algorithms Model

Classification
Algorithm

Convolutional Neural Network Artificial Neural Network

Categories of
Classification
Model using

different features

130 Permission Features 130 Permission Features
Dangerous Permission Feature Dangerous Permission Feature

Normal Permission Feature Normal Permission Feature
Signature Permission Feature Signature Permission Feature

Top 10 ranked features Top 10 ranked features
Top 20 ranked features Top 20 ranked features

4.6 Result and Discussion

Based on the Android Botnet attack detection using Convolutional Neural Network and Artificial
Neural Network classifier, the detection results have been obtained for each category of classification
model. This section discusses the result of the experiment and performed some analysis for performance
metric of the datasets in terms of Accuracy, Precision, Recall, F1-Score, True-Positive and False-
Positive.

Table 8: Performance Metrics for CNN and ANN using 130 Permission

 Accuracy Precision Recall F1-Score True-Positive False-Positive
CNN 95.44% 0.954 0.954 0.954 0.954 0.071
ANN 96.35% 0.964 0.964 0.963 0.964 0.071

Based on the detection result of Table 8, the ANN classifier has higher accuracy rate with the value
96.35% while CNN classifier has 95.44% accuracy rate. The precision, recall, f1-score and true-positive
rate for ANN classifier also achieves higher rate with the value 0.964, 0.964, 0.963 and 0.963 whereas
for CNN classifier are 0.954, 0.954, 0.954 and 0.954. The false-positive rate for ANN and CNN
classifier is same with the value 0.071.

Table 9: Performance Metrics for CNN and ANN using Dangerous Permission

 Accuracy Precision Recall F1-Score True-Positive False-Positive
CNN 90.94% 0.912 0.909 0.906 0.909 0.200
ANN 92.94% 0.930 0.929 0.928 0.929 0.148

Based on the detection result of Table 9, the ANN classifier has higher accuracy rate with the value
92.94% while CNN classifier has 90.94% accuracy rate. The precision, recall, f1-score and true-positive
rate for ANN classifier also achieves higher rate with the value 0.930, 0.929, 0.928 and 0.929 whereas
for CNN classifier are 0.912, 0.909, 0.906 and 0.909. The false-positive rate for ANN is low with the
value 0.148 while for CNN is 0.200.

Table 10: Performance Metrics for CNN and ANN using Normal Permission

 Accuracy Precision Recall F1-Score True-Positive False-Positive
CNN 90.11% 0.900 0.901 0.901 0.901 0.152
ANN 93.24% 0.932 0.932 0.932 0.932 0.107

Based on the detection result of Table 10, the ANN classifier has higher accuracy rate with the
value 93.24% while CNN classifier has 90.11% accuracy rate. The precision, recall, f1-score and true-
positive rate for ANN classifier also achieves higher rate with the value 0.932, 0.932, 0.932 and 0.932

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

47

whereas for CNN classifier are 0.900, 0.901, 0.901 and 0.901. The false-positive rate for ANN is low
with the value 0.107 while for CNN is 0.152.

Table 11: Performance Metrics for CNN and ANN using Signature Permission

 Accuracy Precision Recall F1-Score True-Positive False-Positive
CNN 86.65% 0.866 0.867 0.859 0.867 0.278
ANN 88.05% 0.888 0.880 0.872 0.880 0.278

Based on the detection result of Table 11, the ANN classifier has higher accuracy rate with the
value 88.05% while CNN classifier has 86.65% accuracy rate. The precision, recall, f1-score and true-
positive rate for ANN classifier also achieves higher rate with the value 0.888, 0.880, 0.872 and 0.880
whereas for CNN classifier are 0.866, 0.867, 0.859 and 0.867. The false-positive rate for ANN and
CNN classifier is same with the value 0.278.

Table 12: Performance Metrics for CNN and ANN using Top 10 Ranked Permission

 Accuracy Precision Recall F1-Score True-Positive False-Positive
CNN 88.86% 0.889 0.889 0.884 0.889 0.229
ANN 91.50% 0.914 0.915 0.913 0.915 0.160

Based on the detection result of Table 12, the ANN classifier has higher accuracy rate with the
value 91.50% while CNN classifier has 88.86% accuracy rate. The precision, recall, f1-score and true-
positive rate for ANN classifier also achieves higher rate with the value 0.914, 0.915, 0.913 and 0.915
whereas for CNN classifier are 0.889, 0.889, 0.884 and 0.889. The false-positive rate for ANN is low
with the value 0.160 while for CNN is 0.229.

Table 13: Performance Metrics for CNN and ANN using Top 20 Ranked Permission

 Accuracy Precision Recall F1-Score True-Positive False-Positive
CNN 89.21% 0.891 0.892 0.889 0.892 0.204
ANN 95.22% 0.952 0.952 0.952 0.952 0.073

Based on the detection result of Table 13, the ANN classifier has higher accuracy rate with the
value 95.22% while CNN classifier has 89.21% accuracy rate. The precision, recall, f1-score and true-
positive rate for ANN classifier also achieves higher rate with the value 0.952, 0.952, 0.952 and 0.952
whereas for CNN classifier are 0.891, 0.892, 0.889 and 0.892. The false-positive rate for ANN is low
with the value 0.073 while for CNN is 0.204.

In overall, the Artificial Neural Network classifier performs better than Convolutional Neural
Network to detect Android botnet attacks by achieving higher accuracy, precision, recall, f1-score, true-
positive and low false-positive value on all the above classification models as shown in Table 14. This
is due to the structure of Artificial Neural Network which has a hidden layer that contains sigmoid
activation function. This increases the detection rate of Android botnet attacks as the sigmoid function
exists between the range (0 and 1) [12]. As a result, it is especially beneficial for models that predict
probability as an output. The activation function processes a weighted sum of inputs, and the output
serves as an input to the next layer. Because the probability of anything exists only between 0 and 1,
the sigmoid is the best choice. Due to the inherent complexity of CNN, the large number of layers and
the massive amounts of data required. Thus, the detection performance metrics of Convolutional Neural
Network is lesser compared to Artificial Neural Network.

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

48

Table 14: Comparison of the Detection Result for All Classification Algorithm Models

Types of
Features

 Accuracy Precision Recall F1-
Score

True-
Positive

False-
Positive

130 Permission CNN 95.44% 0.954 0.954 0.954 0.954 0.071
ANN 96.35% 0.964 0.964 0.963 0.964 0.071

Dangerous
Permission

CNN 90.94% 0.912 0.909 0.906 0.909 0.200
ANN 92.94% 0.930 0.929 0.928 0.929 0.148

Normal
Permission

CNN 90.11% 0.900 0.901 0.901 0.901 0.152
ANN 93.24% 0.932 0.932 0.932 0.932 0.107

Signature
Permission

CNN 86.65% 0.866 0.867 0.859 0.867 0.278
ANN 88.05% 0.888 0.880 0.872 0.880 0.278

Top 10 Ranked
Permission

CNN 88.86% 0.889 0.889 0.884 0.889 0.229
ANN 91.50% 0.914 0.915 0.913 0.915 0.160

Top 20 Ranked
Permission

CNN 89.21% 0.891 0.892 0.889 0.892 0.204
ANN 95.22% 0.952 0.952 0.952 0.952 0.073

5. Conclusion

Artificial Neural Network (ANN) algorithm and Convolutional Neural Network (CNN) algorithm
managed to detect the Android botnet detection on the features of selected dataset. The 1929 ISCX
botnet dataset and 4873 benign applications were used in this study. In this experiment, the total of six
classification algorithm models with different categories of features have used to detect the Android
botnet attacks which are 130 static permission, dangerous permission, normal permission, signature
permission, top 10 ranked permission and top 20 ranked permission. The experiment has constructed
with the assist of WEKA tool in order obtain the performance metric for the Android botnet attack
detection. In this study, the ANN classifier achieves the higher detection performance for all
classification algorithm models compared to CNN in the term of accuracy, precision, recall, f1-score,
true-positive and false-positive. The highest Android botnet detection accuracy that achieved by ANN
classifier is using 130 static permission features with the value of 96.35% while for CNN is 95.44%.
The precision, recall, f1-score and true-positive rate value for ANN are 0.964, 0.964, 0.963 and 0.963
whereas for CNN classifier are 0.954, 0.954, 0.954 and 0.954. The false-positive rate for ANN and
CNN classifier is same with the value 0.071. This shows ANN is a more superior algorithm for Android
botnet detection attack compared to CNN.

Acknowledgment

The authors would like to thank the Faculty of Computer Science and Information Technology,
Universiti Tun Hussein Onn Malaysia for its support and encouragement throughout the process of
conducting this study.

References

[1] Hojjatinia, S., Hamzenejadi, S., & Mohseni, H. (2020, August). Android botnet detection using
convolutional neural networks. In 2020 28th Iranian Conference on Electrical Engineering
(ICEE) (pp. 1-6).

[2] Gaonkar, S., Dessai, N. F., Costa, J., Borkar, A., Aswale, S., & Shetgaonkar, P. (2020,
February). A survey on botnet detection techniques. In 2020 International Conference on
Emerging Trends in Information Technology and Engineering (ic-ETITE) (pp. 1-6).

[3] Yerima, S. Y., & Alzaylaee, M. K. (2020, June). Mobile botnet detection: A deep learning
approach using convolutional neural networks. In 2020 International Conference on Cyber
Situational Awareness, Data Analytics and Assessment (CyberSA) (pp. 1-8).

Selvatarasi & Zubaile, Applied Information Technology and Computer Science Vol. 3 No. 2 (2022) p. 32-49

49

[4] Alqatawna, J. F., & Faris, H. (2017, October). Toward a detection framework for android
botnet. In 2017 International Conference on New Trends in Computing Sciences (ICTCS) (pp.
197-202).

[5] Anwar, S., Zain, J. M., Inayat, Z., Haq, R. U., Karim, A., & Jabir, A. N. (2016, August). A
static approach towards mobile botnet detection. In 2016 3rd International Conference on
Electronic Design (ICED) (pp. 563-567).

[6] Joshi, S., & Abdelfattah, E. (2020, October). Efficiency of Different Machine Learning
Algorithms on the Multivariate Classification of IoT Botnet Attacks. In 2020 11th IEEE Annual
Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (pp.
0517-0521).

[7] Lê, N. C., Nguyen, T. M., Truong, T., Nguyen, N. D., & Ngô, T. (2020, October). A Machine
Learning Approach for Real Time Android Malware Detection. In 2020 RIVF International
Conference on Computing and Communication Technologies (RIVF) (pp. 1-6).

[8] Yerima, S. Y., Sezer, S., McWilliams, G., & Muttik, I. (2013, March). A new android malware
detection approach using bayesian classification. In 2013 IEEE 27th international conference
on advanced information networking and applications (AINA) (pp. 121-128).

[9] Xing, Y., Shu, H., Zhao, H., Li, D., & Guo, L. (2021). Survey on botnet detection techniques:
classification, methods, and evaluation. Mathematical Problems in Engineering, 2021.

[10] Kirubavathi, G., & Anitha, R. (2018). Structural analysis and detection of android botnets using
machine learning techniques. International Journal of Information Security, 17(2), 153-167.

[11] Chen, S. C., Chen, Y. R., & Tzeng, W. G. (2018, August). Effective botnet detection through
neural networks on convolutional features. In 2018 17th IEEE International Conference On
Trust, Security And Privacy In Computing And Communications/12th IEEE International
Conference On Big Data Science And Engineering (TrustCom/BigDataSE) (pp. 372-378).

[12] Yerima, S. Y., Alzaylaee, M. K., & Shajan, A. (2021). Deep learning techniques for android
botnet detection. Electronics, 10(4), 519.

[13] Manifest.Permission. 2022. AndroidDevelopers – Permission/Feature [online] available at:
<https://developer.android.com/reference/android/Manifest.permission>

[14] UNB Canadian Institute for. 2014. GitHub – AndroidBotnetDataset [online] Available at: <
https://www.unb.ca/cic/datasets/android-botnet.html>

[15] Mahindru, Arvind (2020), “Android permissions dataset, Android Malware and benign
Application Data set (consist of permissions and API calls)”, Mendeley Data, V3, doi:
10.17632/b4mxg7ydb7.3

