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Abstract: Mobile devices, such as Androids, are now widely used. Androids are used 
for making phone calls, sending text messages, web browsing, social networking, and 
online banking transactions. The Android operating system's global popularity makes 
it a more appealing target for cyber criminals to gains access on Android device, to 
steal valuable data by installing an Android botnet attack. Thus, this research presents 
the Android botnet attack detection using deep learning algorithms, Convolutional 
Neural Network (CNN) and Artificial Neural Network (ANN). The experiment was 
carried out and tested on 1929 botnet dataset and 4873 benign applications using 
different categories of permission features. The research covers several performance 
metrics like accuracy, precision, recall, f1-score, true-positive and false-positive in 
identifying the best performance classifiers. At the end of the study, the ANN 
classifier was identified to be best classifiers for Android Botnet attack detection with 
the highest detection accuracy 96.35% whereas the detection accuracy obtained by 
CNN is 95.44%. In addition, the performance metrics derived from Android botnet 
attack detection using CNN and ANN were better than those obtained from prior 
studies that employed machine learning algorithms for Android botnet attack 
detection. 
 
Keywords: Android Botnet Detection, Deep Learning, Permission Feature, CNN, 
ANN 

 

1. Introduction 

A botnet is a network of devices that are controlled by a botmaster, a malevolent user, or a group 
of malicious attackers. The botnet comes with a Command and Control (C&C) infrastructure, which 
allows malicious actors to send commands, updates, and status information to the bots [1]. Android 
botnet attacks are more dangerous than other mobile malware such as mobile phishing attacks, 
ransomware, spyware and Trojans. This is because they pose dangerous threats to Android devices and 
networks [2]. The botmaster can then use the infected Android devices to commit cybercrimes or cyber-
attacks, such as sending spam messages, disrupting networks, launching distributed denial-of-service 
(DDoS) attacks, and collecting sensitive data for illegal purposes. 
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Due to Android botnet attacks malicious action towards the android users, many researchers have 
extensively done research to detect the Android Botnet attack [3]. To detect Android botnet attacks, the 
researchers used well-known machine learning methods, but these traditional methods are incapable of 
detecting new sophisticated Android Botnet attack. According to research findings, the majority of the 
machine learning techniques used in the classification models achieved an overall classification 
accuracy of over 85% [4]. As a consequence, attacks and threats of android botnets have increased in 
recent days. According to a survey conducted by Azure DDoS protection, the number of Android botnet 
threat families has increased significantly in both volume and complexity. In the first half of 2021, the 
average daily number of attacks increased by 25% when compared to the fourth quarter of 2020 [2]. 

Many studies have been conducted to detect Android botnet attacks, but their classification accuracy 
can still be improved [5]. Lower accuracy is caused by use of insufficient data or smaller data in the 
experiments. Since, machine learning typically requires structured data and implements traditional 
algorithms, it is incapable of handling large amounts of unstructured data [6]. The small size of a dataset 
is also responsible for poor performances of Android botnet detection [4]. This has an effect on detection 
accuracy because as the size of the sample data collection is limited, the confidence in the estimate 
reduces and the uncertainty rises, resulting in lower precision. When it comes to achieving high efficacy 
of Android botnet detection, developing more data is always a good idea. Furthermore, the use of 
untrained data has an impact on the Android botnet detection result [7]. Trained data is the primary and 
most important data that machines use to learn and predict. Increasing the amount training data provides 
more information and assist in better user fit. 

These findings indicate that the proposed method for detecting Android botnet attacks could be 
improved further. Many studies have shown that using deep learning algorithms can improve the 
detection of android botnet attacks. As a result, this study was proposed to detect android botnet attacks 
in order to improve detection accuracy, precision, recall, f1-score, true-positive and false-positive 
results. Due to the organized hierarchy of increasing abstraction and complexity, deep learning 
algorithm has used in this study. The total 130 permission features extracted from 1,929 botnet dataset, 
and 4873 benign applications. These features were then used to perform feature extraction and feature 
selection. The Convolutional Neural Networks (CNNs) and Artificial Neural Networks (ANNs) 
algorithms used to test and train the datasets to distinguish between botnet and benign applications. The 
following are the objectives of this project: 

• To study the permission features for Android botnet attack detection. 
• To propose Android botnet detection using Convolutional Neural Network and Artificial Neural 

Network algorithm. 
• To test and validate the proposed model using Accuracy, Recall, Precision, F1- score, True-

Positive and False-Positive. 
 

2.  Related Work 

2.1   Android Botnet Architecture  

The Android botnet is examined using the botmaster's architectural design. Botmaster builds robust and 
complex botnets using a variety of topologies and tools. As a result, it is more difficult to detect the 
botnet. A botnet can be divided into two parts based on its architectural design which are centralized 
and decentralized [4]. 

Centralized generally employs Hypertext Transfer Protocol (HTTP) and Internet Relay Chat (IRC) 
protocols. IRC operates in real time on internet text messages. Due to the flexibility and simple 
architecture, IRC bots are popular among botnet owners. The limitation of the IRC botnet is that it can 
be easily detected by identifying IRC traffic for regular traffic. HTTP botnet traffic can easily be 
disguised as normal traffic. When the HTTP protocol is used for communication, detection becomes 
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more difficult. Some well-known botnets that use an HTTP-based model are Click Bot, Bobox, and 
Rustock [2]. 

The vulnerability of the Command-and-Control channel is overcome by decentralized models. In 
the decentralized model, a large number of bots can be created in a single botnet, making the detection 
extremely difficult. The decentralized model employs P2P protocols that connect all bots. These 
protocols are primarily concerned with concealing a Command-and-Control channel. When new 
commands are issued, botmaster employs a variety of bots. Bots are reliant on previous bots or any 
other bots that are linked to it. P2P architecture is extremely complex and difficult to detect. Slapper, 
Phatbot, Sinit, and Nugache are some of the examples for P2P architecture. The hybrid model is a 
combination of decentralized and centralized models. Botnet traffic can be hidden using an encryption 
key in the hybridized model [2]. 

2.2  Android Botnet Analysis Techniques 

Two common techniques used for Android botnet detection can be categorized into static and dynamic 
analysis. 

Static analysis is the examination of an application without running it. Static analysis can be 
performed directly on the source code of the application or the corresponding binary file, using reverse 
engineering techniques to extract specific features and methods invoked from the source code. Manifest 
files can be used to investigate features and methods in Android apps. In addition to detecting malicious 
payload, extracted features or methods can be used to profile and weigh malware threats [8]. In contrast, 
some of the features and methods that are typically extracted from application source code are 
Requested Permission, Imported Package, API Calls, Instructions or Operation Code (Opcode), Data 
Flow, and Control Flow [9]. Static analysis is simple and effective at detecting and classifying known 
Android botnet attacks; however, due to obfuscation and encryption techniques used by Android botnet 
authors, it is incapable of detecting unknown or modified Android botnet attacks. Dynamic analysis is 
used to detect Android botnet attacks in order to circumvent this limitation. 

Rather than examining the source code, dynamic analysis examines the application sample while it 
is running in a controlled environment. According to recent research, the application's behaviour can be 
monitored using Logged Behavior Sequence, System Calls and Dynamic Tainting, Data Flow and 
Control Flow [9], since this statement is prepared for detection analysis by monitoring and logging 
every relevant execution operation. 

2.3  Deep Learning Algorithm 

A deep learning algorithm is a subset of a machine learning algorithm that performs data processing 
and calculations on massive amounts of data using multiple layers of neural networks. The deep learning 
system can learn from both structured and unstructured data that does not require human involvement. 
The way the human brain operates, and functions inspires deep learning algorithms as the deep learning 
algorithms rely on neural networks in the same way as the human brain uses millions of neurons to 
compute information [1]. There are three different types of layers in deep learning algorithms which are 
known as input layer, hidden layer, and output layer. The input features and a well-known dataset are 
included in the input layer. Hidden neurons which are known as hidden layers, must be educated in 
order for the brain to function properly. The output layer generates the value to be categorized. Deep 
learning algorithms can be classified into two categories which are the supervised and unsupervised [3]. 

Deep learning algorithms that require external assistance are known as supervised deep learning 
algorithms. Regression and classification problems are the two most common types of supervised 
learning. The goal of classification is to predict a label or class. Classification algorithms are used to 
predict a categorical variable, whereas regression algorithms are used to predict a continuous quantity. 
When training materials are not classified or labeled, unsupervised deep learning methods are used. 
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Unsupervised learning aims to pre-train a model called discriminator or encoder network to be used for 
other tasks. Auto-encoder, clustering, learning and generative models are some of the categories from 
unsupervised deep learning algorithms. 

2.3.1  Convolutional Neural Network (CNN) 

The most promising deep learning model development method is the Convolutional Neural Network 
(CNN), also known as ConvNets. CNN is skilled at detecting simple patterns in data that are then used 
to create more complex patterns in higher layers. Convolutional layer, pooling layer, and fully linked 
layer are the three layers that make up a CNN algorithm. The CNN’s performance can be enhanced 
depending on the dataset's features, the number of layers, the number of filters (kernels), and the size 
of the filters [3]. The required number of layers is determined by the sophistication and non-linearity of 
the data, as deeper layers of the CNN recover more abstract features [3]. As the number of layers and 
filters increases, so does the computational complexity. Furthermore, with more complex architectures, 
the risk of overfitting for the classification algorithm model increased and resulting in poor prediction 
accuracy on the testing sets. During model training, techniques like 'dropout' and 'batch regularization' 
are used to reduce overfitting.  

The CNN classification model as shown in Figure 1 is intended to classify the Android botnet as 
well as benign samples. Convolutional layer generates the feature vectors from the pre-processed data. 
The pooling layer used to reduce the data dimension by deleting irrelevant data as it has been converted 
into feature vectors. Following the pooling layer, the feature vector is flattened by a multidimensional 
array. The flattened array is then loaded into CNN algorithm in order to train the model [1]. 
Accordingly, the final layer of CNN is the data link layer, used to classify the android botnet samples 
and benign samples after the CNN model has been trained. A one-dimensional Convolutional Neural 
Network can be used to process datasets with a one-dimensional structure (1D CNN). The 
dimensionality of the input data and how the filter (feature detector) slides across the data are the main 
differences between a 1D and a 2D or 3D CNN. The filters in a 1D CNN only move in one direction 
across the input data. 

   

Figure 1: The 1D CNN model to classify Android Botnet attacks [3] 

The sigmoid activation function used in 1D CNN model and will be calculated as follows: 

𝑆𝑆 =  1
1+𝑒𝑒−𝑥𝑥

  Eq. 1 

 The final classification layer generates results that correspond to the 'botnet' or 'benign' classes. 
The activation function for ReLU (Rectified Linear Units) is f(x) = max(0, x), which is implemented in 
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the convolutional layers. ReLU can help prevent vanishing and exploding gradients. ReLU has been 
found to be more efficient in terms of time and cost for training large data sets than traditional non-
linear activation functions such as Sigmoid or Tangent functions. 

2.3.2  Artificial Neural Network (ANN) 

Artificial Neural Networks (ANN) is a deep learning algorithm that are inspired by biological neurons 
in the brain and central nervous system. The ANN's inputs are fed to the artificial neurons in one or 
more hidden layers, where they are weighted and processed to determine the next layer's output. Back-
propagation of errors in ANN is based on gradient descent, which allows the weights and biases of 
neurons in the hidden layer and output layer to be adaptively modified [3]. Along with its self-adaptive 
nature, ANN can capture very complicated and non-linear interactions between dependent and 
independent variables without the need for prior information. In a variety of applications, ANN have 
been used to solve a wide range of classification problems. 

 
Figure 2: The classification model of ANN [11] 

ANN algorithm consists of three layers which are input layer, hidden layer and output layer in 
Figure 2. In order to consider compelling to (0-1) range, the input layers and output layers must have 
numeric values. As a result, the data is normalized within the (0-1) range before being passed to the 
input layer [3]. In the hidden layer, the weight is the set of performance parameters for the feed-forward 
neural network. Starting with random weights, bestowing the data, instance by instance, modifying the 
weights, imparting the error for each instance, and continuing until the error is very small, the training 
method of the ANN is exaggerated. The backpropagation algorithm adjusts the weights for each 
instance based on the variance of the actual output and function output. 

2.4  Existing Android Botnet Detection Techniques  

Table 1 shows the comparison of existing Android botnet detection techniques and proposed research 
Table 1: The comparison of existing Android botnet detection techniques  

Research 
Paper 

Approach Dataset Features Classifier Strength 

[4] Static 
analysis 

1365 botnet dataset 
from ISCX 

Android Botnet 
and 1960 Benign 
application from 

Google Play Store 

Requested 
permission 

and protection 
levels 

Random Forest, 
Multilayer 
Perceptron, 

J-48 Decision Tree 
and Naive Bayes 

 
Promising 
Detection 

Power 

[10] Static 
analysis 

Benign apps from 
open-source site 
and Botnet apps 

from botnet 
repositories 

Requested 
permission 
and used 
features 

Naive Bayes, A 
Statistical Classifier, 

Support Vector 
Machine, Reduced 

Error Pruning 

High 
accuracy 
and low 
positive 

rate 
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Table 1: (cont.) 
Research 

Paper 
Approach Dataset Features Classifier Strength 

[8] Static 
analysis 

1400 botnet 
applications from 

ISCX Android 
Botnet and 1400 

Benign application 
from Google Play 

Store 

Permissions, 
Broadcast 

Receivers and 
Background 
Receivers 

Support Vector 
Machine, Random 

Forest, Naive 
Bayes, 

J-48 Decision Tree, 
Bagging 

Four 
separate 

layers and 
using 
MD5 

signatures 

Proposed Static 
analysis 

1929 botnet 
applications from 

ISCX Android 
Botnet and 4873 

Benign application 
from Google Play 

Store 

Permissions Convolutional Neural 
Network, Artificial 

Neural Network 

Expecting 
high 

detection 
accuracy, 

recall, 
precision 

 

3. Methodology 

The research methodology is perhaps the sequence of measures to be followed during the evaluation of 
research studies. The detection framework is made up of basic system components and general 
processing steps for detecting Android botnet attacks using CNN and ANN. There are six phases in 
total which include raw data, pre-processing, feature extraction and feature selection, classification 
algorithm, and performance metrics as shown in Figure 3. 

 

Figure 3: Proposed Android Botnet Attack Detection Methodology 

3.1  Raw Data 

The term "raw data" refers to the information that has not been filtered or normalized. As a consequence, 
to perform Android botnet detection using Convolutional Neural Networks and Artificial Neural 
Networks, the Android dataset, also known as the ISCX dataset, which contains 1,929 botnet datasets 
from 14 different families, was obtained from an online source (ISCX-AndroidBot). Moreover, this 
study also used a total of 4873 benign application downloaded from Google Play Store to facilitate 
supervised learning while training the Convolutional Neural Network and Artificial Neural Network 
algorithm. The benign applications were found in a variety of categories on the Google Play store. 
While downloading the dataset from an online source, the botnet datasets were found in form of .apk 
file whereas for benign applications, the name list of applications only provided. The .apk file for each 
benign applications were obtained by downloading the specific Google Play applications using the 
APKPure. In order to decompress the .apk files of the ISCX botnet dataset and benign applications, 
VirusTotal has been used. VirusTotal decompiles the .apk files to source code folders and declares the 
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benign applications files to be virus-free and identifies the malware percentage of the botnet for botnet 
dataset files. It also provides the detailed information of each dataset file which will be useful to extract 
the features. 

3.2  Data Pre-Processing 

Data pre-processing is the data mining technique which changes the data to an efficient and useful 
format. The data is preprocessed to identify those features from the data that play a significant role in 
the classification of dependent features, which enables this study to proceed. The data and 130 extracted 
permission features from the decompiled .apk file, of 1929 botnet datasets which include 14 types of 
botnet families and 4873 benign applications, is loaded and saved as a.CSV (comma delimited) file 
with each feature denoted by a '1' or a '0,'. These properties are represented as a binary number feature 
vector, with '1' indicating the botnet and '0' indicating the benign [3]. The data file is then preprocessed 
for training and testing by removing redundant data. Preprocessing of the botnet dataset and benign 
application is essential in identifying relevant data for the study before it's being used to implement it 
in the deep learning machine. The RapidMiner and WEKA tools were used to assist with the 
preprocessing process by removing the redundant data and applying the nominal filters to the datasets.   

3.3  Feature Extraction 

The process of extracting features from a dataset is known as feature extraction. Since large datasets 
contain many variables, processing them requires a large amount of computing resources. Therefore, 
feature extraction involves reducing the number of the variables of the large dataset to get the available 
variable for the research. Initially, 130 permission features were extracted for this study from the raw 
data, 1929 ISCX(Android-Bot) and 4873 benign applications. To perform the feature extraction on 
these 130 permission features, three new features were extracted based on the permission feature’s 
protection level. The protection level of permission feature consists of Dangerous permission feature, 
Normal permission feature and Signature permission feature as shown in Table 2. 

Table 2: The protection level of permission features 

Protection Level 
Permission Description 

Dangerous 
A higher-risk permission that grants requesting applications access to 
isolated application-level features while posing little risk to other apps, the 
system, or the user. 

Normal A lower-risk permission that would grant a requesting application access to 
private user data or device control, which could be harmful to the user. 

Signature 
The system will only grant this permission if the requesting application is 
registered with the same certificate as the one that declared on the 
permission. 

 

These features indicate how the application is concerned with gaining privilege on the target 
mobile's resources and accessing more resources. So, the collected dataset and features are extracted 
according to the protection level of permission features. 

3.4  Feature Selection 

Feature selection is a technique for removing redundant and irrelevant features from a dataset. The 
Information Gain (IG) algorithm is used to implement the feature selection approach. To ensure the 
selection of the most discriminant features, the obtained feature sets are passed through the information 
gain (IG) feature selection algorithm. In terms of feature selection and ranking methods, the IG is very 
accessible. It is defined as the amount of data provided by the feature items for the document category 
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[11]. In order to measure the importance of features for classification, IG is calculated by how much of 
a term can be used for classification of information as shown Equation 2. 

𝐸𝐸 = −∑ 𝑃𝑃𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑃𝑃𝑖𝑖𝐶𝐶
𝑖𝑖    Eq.2 

Approaching feature selection, the list of capabilities is chosen by algorithmic processing on the 
WEKA tool by implementing the Information Gain. The top 10 ranked features and top 20 ranked 
features were selected for Convolutional Neural Network and Artificial Neural Network model 
classification by processing the algorithm. 

3.5  Classification Algorithm 

A classification algorithm is used to categorize each byte of data in a dataset into one of several 
predefined groups. The performance of Android botnet detection was evaluated on the Convolutional 
Neural Network and Artificial Neural Network classifier using the extracted features and selected 
features of the dataset. The detection model will be classified with the assistance of the WEKA tool. 
10-Fold Cross Validation was used to test and train the datasets, since this technique divides the dataset 
into ten parts, referred to as "folds," and holds each part in turn before averaging the results. As a result, 
each data point in the dataset is tested once and then trained nine times. The goal of cross-validation is 
to avoid overfitting and make predictions that are more general. 

3.6  Performance Metrics 

In this phase, the performance of both CNN and ANN compared in terms of accuracy, precision, recall, 
f1-score, true-positive and false-positive as the following equations: 
1. Accuracy: The rate of correctly classified instances of both classes is measured by accuracy in 

Equation 3. The botnet class is the positive class for Android botnet detection. (TP = True-Positive, 
TN = True-Negative, FP = False-Positive, FN = False-Negative) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇

 Eq. 3 
 

2. Precision: Measures the percentage of test data that is correctly identified as malicious android bot 
application from the malicious android botnet application classes in Equation 4. (TP = True-
Positive, FP = False-Positive) 

𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

  Eq. 4 
 

3. Recall: The percentage of malicious android botnet application classes that were correctly detected 
is measured by recall in Equation 5. (TP = True-Positive, TN = True-Negative) 

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

 Eq. 5 
 

4. F1-Score: The F1-score is a test accuracy metric that assesses the balance between precision and 
recall in Equation 6. 

𝐹𝐹1 − 𝑆𝑆𝐴𝐴𝑙𝑙𝐴𝐴𝑃𝑃 =  2∗𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅∗𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇
𝑅𝑅𝑅𝑅𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅+𝑇𝑇𝑅𝑅𝑅𝑅𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇

 Eq. 6 
 

5. True-Positive: The number of botnet applications that are correctly classified is known as true 
positive (TP) in Equation 7. (TP = True-Positive, FN = False-Negative) 

𝑇𝑇𝐴𝐴𝐴𝐴𝑃𝑃 − 𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 Eq. 7 
 

6. False-Positive : The number of botnet applications classified incorrectly is known as false positives 
(FP) in Equation 8. (TN = True-Negative, FP = False-Positive) 

𝐹𝐹𝐴𝐴𝑙𝑙𝑃𝑃𝑃𝑃 − 𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐹𝐹𝑇𝑇
𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇

 Eq. 8 
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3.7  Software and Hardware 

The Waikato Environment for Knowledge Analysis (WEKA) is used since it is a data mining software 
that uses a collection of deep learning algorithms. WEKA is a collection of tools for regression, 
association, clustering, data preparation, visualization, and classification that can be used together or 
separately. The explorer, experimenter, knowledge flow, workbench, and simple CLI are the five 
applications available on WEKA. The explorer implements the data mining tasks on row data with a 
graphical interface. Aside from that, Rapid Miner was used to pre-process the datasets in order to 
remove redundant data. This is due to the fact that Rapid Miner makes ease datasets preparation for 
predictive modeling. Table 3 shows the hardware requirement to conduct this research. 

Table 3: List of Hardware Requirements 

Hardware Description 
Swift SF514-54T Processor Intel(R) Core(TM) i5-1035G1 CPU @ 1.00GHz 1.19 GHz 

Windows Edition Windows 10 Pro 
System Type 64-bit operating system, x64-based processor 

Installed RAM 8.00 GB (7.78 GB usable)  
 

4.  Results and Discussion 

4.1  Experiment Setup 

While downloading the 1929 botnet dataset from (ISCX-AndroidBot), the botnet dataset was found in 
form of .apk file whereas the 4873 benign applications list was generated from the Google Play Store. 
Then, the .apk file for each benign applications were obtained by downloading the specific Google Play 
Store applications using the APKPure. 

In order to decompress the .apk files of the ISCX botnet dataset and benign applications, VirusTotal 
has been used. By uploading the .apk file into VirusTotal, it decompiles the files to source code folders 
that provides the detailed information of each dataset file which will be useful to extract the features. 
The useful information includes basic properties, permissions, activities, receivers, intent filters by 
action, intent filter by category, interesting strings, warning, contents metadata, contained files by type 
and contained files by extension. Other than that, VirusTotal also declares the benign applications files 
to be virus-free and identifies the malware percentage of the botnet dataset files as shown in Figure 4. 

 

Figure 4: VirusTotal also declares the benign applications files to be virus-free and identifies the malware 
percentage of the botnet dataset files 

4.2  Data Pre-Processing 

The total of 6802 datasets and 130 permission features that obtained from decompiling the .apk file is 
loaded and saved as a.CSV (comma delimited) file with each feature denoted by a '1' or a '0,'. These 
properties are represented as a binary number feature vector, with '1' indicating the botnet and '0' 
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indicating the benign [3]. The data file is then preprocessed for training and testing by removing 
redundant data. The 1929 botnet dataset and 4873 benign applications were pre-processed in the Rapid 
Miner to identify those features from the data that play a significant role in the classification of 
dependent features, making this study possible. As a result, the pre-processing has been completed by 
declaring that the datasets are free to use.  

 

Figure 5: Data pre-processing in RapidMiner Studio and data filtering process in the Weka tool. 

The preprocessed dataset file from RapidMiner Studio was then loaded and executed in the Weka 
tool to apply filters that make data preparation easier as shown in Figure 5. Following that, the nominal 
filter was applied to the numeric datasets. This is because a nominal rating indicates the filter's ability 
to prevent a specific percentage of solid particles larger than the nominal rating's stated micron size 
from passing through. The weight of these particles of each contaminant is then calculated. In addition, 
the nominal rating also indicates the degree of filtration or efficiency. 

4.3  Feature Extraction 

Three new features were extracted from the 130-permission which was obtained from the raw data, 
1929 botnet dataset and 4873 benign applications by decompiling the .apk files using Virus Total. These 
three new features were extracted by classifying the permission features protection level which are 
consist of Dangerous permission feature, Normal permission feature and Signature permission feature. 
These features indicate how the application is concerned with gaining privilege on the target mobile's 
resources and accessing more resources. The features were extracted as shown in Table 4. 

Table 4: Extracted Features based on the Permission Protection Level 

Permission Protection Level List of Features 

Dangerous 

ACCESS_COARSE_LOCATION 
ACCESS_FINE_LOCATION 

ACCESS_MOCK_LOCATION 
ADD_VOICEMAIL 

AUTHENTICATE_ACCOUNTS 
CALL_PHONE 

CAMERA 
GET_ACCOUNTS 

PROCESS_OUTGOING_CALLS 
READ_CALENDAR 
READ_CALL_LOG 
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Table 4: (cont.) 
Permission Protection Level List of Features 

Dangerous 

READ_CONTACTS 
READ_EXTERNAL_STORAGE 

READ_PHONE_STATE 
READ_SMS 

RECEIVE_MMS 
RECEIVE_SMS 

RECEIVE_WAP_PUSH 
RECORD_AUDIO 

SEND_SMS 
USE_SIP 

WRITE_CALENDAR 
WRITE_CALL_LOG 
WRITE_CONTACTS 

WRITE_EXTERNAL_STORAGE 

Normal 

ACCESS_LOCATION_EXTRA_COMMANDS 
ACCESS_NETWORK_STATE 

ACCESS_WIFI_STATE 
BLUETOOTH 

BLUETOOTH_ADMIN 
BROADCAST_STICKY 

CHANGE_NETWORK_STATE 
CHANGE_WIFI_MULTICAST_STATE 

CHANGE_WIFI_STATE 
DISABLE_KEYGUARD 

EXPAND_STATUS_BAR 
FLASHLIGHT 

GET_PACKAGE_SIZE 
GET_TASKS 
INTERNET 

KILL_BACKGROUND_PROCESSES 
MANAGE_ACCOUNTS 

MODIFY_AUDIO_SETTINGS 
NFC 

PERSISTENT_ACTIVITY 
READ_HISTORY_BOOKMARKS 

READ_PROFILE 
READ_SOCIAL_STREAM 
READ_SYNC_SETTINGS 

READ_SYNC_STATS 
READ_USER_DICTIONARY 

RECEIVE_BOOT_COMPLETED 
REORDER_TASKS 

RESTART_PACKAGES 
SET_ALARM 

SET_TIME_ZONE 
SET_WALLPAPER 

SET_WALLPAPER_HINTS 
SUBSCRIBED_FEEDS_READ 
SUBSCRIBED_FEEDS_WRITE 

USE_CREDENTIALS 
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Table 4: (cont.) 
Permission Protection Level List of Features 

Normal 

VIBRATE 
WAKE_LOCK 

WRITE_HISTORY_BOOKMARKS 
WRITE_PROFILE 

WRITE_SMS 
WRITE_SOCIAL_STREAM 
WRITE_SYNC_SETTINGS 

WRITE_USER_DICTIONARY 

Signature 

ACCESS_CHECKIN_PROPERTIES 
ACCESS_SURFACE_FLINGER 

ACOUNT_MANAGER 
BATTERY_STATS 

BIND_ACCESSIBILITY_SERVICE 
BIND_APPWIDGET 

BIND_DEVICE_ADMIN 
BIND_INPUT_METHOD 
BIND_REMOTEVIEWS 
BIND_TEXT_SERVICE 
BIND_VPN_SERVICE 
BIND_WALLPAPER 

BRICK 
BROADCAST_PACKAGE_REMOVED 

BROADCAST_SMS 
BROADCAST_WAP_PUSH 

CALL_PRIVILEGED 
CHANGE_CONFIGURATION 

CHANGE_COMPONENT_ENABLED_STATE 
CLEAR_APP_CACHE 

CLEAR_APP_USER_DATA 
CONTROL_LOCATION_UPDATES 

DELETE_CACHE_FILES 
DELETE_PACKAGES 

DEVICE_POWER 
DIAGNOSTIC  

DUMP 
FACTORY_TEST 

FORCE_BACK  
GLOBAL_SEARCH 
HARDWARE_TEST 

INJECT_EVENTS 
INSTALL_LOCATION_PROVIDER 

INSTALL_PACKAGES 
INTERNAL_SYSTEM_WINDOW 

MANAGE_APP_TOKENS 
MASTER_CLEAR 

MODIFY_PHONE_STATE 
MOUNT_FORMAT_FILESYSTEMS 

MOUNT_UNMOUNT_FILESYSTEMS 
READ_FRAME_BUFFER 

READ_INPUT_STATE 
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Table 4 : (cont.) 
Permission Protection Level List of Features 

Signature 

READ_LOGS 
REBOOT 

SET_ACTIVITY_WATCHER 
SET_ALWAYS_FINISH 

SET_ANIMATION_SCALE 
SET_DEBUG_APP 

SET_ORIENTATION 
SET_POINTER_SPEED 

SET_PREFERRED_APPLICATIONS 
SET_PROCESS_LIMIT 

SET_TIME 
SIGNAL_PERSISTENT_PROCESSES 

STATUS_BAR  
SYSTEM_ALERT_WINDOW 

UPDATE_DEVICE_STATS  
WRITE_APN_SETTINGS 

WRITE_GSERVICES 
 

WRITE_SECURE_SETTINGS 
WRITE_SETTINGS 

 

4.4  Feature Selection 

Feature selection processes have been carried out to identify the top ranked 10 features and 20 features 
from the 130 permission features. To identify the top ranked features using the full training dataset, 130 
permission features were executed in the WEKA tool. The ‘Select Attributes’ function has been chosen 
for the feature selection process. The Information Gain attribute were applied to ensure that the most 
discriminating features were selected. Figure 6 shows the feature selection process using the WEKA 
tool. Once the feature selection process is done, the list of capabilities features is chosen by manual 
judgment. The top ranked of 10 features and top ranked of 20 features were selected and tabled for 
Convolutional Neural Networks and Artificial Neural Networks model classification by processing the 
algorithm as shown in Table 5 and Table 6.  

 

Figure 6: The features selection process using WEKA tool 
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Table 5: Selected Top 10 Ranked Features 

Selected Features Information Gain (IG) Value Protection Level 
SEND_SMS 0.356793041 Dangerous 

READ_PHONE_STATE 0.244543876 Dangerous 
RECEIVE_SMS 0.235831666 Dangerous 

READ_SMS 0.229583984 Dangerous 
INTERNET 0.217653419 Normal 

WRITE_SMS 0.159735306 Normal 
CALL_PHONE 0.119759904 Dangerous 

ACCESS_NETWORK_STATE 0.106684474 Normal 
RECEIVE_BOOT_COMPLETED 0.104624444 Normal 

READ_CONTACTS 0.101539954 Dangerous 
 

Table 6: Selected Top 20 Ranked Features 

Selected Features Information Gain (IG) Value Protection Level 
SEND_SMS 0.356793041 Dangerous 

READ_PHONE_STATE 0.244543876 Dangerous 
RECEIVE_SMS 0.235831666 Dangerous 

READ_SMS 0.229583984 Dangerous 
INTERNET 0.217653419 Normal 

WRITE_SMS 0.159735306 Normal 
CALL_PHONE 0.119759904 Dangerous 

ACCESS_NETWORK_STATE 0.106684474 Normal 
RECEIVE_BOOT_COMPLETED 0.104624444 Normal 

READ_CONTACTS 0.101539954 Dangerous 
BIND_DEVICE_ADMIN 0.078817724 Signature 
RESTART_PACKAGES 0.075427169 Normal 

WRITE_APN_SETTINGS 0.057685673 Signature 
WRITE_CONTACTS 0.057490069 Dangerous 

WRITE_HISTORY_BOOKMARKS 0.054544365 Normal 
READ_HISTORY_BOOKMARKS 0.049460075 Normal 
WRITE_EXTERNAL_STORAGE 0.049106294 Dangerous 

ACCESS_WIFI_STATE 0.048171406 Normal 
MOUNT_UNMOUNT_FILESYSTEMS 0.044971003 Signature 

READ_LOGS 0.037499214 Signature 
 

4.5  Classification Algorithm 

The classification algorithm is used to categorize each byte of data in a dataset into one of several 
predefined groups. The performance of Android botnet detection using the extracted features and 
selected features were evaluated on the Convolutional Neural Network and Artificial Neural Network 
classifiers. In total there were six types of classification algorithm models with different types of 
features were trained on each classification algorithm, Convolutional Neural Network and Artificial 
Neural Network. 10-Fold Cross Validation was used and therefore it divides the dataset into ten parts, 
known as "folds," and holds each part in turn before averaging the results. As a result, each data point 
in the dataset is tested and trained nine times.  The classification models for Android Botnet Detection 
using Convolutional Neural Network and Artificial Neural Network are shown in Table 7. 
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Table 7: The Classification Algorithms Model 

Classification 
Algorithm 

Convolutional Neural Network Artificial Neural Network 

 
Categories of 
Classification 
Model using 

different features 

130 Permission Features 130 Permission Features 
Dangerous Permission Feature Dangerous Permission Feature 

Normal Permission Feature Normal Permission Feature 
Signature Permission Feature  Signature Permission Feature  

Top 10 ranked features Top 10 ranked features 
Top 20 ranked features Top 20 ranked features 

 

4.6  Result and Discussion 

Based on the Android Botnet attack detection using Convolutional Neural Network and Artificial 
Neural Network classifier, the detection results have been obtained for each category of classification 
model. This section discusses the result of the experiment and performed some analysis for performance 
metric of the datasets in terms of Accuracy, Precision, Recall, F1-Score, True-Positive and False-
Positive. 

Table 8: Performance Metrics for CNN and ANN using 130 Permission 

 Accuracy Precision Recall F1-Score True-Positive False-Positive 
CNN 95.44% 0.954 0.954 0.954 0.954 0.071 
ANN 96.35% 0.964 0.964 0.963 0.964 0.071 
  

Based on the detection result of Table 8, the ANN classifier has higher accuracy rate with the value 
96.35% while CNN classifier has 95.44% accuracy rate. The precision, recall, f1-score and true-positive 
rate for ANN classifier also achieves higher rate with the value 0.964, 0.964, 0.963 and 0.963 whereas 
for CNN classifier are 0.954, 0.954, 0.954 and 0.954. The false-positive rate for ANN and CNN 
classifier is same with the value 0.071. 

Table 9: Performance Metrics for CNN and ANN using Dangerous Permission 

 Accuracy Precision Recall F1-Score True-Positive False-Positive 
CNN 90.94% 0.912 0.909 0.906 0.909 0.200 
ANN 92.94% 0.930 0.929 0.928 0.929 0.148 
 

Based on the detection result of Table 9, the ANN classifier has higher accuracy rate with the value 
92.94% while CNN classifier has 90.94% accuracy rate. The precision, recall, f1-score and true-positive 
rate for ANN classifier also achieves higher rate with the value 0.930, 0.929, 0.928 and 0.929 whereas 
for CNN classifier are 0.912, 0.909, 0.906 and 0.909. The false-positive rate for ANN is low with the 
value 0.148 while for CNN is 0.200. 

Table 10: Performance Metrics for CNN and ANN using Normal Permission 

 Accuracy Precision Recall F1-Score True-Positive False-Positive 
CNN 90.11% 0.900 0.901 0.901 0.901 0.152 
ANN 93.24% 0.932 0.932 0.932 0.932 0.107 
 

Based on the detection result of Table 10, the ANN classifier has higher accuracy rate with the 
value 93.24% while CNN classifier has 90.11% accuracy rate. The precision, recall, f1-score and true-
positive rate for ANN classifier also achieves higher rate with the value 0.932, 0.932, 0.932 and 0.932 
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whereas for CNN classifier are 0.900, 0.901, 0.901 and 0.901. The false-positive rate for ANN is low 
with the value 0.107 while for CNN is 0.152. 

Table 11: Performance Metrics for CNN and ANN using Signature Permission 

 Accuracy Precision Recall F1-Score True-Positive False-Positive 
CNN 86.65% 0.866 0.867 0.859 0.867 0.278 
ANN 88.05% 0.888 0.880 0.872 0.880 0.278 

 

Based on the detection result of Table 11, the ANN classifier has higher accuracy rate with the 
value 88.05% while CNN classifier has 86.65% accuracy rate. The precision, recall, f1-score and true-
positive rate for ANN classifier also achieves higher rate with the value 0.888, 0.880, 0.872 and 0.880 
whereas for CNN classifier are 0.866, 0.867, 0.859 and 0.867. The false-positive rate for ANN and 
CNN classifier is same with the value 0.278. 

Table 12: Performance Metrics for CNN and ANN using Top 10 Ranked Permission 

 Accuracy Precision Recall F1-Score True-Positive False-Positive 
CNN 88.86% 0.889 0.889 0.884 0.889 0.229 
ANN 91.50% 0.914 0.915 0.913 0.915 0.160 
 

Based on the detection result of Table 12, the ANN classifier has higher accuracy rate with the 
value 91.50% while CNN classifier has 88.86% accuracy rate. The precision, recall, f1-score and true-
positive rate for ANN classifier also achieves higher rate with the value 0.914, 0.915, 0.913 and 0.915 
whereas for CNN classifier are 0.889, 0.889, 0.884 and 0.889. The false-positive rate for ANN is low 
with the value 0.160 while for CNN is 0.229. 

Table 13: Performance Metrics for CNN and ANN using Top 20 Ranked Permission 

 Accuracy Precision Recall F1-Score True-Positive False-Positive 
CNN 89.21% 0.891 0.892 0.889 0.892 0.204 
ANN 95.22% 0.952 0.952 0.952 0.952 0.073 

 

Based on the detection result of Table 13, the ANN classifier has higher accuracy rate with the 
value 95.22% while CNN classifier has 89.21% accuracy rate. The precision, recall, f1-score and true-
positive rate for ANN classifier also achieves higher rate with the value 0.952, 0.952, 0.952 and 0.952 
whereas for CNN classifier are 0.891, 0.892, 0.889 and 0.892. The false-positive rate for ANN is low 
with the value 0.073 while for CNN is 0.204. 

In overall, the Artificial Neural Network classifier performs better than Convolutional Neural 
Network to detect Android botnet attacks by achieving higher accuracy, precision, recall, f1-score, true-
positive and low false-positive value on all the above classification models as shown in Table 14. This 
is due to the structure of Artificial Neural Network which has a hidden layer that contains sigmoid 
activation function. This increases the detection rate of Android botnet attacks as  the sigmoid function 
exists between the range (0 and 1) [12]. As a result, it is especially beneficial for models that predict 
probability as an output. The activation function processes a weighted sum of inputs, and the output 
serves as an input to the next layer. Because the probability of anything exists only between 0 and 1, 
the sigmoid is the best choice. Due to the inherent complexity of CNN, the large number of layers and 
the massive amounts of data required. Thus, the detection performance metrics of Convolutional Neural 
Network is lesser compared to Artificial Neural Network.  
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Table 14: Comparison of the Detection Result for All Classification Algorithm Models 

Types of 
Features 

 Accuracy Precision Recall F1-
Score 

True-
Positive 

False-
Positive 

130 Permission CNN 95.44% 0.954 0.954 0.954 0.954 0.071 
ANN 96.35% 0.964 0.964 0.963 0.964 0.071 

Dangerous 
Permission 

CNN 90.94% 0.912 0.909 0.906 0.909 0.200 
ANN 92.94% 0.930 0.929 0.928 0.929 0.148 

Normal 
Permission  

CNN 90.11% 0.900 0.901 0.901 0.901 0.152 
ANN 93.24% 0.932 0.932 0.932 0.932 0.107 

Signature 
Permission 

CNN 86.65% 0.866 0.867 0.859 0.867 0.278 
ANN 88.05% 0.888 0.880 0.872 0.880 0.278 

Top 10 Ranked 
Permission 

CNN 88.86% 0.889 0.889 0.884 0.889 0.229 
ANN 91.50% 0.914 0.915 0.913 0.915 0.160 

Top 20 Ranked 
Permission 

CNN 89.21% 0.891 0.892 0.889 0.892 0.204 
ANN 95.22% 0.952 0.952 0.952 0.952 0.073 

 

5. Conclusion 

Artificial Neural Network (ANN) algorithm and Convolutional Neural Network (CNN) algorithm 
managed to detect the Android botnet detection on the features of selected dataset. The 1929 ISCX 
botnet dataset and 4873 benign applications were used in this study. In this experiment, the total of six 
classification algorithm models with different categories of features have used to detect the Android 
botnet attacks which are 130 static permission, dangerous permission, normal permission, signature 
permission, top 10 ranked permission and top 20 ranked permission. The experiment has constructed 
with the assist of WEKA tool in order obtain the performance metric for the Android botnet attack 
detection. In this study, the ANN classifier achieves the higher detection performance for all 
classification algorithm models compared to CNN in the term of accuracy, precision, recall, f1-score, 
true-positive and false-positive. The highest Android botnet detection accuracy that achieved by ANN 
classifier is using 130 static permission features with the value of 96.35% while for CNN is 95.44%. 
The precision, recall, f1-score and true-positive rate value for ANN are 0.964, 0.964, 0.963 and 0.963 
whereas for CNN classifier are 0.954, 0.954, 0.954 and 0.954. The false-positive rate for ANN and 
CNN classifier is same with the value 0.071. This shows ANN is a more superior algorithm for Android 
botnet detection attack compared to CNN. 
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