
 
Applied Information Technology And Computer Science Vol. 0 No. 0 (2000) 1439-1450 

 

© Universiti Tun Hussein Onn Malaysia Publisher’s Office 
 

AITCS 
 

Homepage: http://publisher.uthm.edu.my/periodicals/index.php/aitcs 

 

e-ISSN :2773-5141 
 

*Corresponding author: rabatul@uthm.edu.my 
2020 UTHM Publisher. All rights reserved. 
publisher.uthm.edu.my/periodicals/index.php/aitcs 

 

  A Development of Core Assets Identification 
System for Software Product Line  
 
Siti Sarah Omar1, Rabatul Aduni Sulaiman1* 
 
1Faculty of Computer Science and Information Technology, 
Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat, 86400, MALAYSIA 
 
DOI: https://doi.org/10.30880/aitcs.2022.03.02.089 
Received 00 Month 2020; Accepted 01 Month 2020; Available online 02 Month 2020 
 
Abstract: The Software Product Line (SPL) is a collection of features that may be 
used to efficiently establish the software set in managing feature specific demands for 
producing common core assets products and reviewing software testing methods. Due 
to large sizes of products that are continuously being developed, testing is used to 
manage the core assets variability and commonality using effective ways in SPL. The 
framework for incorporating core assets into a strategic reuse concept, which includes 
critical activities such as core asset development, product development, and 
management in specific practice areas. SPL consists of two processes which are 
domain engineering and application engineering. Developing proper testing 
techniques to decrease and eliminate incorrect results with less efforts is critical to 
having manageable core assets. In software product lines, reusability is widely used 
to assess respective core assets. 
 
Keywords: Information system, web-based, registration, product line 

 

1. Introduction 

Software Product Line (SPL) is a set of features that is used effectively to determine the software set in 
managing feature specific needs for developing common core assets product in evaluating ways of 
software testing. SPL managed sets of features in satisfying the needs of a specific requirements and 
objectives to be developed from a set of core assets in a prescribed way[1]. The framework of 
associating core assets product into strategic reuse concept including essential activities for example 
core asset development, product development and management in certain practice areas. SPL consists 
of two processes which are domain engineering and application engineering. Domain engineering is 
used to develop in identifying suitable core assets in reuse products. These products can be reused for 
developing product lines by using core assets. Meanwhile, application engineering used to perform 
requirements analysis in product development by using the core assets. 

In SPL, the focus is to find the variability among commonality of products. Most products were 
invented to get the same result and require a mechanism to differentiate the characteristic function. Core 
assets are defined conceptually as reusing assets among products to identify the feature product line[2]. 
The important of having manageable core assets are developing proper testing technique to reduce and 
avoid error result with fewer efforts. Reusability is frequently used to evaluate respective core assets in 



Omar & Sulaiman, Applied Information Technology and Computer Science Vol. 0 No. 0 (2000) p. 1439-1450 

1440 
 

software product lines. A framework is to enhance the selection of core assets for Model-Based Testing 
(MBT) in software product lines[3]. This approach helps the identification of appropriate core assets. 
MBT includes the information of variabilities and commonalities that illustrates core assets product. 

Early detection of reusable life cycles offers extra benefits to the investment of core assets 
development and in other processes. The main purpose of the SPL is to build a set of products that 
allows to differentiate between current product assets including domain and application engineering. In 
real industry that implemented SPL, they faced difficulties in finding which core asset suits for 
development testing. Usually, multiple core assets are process to run testing when new product is 
developed. It leads to time wasted when extending the time to do re-testing and further effort needed. 
For instance, the mobile phones industry in SPL has various types of mobile phone models with multiple 
functionalities and names. Currently, mobile phones are continuously developed which initiate 
difficulties when choosing the suitable core assets appeal and differences in between for the company.  

Hence, a core assets identification system in SPL will be proposed to help users to achieve the 
objectives of developing the guidelines to identify a suitable core asset based on reusability matric in 
SPL. Objectives of this project are defined as follows: 

i. To design a system in identifying suitable core assets in Feature Model for SPL Testing. 
ii. To develop a system with guidelines for core assets validation in Feature Model for SPL 

Testing. 
iii. To test the developed system by using SPL smart farming core assets case studies. 

This paper is organized into five sections. The first part is an introduction describing the context of 
the project. The second section describes the related work. In the third section, the methodology is 
explained. The result and discussion are described in the fourth section. In the last section, a conclusion  

 

2.  Related Work  

2.1  Software Product Line (SPL) 

Software Product Line (SPL) described as a set of application products which are defined the 
configuration using reusable software elements[4] to satisfy the specific needs of a particular market 
requirement in developing the core assets. In general, these products have the same functionalities, but 
some features may be different in certain aspects of system performance. All features of an SPL and 
the limitations assigned among features are represented by a feature model to describe in handling the 
commonalities with the variabilities of an SPL. A feature model (FM) defined the collection of products 
within an SPL by identifying the constraints among features thereby determining which combinations 
of features are valid. Reduce costs development, enhance software reusability, and promote 
maintenance to shorten marketing time can be listed as the advantages of SPL usage by software 
engineers[5]. SPL engineering provides software endless variations by embracing the patterns of 
number for software system corresponding to an SPL and resolving the differences among products. 
Domain engineering and application engineering are the two processes which constitute with SPL 

2.2  SPL Process 

The SPL development is typically involving each development process which affects all activities of 
the development itself in accorporating the products made. The framework helps the identification of 
variability and choosing pattern of design representation. SPL approaches process is divided into 
domain engineering and application engineering. The advantage of development processes is product 
generation costs will be lower in building the system. 



Omar & Sulaiman, Applied Information Technology and Computer Science Vol. 0 No. 0 (2000) p. 1439-1450 
 

1441 
 

Domain engineering aim to reduce the amount of effort needed in implementing software while cutting 
cost and time saving of applying multiple scratch software when it is not required for single 
development[6]. In domain development, the process of producing core assets is determined by 
selecting a reusable process of developing the product. From the domain analysis, common domain 
requirements and information are identified which domain knowledge is accumulate for the next model 
process. Domain design or feature model establish to decide which features components are needed in 
the reference of architecture product line. Next, domain implementation is when system building, and 
infrastructure supports are processes in domain design as a complete software element[7]. In summary, 
domain engineering holds the collecting, organizing and stores memory of previous systems builds to 
form reusable core assets in providing reuse assets to build new system. 

2.3 Model-Based Testing in SPL 

Model Based Testing (MBT) is one of the techniques used to handle SPL testing where the requirements 
of the test model are identified for software product. Test cases can be generated based on uploaded 
model. Model based provides advantage in automated generation of test cases as no manual operations 
needed for abstracting the models. In the domain engineering, test model consists of the behavior 
variabilities and commonality that are used to generate the test cases. Furthermore, MBT can be 
implemented into application engineering where the requirements are bind in initiating product lines. 

2.4 Software Product Line Online Tool (SPLOT) 

Software product line online tools serves for product line systems which allows a web-based reasoning 
and configuration. The system is written in Java and use HTML based user interface engine. SPLOT 
also provides a database for the feature models that may be useful for effective line researchers[8]. 
SPLOT is use as an algorithm to build the feature model that contributes to complete the comparison 
of existing systems. 

2.5 Comparison with the Existing Systems 

The tool supports are which existed in current environment that are run by researchers before. The 
development of the product evaluation is depending on each tools compile and the functionalities by 
every software tools. Table 1 shows the example of tools existed and used before by the researchers. 

Table 1: Systems Comparison 

Features/System SPLOT MetaEdit+ FeatureIDE Proposed 
System 

Login Unavailable Available Unavailable Available 
Uploading Module Available Available Available Available 
File Management 

Module 
Available Available Available Available 

Technique Feature Model Domain 
Specific Model 

Feature Model Feature Model 

Reporting Module Available Available Available Available 
Programming 

Language 
Java C Java C++ 

Requirement 
Collection Module 

Available Available Available Available 

Evaluation Module Available Available Unavailable Available 
 

3. Methodology 

The system development consists phases in selecting proper development model that suitable for the 
framework project. The project approach identified that prototyping model is chosen to be implemented 



Omar & Sulaiman, Applied Information Technology and Computer Science Vol. 0 No. 0 (2000) p. 1439-1450 

1442 
 

in the system. The prototyping model are often used to develop, tested, analyzed, and refined until 
suitable prototype define with the requirements needed. Figure 1 shows the phases involved starts with 
planning, analysis, design, implementation, and testing. Each phase in the prototype model has specific 
function represented to help in encourage the project development. To build the final framework, phases 
are taken to derive the core assets reusability tool-based framework furthered explain in the next section. 

 

Figure 1: Prototype Model 

3.1  Planning Phase 

Identify key features needed to build the tool-based system. In this phase, the issues, and problems for 
core asset management in SPL are identified through research from the existing journal. The objectives 
and project scope are finalized by analyzing existing systems to evaluate core assets in SPL. Project 
planning and proposal are documented the existing problem of the project. In addition, this 
documentation also describes the requirements of the project. Project milestone is also defined in this 
phase to have clarification of the project planning which consists of activities and the duration of tasks 
based on start and end date. Planning phase is needed in providing information and requirements of the 
project. 

3.2  Analysis Phase 

Based on the planning phase, next phase which is analysis phase will be started. In this phase, the 
problem related to core assets in SPL is formulated. Next, the objectives are identified based on problem 
formulation. From the planning phase, information and demands of the system are analyzed detail in 
this phase. Eight modules are identified which are requirement collection, test model development, 
registration, uploading, file update, file management, reporting, history, and evaluation module. The 
study of understanding important requirements and functionalities aspects is gathered to build the 
system during planning and analysis phases. In this section, the system design of the proposed system 
is described. Object oriented approach is used to generate the UML diagrams which are Use Case 
Diagram, Activity Diagram, Sequence Diagram and Class Diagram. Figure 2 shows the main system 
requirement that represent overall system activity of the developed system. 

 

 

 

 

 



Omar & Sulaiman, Applied Information Technology and Computer Science Vol. 0 No. 0 (2000) p. 1439-1450 
 

1443 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Use case diagram for core assets identification system 

The Core Asset Identification System’s system architecture is illustrated as a diagram which 
included layers, components and interactions of the web-based elements that interact with one 
another. As in Figure 3, the system design has two users which are software engineer or user 
and administrator. User must have their login credential to access the system. After the system 
validate position of the user, user will be directed into own responsibilities based on their roles. 
User can access the homepage and evaluate core asset using new uploaded file or current file 
from the history. Reports are periodically be checked if necessary. The administrator manages 
entire homepage system and function by performing create, read, update, and delete in the 
system where the data store in MySQL database. For file modification, it will direct access for 
permission to the database system and database will return specific data needed to complete 
the operation. 



Omar & Sulaiman, Applied Information Technology and Computer Science Vol. 0 No. 0 (2000) p. 1439-1450 

1444 
 

 

Figure 3: System architecture for core asset identification system 

3.3  Design Phase 

The process of specifying a system software and hardware architecture, components, modules, 
interfaces, and data will be done after user’s requirements were successfully analyze. In this phase, both 
interface and database had been designed to help visualize the system before proceeding with the coding 
the system. It focuses in determining client requests and functionalities that required, documentation 
requirements and design followed by validating the system. The following Figure 4 is the database 
schema which are planned from the database that have been designed and extracted from the class 
diagram to determine which elements are required and how they will have interacted. 



Omar & Sulaiman, Applied Information Technology and Computer Science Vol. 0 No. 0 (2000) p. 1439-1450 
 

1445 
 

 

 

Figure 4: Schema Table of the system 

Following is the system interface for the development. User can log into the system using the log-in 
interface as shown in Figure 5 for user and administrator by entering valid username and password. 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 5: Login page for user 

 



Omar & Sulaiman, Applied Information Technology and Computer Science Vol. 0 No. 0 (2000) p. 1439-1450 

1446 
 

 

 

 

 

 

 

 

 

 

 

Figure 6: Homepage interface of the system 

 

 

 

 

 

 

 

 

Figure 7: Upload file page 

 

 

 

 

 

 

 

 

Figure 8: Output display for uploaded file 



Omar & Sulaiman, Applied Information Technology and Computer Science Vol. 0 No. 0 (2000) p. 1439-1450 
 

1447 
 

 

Figure 9: Table of file list 

Figure 6 shows the homepage of the system with seven option to select in the menu such as 
create model, upload file, core asset analysis, file management, report generation, and user 
management. Figure 7 shows the page of uploading file and Figure 8 shows the screen of output 
which successful uploaded. Figure 9 shows the table of file list with attributes of certain 
functions. 

3.4 Implementation Phase 

System developments are implemented in this phase. This phase will represent the development results. 
Evaluate proposed guidelines and research studies referring to several case studies. As the system will 
be tested multiple time, every version will be added at least one features to meet the objectives. The 
implementation phase is when the system made to be avail to users by demonstrating the actual system. 
Maintenance for the system is done such as backup and recovery to enhance the features for each 
module functions when needed. 

3.1.5 Testing Phase 

The testing phase is to validate the implementation of element functionalities which has applied in the 
prototype. Each error and failure will be identified and written as note in the test result. User acceptance 
testing will be used to carry out an effective testing. The stakeholder will give their feedback based on 
the tested prototype and request for changes if any. New request and demands are analyzed to fit the 
requirement needed that will be used for maintaining purpose. 

 

4. Results and Discussion 

The result and discussion section describes the analysis of the study. In this section, the result is 
explained in quantitative research method as it relates to case studies as shown in Table 2. 

 

 

 

 



Omar & Sulaiman, Applied Information Technology and Computer Science Vol. 0 No. 0 (2000) p. 1439-1450 

1448 
 

Table 2: Result evaluations 

 CAIS FM_State Tool FeatureIDE 
User Interactive Yes Yes No 
Import files Yes Yes Yes 
File management Yes No No 
User management Yes No No 
Reporting Yes No No 

 

Table 3: Test cases of the system 

Test Case Test Case ID Test case description Test Result 
Success Fail 

User Login TEST_UC1_1 The system able to verify the users.   

TEST_UC1_2 The system should redirect validated 
users to the respective homepage based 

on their identity.  

  

TEST_UC1_3 The system able to reset the form when 
login is invalid.   

TEST_UC1_4 While exception occurs. The system 
shall return to previous state.    

TEST_UC1_5 The system should provide a button to 
indicate user received the system 

message.  

  

User 
Registration 

TEST_UC1_6 The system allows user to register an 
account with complete username and 

password. 

  

TEST_UC1_7 The system should provide a button to 
indicate user received the system 

message. 

  

Administrator 
Login 

TEST_UC2_1 The system able to verify the users.   
TEST_UC2_2 The administrator should enter a valid 

username and password to success login 
into the system. 

  

TEST_UC2_3 The system able to reset the form when 
login is invalid.   

TEST_UC2_4 While exception occurs. The system 
shall return to previous state.   

Uploading File 
Module 

TEST_UC3_1 The system should be able to upload and 
view the file.   

TEST_UC3_2 The system should be able to save the 
file into the database.   

File 
Management 

Module 

TEST_UC4_1 The system should be able to view file 
list that has been uploaded.   

TEST_UC4_2 The system allows user to update or 
delete file.   



Omar & Sulaiman, Applied Information Technology and Computer Science Vol. 0 No. 0 (2000) p. 1439-1450 
 

1449 
 

Test Case Test Case ID Test case description Test Result 
Success Fail 

Test Model 
Development 

TEST_UC5_1 User able to select test model or xml file 
to be uploaded into the system.   

TEST_UC5_2 The system successfully saves files into 
the database.   

TEST_UC5_3 Users can view the file uploaded.   

Reporting 
Module 

TEST_UC6_1 The system should be able to view 
report list accordingly.   

TEST_UC6_2 The system should be able to generate 
document to print the report directly 

from the system. 

  

 

The testing process was held for CAIS to prove in meetings the objectives by solving the common 
industrial problems based on case studies. Table 3 shows the user acceptability testing based on a set of 
test cases to utilize the testing approach. The result is judged by satisfaction of user with the outcome 
of the test case. 

 

5. Conclusion 

The project framework will improve the base guideline where too many core assets existed leads to 
difficulty in identifying proper core assets to be use in testing. Continuously applying reusability 
method in product reuse while evaluating commonalities and variabilities for SPL. Hence, effective 
approach of core assets is maintained in developing the guidelines tool. Time constraints will be 
minimized as fewer effort is needed to do multiple runs of testing and high quality assure for compatible 
guidelines implementation. Enable validation core assets that are mandatorily used for test case 
generation in SPL. This system also consists of extra functionalities. For instance, upload and update 
the core assets that help users to easily store and manage test model files. 

 

Acknowledgment 

The authors would like to thank the Faculty of Computer Science and Information Technology, 
Universiti Tun Hussein Onn Malaysia for its support. 

 

References 

[1] M. Marques, J. Simmonds, P. O. Rossel, and M. C. Bastarrica, “Software product line 
evolution: A systematic literature review,” Information and Software Technology, vol. 105, pp. 
190–208, 2019, doi: 10.1016/j.infsof.2018.08.014. 

[2] A. R. S. Ali, “A Framework for Evaluating Reusability of Core Assets using SPL and SOA,” 
no. November, 2018, [Online]. Available: 
http://repository.sustech.edu/handle/123456789/22811 

[3] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, S. Apel, and G. Saake, “SPL 
Conqueror: Toward optimization of non-functional properties in software product lines,” 
Software Quality Journal, vol. 20, no. 3–4, pp. 487–517, 2012, doi: 10.1007/s11219-011-9152-
9. 



Omar & Sulaiman, Applied Information Technology and Computer Science Vol. 0 No. 0 (2000) p. 1439-1450 

1450 
 

[4] Y. Xiang, Y. Zhou, Z. Zheng, and M. Li, “Configuring software product lines by combining 
many-Objective optimization and SAT solvers,” ACM Transactions on Software Engineering 
and Methodology, vol. 26, no. 4, pp. 1–47, 2018, doi: 10.1145/3176644. 

[5] F. Roos-frantz, D. Benavides, and A. Ruiz-Cortés, “Feature Model to Orthogonal Variability 
Model Transformation towards Interoperability between Tools,” Knowledge Industry Survival 
Strategy Initiative, Kiss Workshop @ ASE2009, Auckland, New Zealand, no. February 2014, 
2009. 

[6] J. Guo et al., “SMTIBEA: a hybrid multi-objective optimization algorithm for configuring large 
constrained software product lines,” Software and Systems Modeling, vol. 18, no. 2, pp. 1447–
1466, 2019, doi: 10.1007/s10270-017-0610-0. 

[7] S. Wang, S. Ali, and A. Gotlieb, “Cost-effective test suite minimization in product lines using 
search techniques,” Journal of Systems and Software, vol. 103, pp. 370–391, 2015, doi: 
10.1016/j.jss.2014.08.024. 

[8] D. C. Marcilio Mendonca, Moises Branco, “S.P.L.O.T Software Product Line ONline Tools,” 
2010. http://www.splot-research.org/. 

 


