

Applied Information Technology And Computer Science Vol. 2 No. 2 (2021) 165-180

© Universiti Tun Hussein Onn Malaysia Publisher’s Office

AITCS

Homepage: http://publisher.uthm.edu.my/periodicals/index.php/aitcs

e-ISSN :2773-5141

*Corresponding author: sapiee@uthm.edu.my
2021 UTHM Publisher. All rights reserved.
publisher.uthm.edu.my/periodicals/index.php/aitcs

 JAMBU_CHAT: An Online Chat Application
for Android Smartphone

Tan Yit Jun, Sapiee Jamel*

Faculty of Computer Science and Information Technology,
Universiti Tun Hussein Onn Malaysia, Parit Raja, Johor, 86400, MALAYSIA

DOI: https://doi.org/10.30880/aitcs.2021.02.02.012
Received 14 June 2021; Accepted 09 September 2021; Available online 30 November 2021

Abstract: Nowadays, people often use chat applications to communicate with each
other. Chat applications are prone to various attacks such as eavesdropping, Man-in-
The-Middle attack, and impersonation attack. Nowadays, chat applications are using
a combination of symmetric key encryption and a hashed based message
authenticated code or an authenticated encryption like AES GCM for message
confidentiality and authenticity. In this paper, we proposed AES JAMBU as the
security mechanism for implementing a secure chat application. AES JAMBU is an
authenticated encryption algorithm in the Competition for Authenticated Encryption:
Security, Applicability, and Robustness (CAESAR) and is suitable for lightweight
applications. JAMBU_CHAT is developed using Android Studio in the JAVA
programming language and Firebase as the backend. It provides message
confidentiality and authenticity, so it can detect any modification of the transferred
message (ciphertext) and the metadata stored in the database. Therefore, an alert
message will be shown to chat users instead of the modified message if the message
was tempered or modified during transmission. The ECDH key exchange algorithm
is also implemented in this chat application, so the key used for AES JAMBU
encryption and decryption application is not hardcoded in the smartphone.

Keywords: Android, Chat application, Authenticated Encryption, ECDH

1. Introduction

Nowadays, people frequently using chat applications like WhatsApp, WeChat, Telegram and Line.
Different attacks like eavesdropping, MiTM attack, and impersonation attack can happen on the chat
application [1]. Each of them has a different protocol to ensure the messages' confidentiality and
integrity that users send or receive. Most of the application uses the end-to-end encryption protocol to
ensure the message can only be viewed by the sender and receiver, not even the application's company,
for example, WhatsApp, LINE, and Signal. The different chat applications are using different methods
to protect the confidentiality and authenticity of the messages. WhatsApp and Signal are using the AES
256 in Cipher Block Chaining (CBC) mode for message confidentiality and Secure Hash Algorithm
(SHA) 256 HMAC for message integrity.

Tan et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 165-180

166

There is a chat application that used the authenticated encryption method to secure the message,
which is Line corporation. It uses the authenticated cipher AES 256 in Galois/Counter Mode (GCM) to
handle the data encryption and authentication. However, there are two flaws found in GCM mode. The
first flaw is when the message is 2K blocks long, the n-bit tag can only ensure the authenticity of n-k
bits messages. The second flaw is the GCM mode will lead to a successful forgery when the nonce of
it is reused [2].

An authenticated encryption will not show the decrypted message if the input tag is different from
the output tag during the decryption process [3]. Therefore, a good authenticated encryption method
had to be implemented in the chat application. There is a competition - Competition for Authenticated
Encryption: Security, Applicability, and Robustness (CAESAR) had been conducted in the year 2012
to identify the authenticated ciphers that can be used in different fields and having a better performance
than AES-GCM mode. AES JAMBU is the third-round candidate in CAESAR, which has the feature
of lightweight and partial resistance against initialization vector (IV) reuse case [4]. While AES GCM
will lose all the confidentiality and integrity of the message once the IV is reused [5].

The objective of this paper is to design and develop a chat application that ensures message
confidentiality and authenticity using AES-JAMBU. We called this chat application as JAMBU_CHAT.
A functional and security testing will be performed during the development of this chat application. In
JAMBU_CHAT, message transfer between users is encrypted end-to-end using ECDH and AES
JAMBU to ensure message confidentiality and authenticity [6]. JAMBU_CHAT allow the user to
register an account by using their mobile telephone number. The message that saves inside the database
is encrypted by using AES JAMBU with the shared key that exchanges between by using Elliptic Curve
Diffie Hellman (ECDH). The importance of this paper is to ensure the confidentiality and authenticity
of messages in the database by using a more secure authenticated encryption algorithm on chat
applications instead of AES-GCM authenticated encryption.

2. Related Work

2.1 Existing Chat Application

The existing chat application that will be discussed in this part would be the WhatsApp, LINE, and
Signal chat applications.

WhatsApp is a chat application owned by Facebook. Users can use it to send a text or voice
messages, make voice or video calls, and share any documents that up to 100MB. To use WhatsApp,
users are required a phone number to sign up for an account for WhatsApp. WhatsApp will send a
verification code to the user during the sign-up phase to prove that the phone number is owned by the
user [7]. All the communication in WhatsApp is protected by End-to-End Encryption (E2EE). This
means only the user and the person who communicate with the user can read the message, not even
WhatsApp staff. The End-to-End Encryption of WhatsApp is developed by Open Whisper System
called Signal Protocol. Signal Protocol uses Elliptic curve Diffie-Hellman (ECDH) key agreement
scheme with Curve25519, AES-256 in CBC mode, HMAC-SHA256, Double Ratchet algorithm to
attain end-to-end encryption. The length of the message key is 80-byte, 32 bytes of it will use as AES-
256 key, 32 bytes as HMAC-SHA256 key, and the last 16 bytes as an initialization vector.

LINE is a chat application that develops by LINE Corporation. It allows users to send texts, images,
videos, voice messages, location and having a free voice and video calls between users. Users can sign
up for their LINE account with an email or phone number. LINE requires the user to set their password
during the sign-up phase. The password will be used to sign in to other devices or the next time login
[8]. LINE protect their user’s communication with End-to-End Encryption (E2EE). Also, the E2EE
protocol used by LINE is called Letter Sealing. Letter Sealing protocol will locally encrypt the message
before it is sent to LINE’s messaging server so that even LINE also cannot decrypt the message. Letter

Tan et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 165-180

167

Sealing protocol is using Elliptic Curve Diffie-Hellman (ECDH) key agreement scheme with
Curve25519, and AES-256 GCM authenticated encryption cipher.

Signal is a chat application developed by the Signal Technology Foundation and Signal Messenger
LLC. Its able user to send a one-to-one message and also have a group chat. Users not only can send a
text message but also images, videos, voice records and different types. It also able users to make voice
calls and video calls. Signal keep their user’s conversation secure by using the Signal Protocol, which
provides end-to-end encryption. The Signal protocol combines the Double Ratchet Algorithm, prekeys
and Extended Triple Diffie-Hellman handshake to generate the share key between users. Then, the
message encryption algorithm used by Signal is AES-256 for confidentiality and HMAC-SHA256 to
protect the message integrity. The elliptic curve that used in Elliptic Curve Diffie Hellman of Signal is
Curve25519 [9].

2.2 Comparison of existing system

 There are three existing chat application has been reviewed before design the chat application which
are WhatsApp, LINE, and Signal. Then, the summary of each chat application has been compared with
the proposed application in Table 1.

Table 1: Comparison between existing application with the proposed application.

 WhatsApp LINE Signal Proposed
Application

Message
encryption
algorithm

AES-256 in CBC AES-256 in
GCM

AES-256 in
CBC

AES-JAMBU

Message
hash function

SHA-256 N/A SHA-256 N/A

Message
authenticate

AES-256 in CBC
with HMAC-

SHA256

AES-256 in
GCM

AES-256 in
CBC with
HMAC-
SHA256

AES-128
JAMBU

End-to-End
Encryption

Signal Protocol Letter Sealing Signal Protocol ECDH with
Secp256r1

Sign up &
Login using

Phone number and
one-time password
(available to add an
extra pin number)

Phone number
or Email with

password

Phone number
and one-time

password

Phone number
and one-time

password

Media able to
send

Text, voice,
images, file, video

Text, voice,
images, file,

video

Text, voice,
images, file,

video

Text only

Table 1 shown differences between the security mechanism used by the existing application and
the proposed application for protecting the confidentiality and authenticity of the messages. WhatsApp
uses AES 256 in CBC and HMAC-SHA256 to ensure the confidentiality and integrity of the message,
which uses one more algorithm compared to LINE, which uses AES 256 in GCM mode only. The
proposed application is using AES-128 JAMBU. The end-to-end encryption protocol used by
WhatsApp and Signal is Signal Protocol. LINE uses its own protocol called Letter Sealing, and the
proposed application uses ECDH with Secp256r1.

After that, WhatsApp users register or log in to their account with phone number and one-time
password only, and it allows the user to add two-step verification which adds an extra PIN. This method
prevents the user’s account from brute force attack or dictionary attack since the one-time password is
directly sent to the user’s phone number. LINE user has to register or log in their account with a phone

Tan et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 165-180

168

number or email with a password. The proposed application is the same as Signal, which requires the
user to use a phone number and one-time password to register and log in to the application. The media
that are able to send by WhatsApp, LINE, and Signal protocol are text, voice, image, video and file.
For proposed application, it is only able to send the text messages.

3. Methodology/Framework

This project will design and develop by using the object-oriented software development
methodology. There are Object-oriented software development methodology has four main phases,
which are requirement analysis, object-oriented analysis, object-oriented design and implementation
and testing.

3.1 Object Oriented Requirement Analysis

In this phase, a use-case diagram has been illustrated to clarify the activity that can perform by the
user. Then, the functional and non-functional requirements of this chat application will show in two
tables. Table 2 show the functional requirement of the chat application.

Table 2: Functional Requirement Analysis

Module Functionalities
User Register and Login User use phone number to register and login the

account for the chat application
User profile Allow user to edit the profile image and display

name.
User Lists Show the list of the users and able the user to

search for another users.
Send Message Send message to the contact.
View Message Show the history of messages with other users.
Delete Message Delete the sent message.

Table 2 shown the module that will have in the chat application, which are user register and login,
user profile, user list, send, view, and delete message module. The user is using the phone authentication
method to register and log in to the chat application. Then, user can update their profile picture and
username in the user profile module. After that, the user can select other users to start chatting in user
lists. Last, the user is able to send, view, and delete the message that he has sent. Next, Table 3 will
show the non-functional requirement.

Table 3: Non-functional requirement analysis

Requirement Description
Operational The system only available when there is internet

connection
Performance The message transmit time between user should

not exceed 2 second

Security

The user may access the chat application by input
the correct OTP (One-Time-Password) that send
to the user’s phone. The message is encrypted by
using AES JAMBU authenticated encryption.
The shared key between user will exchange by
using Elliptic-curve Diffie–Hellman (ECDH).

 Table 3 shown the non-functional requirement for the chat application in the aspect of operational,
performance and security. The chat application is only available when there is an internet connection.

Tan et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 165-180

169

Then, the message transmits between users should not exceed 2 seconds. Last, the chat application is
using OTP to ensure the user account safety and using AES JAMBU and ECDH to ensure message
confidentiality and authenticity.

 After that, Figure 1 will show the system architecture design of the proposed chat application that
two users able to communicate securely with each other by using the chat application.

Figure 1: System architecture design of proposed chat application

Firstly, when the user registers to the chat application, it will generate an ECDH key pair. The secret
key of the keypair will store inside the device of the user. The public key of the keypair will upload to
the Firebase Realtime database along with the user’s phone number to create an account in the database.
Next, when a user wants to send a message to another user, the sender has to get the receiver’s public
key from the database and compute the ECDH shared key between them. The shared key is then used
as the key for AES JAMBU to encrypt the message. The AES JAMBU will process the message, shared
key, associated data, and nonce to output the ciphertext and tag. Then, the receiver will also compute
the shared key to decrypt the message. Then, the same associated data and nonce will be used in the
decryption process to produce one more tag to verify the authenticity of the message. If the tag during
decryption is the same as the tag along with the ciphertext, then the message will display to the user.
Else it will be discarded.

3.2 Object Oriented Analysis

There are three object-oriented analysis techniques will be used, which are object modelling,
dynamic modelling and functional modelling. In dynamic modelling, a sequence diagram will be drawn
to show the process of the chat application follow by time and the data that transmit during each
process[10]. After that, an activity diagram will also be created to show the chat application’s logic
from user register until user close the chat application. The activity diagram for the chat application will
show in Figure 2.

Tan et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 165-180

170

Figure 2: Activity diagram for proposed chat application

The activity diagram has shown the activity diagram for a new user in the chat application. Firstly,
the user will go through the phone authentication process. If the user has input the wrong OTP, then it
will be required to reenter the phone number for registration. After that, the next time login of the user
will be automatically by using the Firebase Authentication service. Then, the user can set up the profile
picture and user name. In the main menu, the user can select to show user list, show chat history with
other users, or update profile. When the user selects other users in the user list or chat history, he can
send a message to the selected user and also view the message history between him and the selected
user. In the update profile page, the user can change his profile picture and also the user name. Last, the
user can press on back button to close the application.

3.3 Object Oriented Design

In the object-oriented design phase, an ERD (Entity Relationship Diagram) will be created, and the
user interface of the chat application will be designed. The ERD will be created by referring to the UML
class diagram created in the analysis phases. The ERD will show in Figure 3.

Tan et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 165-180

171

Figure 3: Entity Relationship Diagram for proposed chat application

The chat application is using the Firebase NoSQL database. However, an ERD has been designed
to represent the NoSQL database. Each user will have the attribute of user id, phone number, user name,
public key, Uniform Resource Locator of profile image in Firebase storage, online status and the user’s
name in lower case for searching function. Then, the message will have the attribute of message-id,
sender id, receiver id, message in ciphertext, nonce, message date, message time, and whether the
message has been seen. Then, when a user sends a message to another user, a chat list will be created,
and the message between the two users will save the id of the chat list as the foreign key. After that, the
two users will have the same chat list, which store in joined chat table.

3.4 Implementation and Testing

The original AES JAMBU is written in C [5]. JAMBU_CHAT is implement using Java
programming languages. The coding process will work on Android Studio IDE. For object-oriented
implementation, the object is turned into classes code by referring to the UML class diagram created in
the analysis phase. The coding for the methods of each class will refer to the sequence diagram and
activity diagram designed in the object-oriented analysis phase. Native Development Kit (NDK) and
CMake need to be integrated with the Android Studio for Java Native Interface (JNI). Figure 4 shows
the installation process of NDK and CMake in Android Studio.

Figure 4: Installation of NDK and CMake

Besides that, JAMBU_CHAT will connect with the Firebase by register the chat application to a
Firebase account. Then, the key-value store in the Firebase will design follow the ERD (entity

Tan et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 165-180

172

relationship diagram) that was designed in the object-oriented design phase. Figure 5 show the
implementation of Firebase to project in build Gradle file.

Figure 5: Implementation of Firebase to project

Moreover, to use the algorithm of ECDH will require to implement the Spongy Castle Java open-
source library for cryptographic algorithm. Figure 6 show the implementation of Spongy Castle in
project.

Figure 6: Implementation of Spongy Castle for ECDH

After this, JAMBU_CHAT will install on the Android smartphone, and a functionality test can be
carried out using black-box testing. In black-box testing, different inputs to JAMBU_CHAT and the
expected result of it will be included in a test plan. Next, the security checklist will be created to test
the functionality of the security feature in the chat application. A user acceptance testing form will also
create for a non-developer user to test all the functions in the chat application and record their evaluation
towards the function and the security feature of the chat application.

3.5 Software Requirement

The software needed to develop an Android chat application is Android Studio version 4.1 to do
the coding work for the chat application and design its interface. Next, the Dev-C++ Version 5.11 is
needed to open and run the JAMBU AES algorithm since all the participant CAESAR is written in C
programming language [5]. Moreover, Google Chrome is also needed to set up and configure the setting
in Firebase. It also uses to view and manage the data that save in the Firebase.

3.6 Hardware Requirement

A 64-bit Microsoft Window 10 laptop with 12 GB RAM, 1 TB Hard Disk Drive, and 1920 x 1080
screen resolution is used as the development environment in this project. Two mobile phones with
Android operating system Version 5.0 (and above) and have a minimum of 2 GB RAM and 16 GB
internal storage is also required to test the function of the chat application. Two subscriber identification
module cards (SIM cards) with the different number are also needed since the chat application is
registered by using the phone number.

4. Results and Discussion

In this section, the result of ECDH and JAMBU_CHAT implementation will be shown. The process
of the AES JAMBU to authenticate the message will also be shown and discussed.

Tan et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 165-180

173

4.1 ECDH implementation

Each user in JambuChat have a unique ECDH keypair, the private key will store in device and the
public key will store in database. Figure 7 show the ECDH key pair generate after user register
successfully.

Figure 7: Generate ECDH key pair after registration

 Line 321 to 324 will show the ECDH key pair generate by using generateECKeys(). Then, in lines
326 to 330, the encoded private key and the public key will store in the application share preferences in
private mode, which is not able to access by other applications. Line 332 to 340 is storing the user data
in the database. After that, Figure 8 will show the ECDH key generate function.

Figure 8: ECDH key generate function

In line 34 has shown the ECDH key parameter is get from the Secp256r1 curve. Then, line 35 show
that the key pair is generated using the ECDH algorithm from Spongy Castle. Figure 9 is showing the
result of the user public key that has been generated and store in the database.

Figure 9: User’s public key store in database

4.2 JAMBU_CHAT Implementation

JAMBU_CHAT is a chat application that encrypts user’s messages with AES JAMBU to ensure
message confidentiality and authenticity. Figure 10 shows the code segment for the message encryption
by using AES JAMBU before it is saved to the database.

Tan et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 165-180

174

Figure 10: Encrypt message before send

In line 218, the code is computing the share secret between sender and receiver to use as the key in
encryptMessage() in line 220. Line 220 has input the plaintext, share secret, associated data, and nonce
for AES JAMBU encryption in JNI. Then, only the encrypted message saves to the database. Figure 11
shows the code segment of encryptMessage() in JNI. Then, Figure 12 show the ciphertext in hex string
return by the encryptMessage().

Figure 11: encryptMessage() in JNI

Figure 12: Return ciphertext hex string

Line 869 to 871 in Figure 11 shows the process of converting “ad” in jstring or Java string to string
in C that is able to use in AES JAMBU encryption. This process also same goes through on “message”,
“key”, and “nonce”. Line 888 in Figure 12 has shown the message encrypt by crypto_aead_encrypt(),
which is also the AES JAMBU source code method in CAESAR. Then, lines 891 to 894 in Figure 12
will convert the ciphertext from byte to string and return the string in line 896.

After encryption, the ciphertext hex string will store along with the message metadata like message
date, time, and nonce to the database which shown in Figure 13.

Tan et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 165-180

175

Figure 13: Encrypted message stored in database

The encrypted message is the ciphertext with a tag. The tag is the last 8 bytes of the ciphertext,
“c10ba6cfa85bc8b3” is the tag for the message in Figure 13. The encrypted message will send along
with the associated data like the date, time, sender id, and nonce to use in the decryption process. For
message decryption, the data of the message will get from the database. Then the shared key will be
computed, which same in the encryption process. Figure 14 shows the decryption of message when
receiving an encrypted message.

Figure 14: Decrypt message when receive

 The ciphertxt_byte in Figure 14 is the ciphertext in a byte that decode from the hex string of
encrypted message that store in the database. Then, the nonce in byte is also decoded from the hex string
of nonce that is stored in the database. After that, the decryptMessage() will process the ciphertext,
shared, key, associated data, and nonce to give an output that either the original message or an error
message. Figure 15 has shown the decryptMessage() in JNI.

Figure 15: decryptMessage() in JNI

Lines 930 in Figure 15 is the decryption of message using crypto_aead_decrypt(), which is also the
AES JAMBU decryption method in CAESAR. The last phase in the crypto_aead_decrypt() will check
whether the decrypted message tag is same as the tag that come along with the ciphertext. If the
verification is success the return value of this method would be 1. If failed, it will return -1. So, line 934
has set the rule that if the return value is other than 1, the message will be set to the error message in
line 935 and return to the user. Else, the original message will return to users. The error message that
will show to users will show in Figure 16.

Tan et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 165-180

176

Figure 16: Error message if tag verification failed.

Figure 16 show the error message that show to user if the tag verification in the last phase of
decryption process has failed.

4.3 Application Interface

Figure 17 show the interface for message activity in the chat application.

Figure 17: Interface of Message Activity

In Figure 17, the tab above the message activity will show the name of the receiver that the sender
is chatting with. Then, the message that sends to the receiver will show on the right side, while the right
side is the message from the receiver.

The messages that store in the database are in ciphertext form. The key that uses to encrypt the
message is the ECDH shared secret between the sender and receiver. So, even the database admin would
not be able to decrypt the messages between users. After that, any modification of the message during
transmits or on the store will cause the message to change to an error message that alerts the receiver
and sender. This is due to the AES JAMBU will verify the tag of the messages during the decryption
process. Figure 18 has shown two users chatting in AES JAMBU, and Figure 19 show the two users’
last message that has been encrypted and store in database.

Tan et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 165-180

177

Figure 18: Chat between two users

Figure 19: Last message data that store in database

 In this above context, if the encrypted message has been modified even one bit, the message that

shows on the user’s chat page will become the error message that alerts the user that the message has

been compromised. Figure 20 shown the modified message with one bit in the database. Figure 21 show

the result that will show on the user’s chat page.

Figure 20: Modified last message that store in database

Figure 21: Error message after modified message

 Figure 20 shown that the original data “b255d7…” has been a change to “c245d7…”, the one-bit
data change in the message data will cause the message not able to show to users. Instead, an error
message will show to alert the users, which show in Figure 21.

Tan et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 165-180

178

4.4 Test Plan Result

 After the application has been developed, functional testing has been performed to examine the
functionality of the application. The testing is to identify any error that happen when using the chat
application and also check whether the application has achieved the project objective and scope. Table
4, Table 5, and Table 6 has shown the summary result of the functional testing on the chat application.

Table 4: Test Plan for Phone Authentication Module

No. Description Expected Result Actual Result
1 Register – Input phone number

and add alphabet.
Phone number = 01110688a84

Message appear: Please enter a
valid phone number.

Pass

2 Register – Input phone number
and add symbol
Phone number = 1110688@84

Message appear: Please enter a
valid phone number.

Pass

3 Register – Input a real phone
number.
Phone number = 01110688984

Message appear: Verify code has
send, please check your message.

Pass

4 Verify code – Input a wrong
verification code.

Message appear: Invalid
verification code.

Pass

5 Verify code – Input a correct
verification code.

Redirect to User Startup page. Pass

 Table 4 shown the testing result for the phone authentication module. The application is able to
check whether the phone number that input by the user is valid or not. The error message is output if
the user is input an invalid phone number. Then, the user is able to receive the verification code via
SMS (short message service). The application is also able to check whether the verification input by the
user is correct and redirect the user to the user-startup page.

Table 5: Test Plan for Message Activity Module

No. Description Expected Result Actual Result
1 Click send button without input

anything (In user 1 device)
Message appear: Please input your
message. (In user 1 device)

Pass

2 Input “abcd” and click send
button. (In user 1 device)

Message sent and show “abcd”
which send by user 1 in chat
history. (In user 1&2device)

Pass

3 Input “efgh” and click send
button. (In user 2 device)

Message sent and show “efgh”
below previous message and send
by user 2 in chat history. (In user
1&2device)

Pass

4 Select “abcd” message and delete
(In user 1 device)

Message deleted. (In user 1&2
device)

Pass

 Table 5 shown the testing result for the message activity module in the chat application. The test
case for showing the error message when the user did not input anything in the textbox has success.
Then, the user can send, read, and delete the message without any problem.

Tan et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 165-180

179

Table 6: Test Plan for Profile Module

No. Description Expected Result Actual Result
1 Upload a profile picture. (In user 1

device)
User 1 profile picture updated.
(In user 1&2 device).

Pass

2 Update the user’s name.
(In user 1 device)

User 1 user’s name updated. (In
user 1&2 device)

Pass

 Table 6 has shown the updated profile module in the chat application. The functionality for update
the profile picture and user name has been tested and passed. After that, the chat application also goes
through a security checklist for testing the functionality of the message encryption. Table 7 show the
summary of security checklist result for the message encryption.

Table 7: Security check list for proposed system

No Check List Actual Result
1 All message in the database is show in ciphertext. Pass
2 Modified a bit of the encrypted message in database.

The modified message will show as “Error: This
message has been modified” instead of the message”.

Pass

3 Replace a message in database with other chat’s
message. The replace message will show as “Error:
This message has been modified” instead of the
message” in user device.

Pass

 Table 7 shown the security checklist for the chat application. The message stored in the database is
all in ciphertext form. Then, any modification of the encrypted message is able to detected in the
application and show the error message to users.

5. Conclusion

AES JAMBU has been successfully implemented on Android smartphones as the authenticated
encryption to ensure confidentiality and authenticity of chat messages instead of using a symmetric key
encryption and a hashed based message authenticated code or the AES-GCM authenticated encryption.

The advantage of JAMBU_CHAT is that if any modifications are made to the message (ciphertext)
during transmission, the error message will be shown to the recipient in the chat. This is the significant
advantage of using authenticated encryption, where Tag is used to ensuring the integrity of the
transferred message (ciphertext).

For future work, JAMBU_CHAT can be added with additional features such as group chat and
various media attachments (image, video, voice record, and document file).

Acknowledgement

The authors would like to thank the Faculty of Computer Science and Information Technology,
Universiti Tun Hussein Onn Malaysia for its support and encouragement throughout the process of
conducting this study.

References

[1] M. Kuliya and H. Abubakar, “Secured Chatting System Using Cryptography,” International
Journal of Creat. Res. Thoughts, vol. 8, no. 9, pp. 23–26, 2020.

Tan et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 165-180

180

[2] N. Ferguson, “Authentication weaknesses in GCM,” Comments Submitt. to NIST Modes Oper.
Process, pp. 1–19, 2005.

[3] P. Sarkar, “A Simple and Generic Construction of Authenticated Encryption with Associated
Data,” ACM Trans. Inf. Syst. Secur., vol. 13, no. 4, pp. 1–16, Dec. 2010.

[4] T. Peyrin, S. M. Sim, L. Wang, and G. Zhang, “Cryptanalysis of JAMBU,” in International
Workshop on Fast Software Encryption, 2015, pp. 264–281.

[5] H. Wu and T. Huang, “The JAMBU Lightweight Authentication Encryption Mode (v2.1),” Div.
of Math Sciences., Nanyang Technological University, Singapore, 2016.

[6] C. Easttom, “An Overview of Key Exchange Protocols,” IOSR J. Math., vol. 13, no. 4, pp. 16–
18, 2017.

[7] T. Sutikno, L. Handayani, D. Stiawan, M. A. Riyadi, and I. Much Ibnu Subroto, “WhatsApp,
Viber and Telegram which is Best for Instant Messaging?,” Int. J. Electr. Comput. Eng., vol. 6,
no. 3, p. 909, Jun. 2016.

[8] C. M. Sang and C. C. Yen, “Forensic analysis of LINE messenger on Android,” Journal.
Computing., vol. 29, pp. 11–20, 2018.

[9] V. McCall, “What to know about Signal, the secure messaging app that keeps all of your
conversations private,” Business Insider, 2021. [Online]. Available:
https://www.businessinsider.com/what-is-signal. [Accessed: 25-Mar-2021].

[10] Muhammad Umair, “Object Oriented Analysis and Design,” Code Project, pp. 1–10, Dec 11,
2018.[Online]. Available: Code Project,
https://www.codeproject.com/Articles/1137299/Object-Oriented-Analysis-and-Design.
[Accessed Sept 15, 2020].

