Applied Information Technology And Computer Science Vol. 2 No. 2 (2021) 053-072
© Universiti Tun Hussein Onn Malaysia Publisher’s Office

AITCS

Homepage: http://publisher.uthm.edu.my/periodicals/index.php/aitcs
e-ISSN :2773-5141

Electronic Medical Record System using
Ethereum Blockchain and Role-Based Access
Control

Loh Chee Ming, Chuah Chai Wen*

Faculty of Computer Science and Information Technology,
Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, 86400 MALAYSIA

DOI: https://doi.org/10.30880/aitcs.2021.02.02.004
Received 14 June 2021; Accepted 09 September 2021; Available online 30 November 2021

Abstract: Medical record is a document that records the disease, diagnosis, and
treatment history of patients. These records help the doctor to determine the diseases
and provides patients drug prescriptions. However, there is a case about the
falsification of medical records. The doctor falsified the medical record to evade legal
responsibility. Also, according to 13abc Action news, some healthcare organizations
found that employees unauthorized access to medical records. The employee accessed
the medical records without work-related purpose but for their own benefit. Hence,
this project intends to develop a web-based Electronic Medical Record system to
solve the address the issues mentioned above. This system store the hash value of
medical records in blockchain as a reference to prevent falsification of medical
records. The system also implements access control to restrict unauthorized access to
medical records. The methodology uses to develop the proposed system is Object-
Oriented System Development (OOSD). Java is the main programming language uses
to develop the system. The developed system protects the confidentiality of medical
records and provides an integrity check for medical records. This system may prevent
falsification of medical records and restricts unauthorized access to medical records.

Keywords: Electronic Medical Record, Ethereum Blockchain, Role-Based Access
Control, PBKDF2, Java

1. Introduction

Medical record records the disease, diagnosis, and treatment history of patients. The medical record
contains the privacy of patients as it recorded the personal information and disease of patients. Medical
records are very important as they help the doctor to determine the diseases of the patient and prevent
doctors get a mistake when prescribe. Therefore, it is very essential to manage and store medical records

securely [1].

There was a case of falsified medical records in October 2017. The physician assistant altered the
medical record to evade legal liability and tried to shirk the responsibility. The falsified records were
only found after a long time. Finally, doctors are not legally responsible for falsifying medical records
[2]. Therefore the integrity of medical records must be ensured to prevent the doctors from falsifying

*Corresponding author: cwchuah@uthm.edu.my
2021 UTHM Publisher. All rights reserved.
publisher.uthm.edu.my/periodicals/index.php/aitcs

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

the records. The proposed system restricts the doctors to modify the medical records. Doctors are only
allowed to create new medical records for patients. Also, the proposed system stores the medical
record’s hash value in the blockchain. By comparing the hash value of the medical records stored in the
database and the hash value stored in the blockchain, it may detect any unauthorized modification of
medical records.

Healthcare organizations face legal responsibility for unknown employee’s unauthorized access,
retrieve, and disclosing the patient’s medical records. According to the 13abc Action News report, there
was a former employee unauthorized access and modification of medical records in ProMedica [3]. An
academic medical centre, Penn Medicine also found that a former medical assistant had improperly
accessed patient records [4]. To overcome above mentioned problem, the proposed system records all
activities of staff account in the audit log. It provides accountability in the system. The activities such
as who accessed which patient’s medical records are recorded in the audit log. Based on the audit log
report, the healthcare administrator may deactivate or legal action towards the employee is suspended
to access the medical records without work-related reason. The proposed system also implementing
Role-Based Access Control (RBAC) to control the accessibility of medical records.

In the proposed system, there are four types of users: administrator, doctors, nurses and patients.
The hospital administrator registers an admin account, the admin register the new staffs such as
receptionist, doctor, and nurse. For the doctors, after consultation they add patient’s medical record.
The doctors may access or view the granted medical records from their patients. For nurse, they assist
doctors to request for particular patients to grant access to their medical records. The patient may view
their own medical records and control access their medical records. The proposed system stores the
hash values of the medical records in the blockchain. The system refers to the hash values stored in the
blockchain to check the integrity of medical records. The system also protects accountability by record
the activities of the staff account in the audit log, and the admin is able to view this audit log.

2. Literature Review

This section presents the literature reviews that have been conducted for this project. The goal of
this literature review is to understand the background and technology used for this system.

2.1 Hash Function

Hash function takes an arbitrary size of data as input to produce a fixed length output, called hash
value [5]. It is impossible reverse the output of the hash function to reconstruct original data. Also,
single bit change in the input of hash function may get a completely different output hash value. The
same input always produces the same hash value [6]. Hash function consists of three main properties.
There are Preimage Resistance, Second-Preimage Resistance, and Collision Resistance [5].

Table 1 describes each of the hash function properties.

Table 1: Properties of Hash function [5]

Properties Description
Pre-Image Resistance By given a hash value x, then using y as an input to hash function H, the
output of H(y) should not equal to x. It could be expressed as H(y) #
X.
Second Pre-Image By given input x, then using a different value y as input, the output of
Resistance H(y) should not equal to the output of H(x). It could be expressed as

H(y) # H(x)ify # x.

54

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

Table 1: (cont.)

Properties Description

Collision Resistance By given values x and y as inputs, if x and y are different, then the output
of H(x) should not equal the output of H(y). It could be expressed as
x = y,H(x) # Hy).

SHA-256 hash function is used as the internal hash function of HMAC in the proposed system.
SHA-256 takes an arbitrary size of data as input. The block size of SHA-256 is 512 bits. The output of
SHA-256 is 256 bits [7].

The SHA256 algorithm follows these steps [7]:

e Get the input message and ensure its length is a multiple of 512 bits. This is done by adding a
padding.
e Take the pass message and parse it into N 512-bit blocks.
e [terate over all blocks from step 2:
e Initialize the message schedule, a sequence of 64 32-bit words.
o Initialize eight working variables a, b, ¢, d, e, f, g, h with the hash values Hy, H;, H,,
Hs, H,, Hs, Hg, H, from the previous iteration (for the first iteration, Hy to H, are
initialized with constants).
e Perform 64 iterations where working variables a to h are rotated in a certain manner.
In this step, the message is inserted into the hash using lots of bitwise mixing.
e Compute the new intermediate hash values Hy to H, as Hy = Hy + a, H, = H, + b and
SO on.
e Concatenate H, to H- as the message digest and return it.

2.2 Hash Message Authentication Code (HMAC)

Hash Message Authentication Code (HMAC) secures the transmission of data over insecure
channels, especially the integrity, authentication, and non-repudiation of data. HMAC uses a private
key and cryptographic hash function to generate output hashes [5].

The HMAC algorithm express as [5]:
HMAC (K, M) = H((K" @ opad) || H((K" @ ipad) || M)) Eq.1

For the parameters in Eq.1, H is SHA256 hash function, K is the secret key, K* is the block-sized
key derived from secret key, M is the message, opad is outer padding, ipad is inner padding, || is
concatenation, and @ is exclusive OR [5].

First, the message is converted into bits and divided into blocks with block size b bits. The block
size depends on the hash function used. The secret key, K is known by both sender and receiver. The
secret key, K is padded with extra zero if the key size is less than the block size, b. If the key is longer
than the block size, hash the key to getting the b size key. The key remains if the key size equal to the
block size. The block-sized key, K* is derived from the secret key, K [8].

The ipad is 00110110 repeated b/8 times. While the opad is 01011100 repeated b/8 times. First,
the block-sized key, K* XOR with ipad to produce output, S; with block size. Next, concatenate the S;
with the message and then hash it with n bits IV to generate output with n bits size. Then, pad the output
to b bits size [8].

55

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

The key, K™ XOR with opad to produce output with block size, Sy. Concatenate the Sy and the
output together. Lastly, hash it again with IV to produce n bits output. It is the final result of HMAC

[8].
2.3 Password Based Key Derivation Function 2 (PBKDF2)

Password-hashing techniques are used to protect the password stored in the database [9]. The
current standardization of password-hashing is PBKDF2 [10], while other widely used standards are
Bcerypt and Scrypt [9].

PBKDF?2 is defined by the choice of a Pseudorandom Function (PRF) and iteration count, C. The
Pseudorandom Function (PRF) is HMAC-SHA256. PBKDF?2 takes three inputs, which are password,
salt, and length of derived key [10]. Table 2 describes the three inputs of PBKDF2.

Table 2: Inputs for PBKDF2 [10]

Inputs Description

Password User’s password.

Salt Random generated number that appended to the password.
Derived key Length Length of the derived key in octet.

The output of PBKDF?2 is the master key. The PBKDF2 is expressed as [10]:
mk = PBKDF2 pgp,cy(P,S, kLen) Eq.2

For the parameters in Eq.2, P is the password, S is the salt, kLen is the derived key length, PRF is
HMAC with SHA-256, C is iteration count, and mk is the master key [10].

The process of PBKDF2 [9]:
1. HMAC function takes the password and salt as inputs to produce the HMAC result.

2. Password and previously-computed HMAC result taken as inputs for the HMAC function to
produce the HMAC result.

3. The HMAC result XOR with the previously-computed HMAC result in each iteration.
The final hash value is produced from the last round XOR operation.
24 Blockchain

In simple terms, blockchain is a chain of blocks. Each block stored multiple transactions. Every
block is interconnected to the previous block through its hash value. Blockchain consist of a continuous
sequence of blocks. The new block was added linearly to the “tail” of the blockchain [11].

After the block added to the blockchain, the content in the block is very difficult to be modified.
Every block in the blockchain contains the hash value of current block data along with the hash value
of the previous block. Any modification may affect the current hash and the previous hash stored in the
next block become incorrect. Therefore the unauthorized modification is detected. [11].

Each block in blockchain consists of a block header and a block body. The block body contains a
transaction counter and transactions. The size of a block and the size of each transaction determine the
maximum number of transactions that a block can contain [11]. Block size varies from 1MB to 8MB
and may over SMB. Each block has a unique number known as Block ID generated cryptographically

[6].

56

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

Block Header is composed of six fields, there are block version, Merkle Tree Root hash, timestamp,
nBits, nonce, and parent block hash [11]. Table 3 shown the block header field and its description.

Table 3: Components of block header [11]

Components Description
Block version A 4-byte number specifies the version of the blockchain.
Merkle tree root hash The hash value of all transactions in the current block body.
Timestamp The current block added time in Unix time seconds.
nBits The threshold of valid block hash in the current block.
Nonce The generated number used to get target hash value.
Parent block hash The hash value of previous block.

Blockchain has provided four security properties to secure the transactions stored in the blocks.
There are decentralization, persistency, anonymity, and auditability [11][12].

e Decentralization
Blockchain distributes the transaction information on the blockchain network. The transactions
are stored by the blockchain nodes. The transactions on the blockchain network are verified by
the nodes on the network through the consensus algorithm. The consensus algorithm maintains
data consistency.

e Immutability
Every block in the blockchain contains its hash value and also the previous block hash value.
Therefore the block able to detect and restricts any unauthorized modification of data. Once the
block is added to the blockchain, it is nearly impossible to remove or rollback the transaction.
Any unauthorized modification and invalid transaction on the blockchain could be detected by
the nodes on the blockchain network.

e Anonymity
Blockchain provides an efficient way of hiding the identity of users and keeps the user’s identity
secret. Every user uses the generated address such as wallet address to interact with the
blockchain. Therefore it does not disclose the real identity of users.

o Auditability
Every transaction information is recorded in the block and authenticated by the digital signature
of the users. Therefore the activities of the users when interacting with the blockchain become
non-repudiation. All of the transactions that could be verified can be tracked easily.

2.4.1 Ethereum Blockchain Platform

Ethereum is an open-source blockchain platform. Ethereum blockchain was launched in 2015.
Ethereum uses the cryptocurrency called Ether (ETH). The Ether is transferable between user accounts.
Users must paid Ether when perform a transaction on the Ethereum blockchain [13].

Ethereum also called programmable blockchains since Ethereum supports smart contracts. A smart
contract is a contract in digital form and it is a non-modifiable general purpose computer program that
stored in Ethereum blockchain. Ethereum not only hosts the smart contracts but also executes it. Every
user may deploy smart contracts to the Ethereum blockchain. After deployment successfully, the smart
contract has a 40-digit hexadecimal ID which is often referred to as the address of the contract. User
interacts with the smart contract through the address of the contract [13].

Users interact with the smart contract by sending transactions to its functions. The transaction burns
a certain amount of gas units depending on the number of instructions executed during runtime. The

57

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

amount of gas units used in transaction is called gas usage. To send a transaction to the smart contract,
it has to set two parameters: gas price and gas limit. Gas price is the amount of Ether to pay for one unit
of gas. Gas limit is the maximum amount of gas units to pay for transaction. Therefore, the transaction
fee that has to pay is gas price X gas usage, and the maximum transaction fee is gas price x gas limit
[13].

2.5 Electronic Medical Record (EMR)

The medical records should be universally available, for example, access through the World Wide
Web [14]. Universally available medical records are easily shared when patients transfer to different
hospitals. However, there is potential of loss of information privacy via the remote access to the
electronic medical record through the network. The attackers may hack the database to unauthorized
access the medical records through the network [14].

Based on [15], there are seven requirements to secure the electronic medical record. Table 4
describes the requirements.

Table 4: Requirement to secure electronic medical record [15]

Requirements Description
Authorized access The system should be able to identify both healthcare providers and
patients. Identification should be portable between different roles that
access patient medical records.

Confidentiality Medical records contain sensitive patient information, thus it is important
to secure the confidentiality of records.
Patient’s consent Patients should able to control their medical records by allowing or deny

others access to their medical records. Access to medical records should
have the consent of the patient, especially share the medical records
among different healthcare providers.

Information ownership ~ Healthcare providers are responsible for the patient information, but
patients also have the right to access their medical records.

Relevance Only allow the relevant entity to access the patient information.
Information consistency The system should able to show the changes of information. Also, detect
and restrict unauthorized modification of data.

Audits The system should record all of the activities about access to the
information and any modification of medical records. This mechanism
allows monitor the activities on the system, thus provide accountability.

2.6 Existing Electronic Medical Record System

This section explains two Electronic Medical Record System (EMR), Hospital Health Information
Management System (HHIMS) [16] and MedBloc [17]. Section 2.6.1 presents Hospital Health
Information Management System (HHIMS) [16]. Section 2.6.2 explains MedBloc [17]. Section 2.6.3
compares the two systems with the proposed system.

2.6.1 Hospital Health Information Management System (HHIMS)

Hospital Health Information Management System (HHIMS) developed by Dompe District Hospital
in Sri Lanka in the year 2010. HHIMS was developed for the Out Patient Department (OPD). HHIMS
is used to store clinical details of patients treated, aimed to replace paper medical records [18]. HHIMS
has become an open-source medical record software now. Information Communication and Technology
Agency (ICTA) implemented and managed this system currently [18].

HHIMS needs to install on a computer server in the hospital so that the Out Patient Department
(OPD) and other departments able to use workstation computers to access the system via a local area

58

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

network. The server store all of the data such as patient information, no data stored in the workstation
computer. Since the data stored centrally on the server, the data able to share with the workstation
computers that are connected to the local area network [19].

2.6.2 MedBloc

MedBloc is a blockchain-based system. MedBloc enables healthcare organizations and patients to
access and share health records in a secure channel. MedBloc uses encryption and smart contract-based
access control to secure medical data [17].

MedBloc allows the patients to own their medical records by allowing or deny others access. The
Immutability of blockchain allows patients to comfort their data are not unauthorized modified by others.
The blockchain transparent property also enables data auditability and provenance. Patients are able to
know who access their medical records and how their data are used [17].

2.6.3 Comparison of Existing System with Proposed System

Table 5 compares the Hospital Health Information Management System (HHIMS), MedBloc, and
Proposed System with six properties. The six properties are confidentiality, integrity, accountability,
patient’s consent, accessibility, and audit log.

Table 5: Comparison of existing systems with proposed system

HHIMS MedBloc Proposed System
Confidentiality v v v
Integrity X v v
Accountability X v v
Patient’s consent X v v
Accessibility X v v
Audit log X X v

Based on Table 5, HHIMS only protects the confidentiality of medical records. While MedBloc
and the proposed system implement confidentiality, integrity, accountability, patient’s consent, and
accessibility in the system. The proposed system also implements audit log property compares to
MedBloc. The proposed system provides an audit log which records all of the staff’s activities such as
create and access to medical records event. Admin is able to monitor the staff’s activities by view the
audit log.

3. Methodology

Object-Oriented System Development (OOSD) is a methodology used to design, analyse, and
develop a system or application. There are four phases in OOSD. There are object-oriented requirement
analysis, object-oriented analysis, object-oriented design, and object-oriented implementation and
testing [20].

In object-oriented requirement analysis phase, the requirements for the proposed system are
analysed based on the academic paper related to Electronic Medical Record (EMR) and blockchain.
The academic paper analysed include articles, journals, and conference papers published in IEEE,
PubMed Central (PMC), and Research Gate.

In the object-oriented analysis phase, the information collected are analyzed. The modules for the
proposed system are identified. There are seven modules, which are the register module, login module,
staff account control module, audit log module, doctor consultation module, medical record module,
and patient permission module. After identified the modules, functional requirements and non-

59

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

functional requirements are examined. The user roles for the system also identified. The roles are admin,
receptionist, doctor, nurse, and patient.

In object-oriented design phase, the architecture of the proposed system is designed. The database
table, the classes, and the user interface (UI) are designed for the proposed system.

In object-oriented implementation phase, the database tables, classes, and user interface (Ul) are
implemented. All of the tables and classes are linked to each other to ensure the proposed system
function correctly. Also, the system is developed based on the design and requirements.

In the object-oriented testing phase, the testing process follows the designed test plan to ensure the
proposed system functioning correctly. The debugging process undergoes to solve the problems when
errors occur in the proposed system. The penetration test process is done on the system using two tools.
These tools are Pentest-Tools.com and SSL Trust.

After deployment of the system, there may have some problems occur. For example, lack of
functionality and failure to pass the expectation of users. There should have modifications to conform
to the users. However, due to the limitation of time, the object-oriented maintenance phase is not going
to implement in this project.

4. Analysis and Design
This section presents the analysis and design for the proposed system.
4.1 Functional Requirements

The proposed system has seven functional requirements as shown in Table 6. There are register
module, login module, staff account control module, audit log module, doctor consultation module,
medical record module, and patient permission module.

Table 6: Functional requirements for system

Modules Descriptions
Register e The hospital administrator registers an admin account by using
username, password, and hospital details such as hospital name and
address.

o The patient registers a user account by using username, password,
and personal information such as name, date of birth, email, and
address.

Login e Authenticate users such as admin, doctor, and patient log in to the
system by using username and password.

Staff Account Control e Admin adds, updates, and deletes staff accounts.
e Admin deactivates the staff account.
Audit Log e Admin views the access log that records all the activities of staff such
as create new medical record, and access medical records.
Doctor Consultation e Receptionist adds patients to the waiting list.
e Receptionist assigns doctor for the patients.
e Doctor view the current assigned patient waiting list.
Medical Record e Doctor adds a new medical record to the patient.
e Doctor and nurse view the medical records granted access by the
patients.

e Doctor views the medical records created by themselves.
e Patient views own medical records.

60

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

Table 6: (cont.)

Modules Descriptions
Patient Permission e Doctor and nurse request and view the medical records of the patient.
e Patient allows or denies the request to access their own medical
records.
4.2 Non-functional Requirements

There are three categories of non-functional requirements, which are operational, performance, and
security. Table 7 shows the non-functional requirements for the proposed system.

Table 7: Non-functional requirement for system

Requirement Description
Operational e System only available when there is Internet connection.
Performance e System must locate to the correct session depend on who authorized.
Security e User may access the system with correct username and password.
e User’s password should have minimum 10 characters, include at least

one capital letter, at least one small letter, at least one number, and at
least one symbol.

e System automatic terminates the session and log out the user after
inactivate for 30 minutes.

e System hashes the user password with Password Based Key
Derivation Function (PBKDF2).

43 General System Architecture

General system architecture defines the structure and behaviour of a system. Figure 1 illustrates the
General system architecture for proposed system.

Request

Resronse
' *
Req:es‘ Response

User Interface Request Reqister
(web-based) Respunse——tg—J

¥
Reqres‘ Response
|
=
Login le R wﬁhc
Request Request Request
‘ Response | Response | Response

gun - I] N L] \UM

. Update General
Manage staff [Medical Record]
; " Add New Medical
View Audit Log Record View Medical Record
Vi Medical R d
m Access Control own
Medical Record
Request access Patient's

Update Hospital
Information
Medical Records

\ \ / giet get

I
Store
Blockchain

Figure 1: General system architecture for proposed system

Store

Database

Manage Patient

61

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

As shown in Figure 1, the proposed system is web-based. User uses a web browser to access the
system through Internet. The system stores the data in the database. The system retrieves the data from
the database when user requests, then displays it to the user. The system stores the hash value of medical
records in the blockchain.

There are three types of users in the proposed system, which are admin, staff, and patient. Every
user able to login through the login user interface. Only admin and patient are allowed to register new
account. Admin performs three functions, there are manage staff, view audit log, and update hospital
information. There are three types of staff, which are receptionist, doctor, and nurse. Receptionist
manages patients by adding them to the waiting list and assign doctor for patients. Doctor able to
perform three actions, add medical records, view medical records, and request access to patient’s
medical records. Nurse may view medical records and request access to patient’s medical records. For
the patient, there have four actions can perform, which are update general medical record, view medical
record, and access control own medical record.

4.4 Classes Diagram

This section illustrates the relationship between classes implement in the proposed system. Figure
2 shows the class diagram for the proposed system.

HttpServiet
_

Y

StaffAction

StaffActionDB
7

HospitalDB

‘ AdminDB ‘ ‘ StaffDB | ‘Smﬂflrynepa

Connector

Figure 2: Class Diagram for proposed system

The class diagram contains 11 servlets and 26 classes. The servlets are HttpServlet,
SessionTimeOutServlet, AuditLogServlet, RegisterServlet, LoginServlet, ProfileServlet, StaffServlet,
WaitingConsultantServlet, MedicalServlet, PatientPermissionServlet, EmailVerificationServlet, and
LogoutServlet. The servelets handle request from user and response to the user. Servlets contain two
methods which are doGet() and doPost().

The classes are Connector, AuditLog, StaffAction, Hospital, Admin, Staff, StaffType, Patient,
GeneralMedicalHistory, MedicalRecord, PatientVisitStatus, PatientPermission, Email Verification, and
NISTInternetTime. Each of the class has getter and setter method for every attributes, except the
Connector class which is used to connect the database.

The DB classes are used to interact with the database to store and retrieve data. The DB classes are
AuditLogDB, StaffActionDB, HospitalDB, AdminDB, StaffDB, StaffTypeDB, PatientDB,
GeneralMedicalHistoryDB, MedicalRecordDB, PatientVisitStatusDB, PatientPermissionDB, and
EmailVerificationDB.

62

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

4.5 Entity Relationship Diagram

The ERD of the proposed system has 13 entities. These entities are EMAIL VERIFICATION,
HOSPITAL, ADMIN, STAFF, STAFF TYPE, PATIENT, GENERAL MEDICAL HISTORY,
MEDICAL RECORD, PATIENT VISIT STATUS, PATIENT PERMISSION, AUDIT LOG,
STAFF ACTION, and MEDICAL CONTRACT. Each entity has its own primary key, ID. The
HOSPITAL, ADMIN, STAFF, PATIENT, GENERAL MEDICAL HISTORY,
MEDICAL RECORD, PATIENT PERMISSION, and AUDIT LOG entities have foreign key related
to others. The MEDICAL CONTRACT entity is stored in the Ethereum blockchain. The ERD for the
proposed system is shown in Figure 3.

PATIENT
HOSPITAL EMAIL_VERIFICATION
PK | PATIENT_ID
PK | HOSPITAL_ID PK | EMAIL_VERIFICATION_ID
PATIENT_USERNAME
AL_NAM
— HOSPITAL_NAME EMAIL_VERIFICATION_EMAIL PATIENT_PASSWORD N
—H HOSPITAL_ADDRESS
- = J EMAIL_VERIFICATION_KEY PATIENT_SALT
EMAIL_VERIFICATION_TIME STAMP PATIENT_NAME
EMAIL_VERIFICATION_SET_PASSWORD PATIENT_IC
EMAIL_VERIFICATION_ROLE PATIENT_GENDER
PATI ATEOFBIRTH
S ENT_DATEOFBIR’
PATIENT_EMAI
P
K | ADMIN_IO PATIENT_E
£« | HosPmAL 1D PATIENT_ALLOW_DEFAULT

MEDICAL_RECORD

ADMIN_USERNAME

ADMIN_PASSWORD PK | MEDICAL_RECORD_ID
ADMIN_SALT FX | PATIENT_ID
ADMIN_NAME

FK | HOSPITAL_ID
ADMIN_EMAIL = |

FK | STAFF_ID1
ADMIN_EMAIL_VERIFY

FK | STAFF_IDZ

GENERAL_MEDICAL_HISTORY
FK | PATIENT_VISIT_STATUS_ID — —
BLOCKCHAIN 1DX PK | GENERAL_MEDICAL_HISTORY_ID
PATIENT_VISIT_TIMESTAMP FK | PATIENT_ID
Ea MEDICAL_DIAGNOSIS SIGNIFICANT_MEDICAL_HISTORY
FK | STAFF_ID H—o0<4 MEDICAL_DIAGNOSIS_DESCRIP MEDICAL_PROBLEM
_.é MEDICAL_ADVICE_PRESCIPTION MEDICATION TAKEN
FK | HOSPITAL_ID -
MEDICAL_RECORD_REMARK DRUG_ALLERGIES
FK | AR MEDICAL_RECORD_TIMESTAMP ~ FH——
FK | STAFF_TYPE_ID
STAFF_ACC_ID i PATIENT_PERMISSION
STAFF_USERNAME K | PERMISSION_ID
STAFF_PASSWORD PATIENT_VIST_STATUS
a FK | PATIENT_ID
STAFF_SALT PK | PATIENT_VISIT_STATUS_ID -
STAFF_NAME FK | STAFF_ID
PATIENT_VISIT_STAT! M
STAFF_EMAIL ATIENT_VISIT_STATUS NAVE PERMISSION_STATUS po—
PATIENT_VISIT_STATUS_DESCRIP
STAFF_EMAIL_VERIFY PERMISSION_DURATION
STAFF_STATUS H og PERMISSION_TIMESTAMP
AUDIT_LOG
PK |AUDIT_LOG_ID STAFF_ACTION
S FEIEE K | HOSPITAL_ID FK | STAFF_ACTION ID
PK | STAFE_TYPE ID FK | STAFE_ACTION_ID STAFF_ACTION_NAME
STAFF_TYPE_NAME AUDIT_LOG_STAFFNAME STAFF_ACTION_DESCRIP
STAFF_TYPE_DESCRIP AUDIT_LOG_STAFFTYPE
AUDIT_LOG_SUBJECTNAME)
O AUDIT_LOG_SUBJECTTYPE Ethereum Blockchain

AUDIT_LOG_TIMESTAMP

i MEDICALCONTRACT

BLOCKCHAIN_IDX

MEDICAL_HASH

Figure 3: ERD for proposed system
5. Implementation

This section examines the cost of cryptocurrency required to interact with Ethereum blockchain
smart contract and implementation of the proposed system. The system is implemented by following
the system security requirements and electronic medical record security properties.

5.1 Cost of Cryptocurrency to Interact with Ethereum Blockchain Smart Contract

The developed system stores the hash value of medical records on Ethereum blockchain by interact
with smart contract. To send a transaction to the smart contract, it has to set two parameters: gas price

63

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

and gas limit. Gas price is the amount of Ether to pay for one unit of gas. Gas limit is the maximum
amount of gas units to pay for transaction. The transaction fee that has to pay is gas price x gas usage,
and the maximum transaction fee is gas price X gas limit. Gas prices are denoted in Gwei, each Gwei is
equal to 0.000000001 ETH (10%-9 ETH). This system sets the gas price as 20 Gwei, equal to
0.00000002 ETH. This system also sets the gas limit as 3000000 unit. Therefore, the maximum
transaction fee needed to pay for each transaction is 0.06 ETH. Most of the time, each transaction fee
is cost lower than 0.06 ETH.

52 Implementation of System Security Module
This section presents the security module implemented in the proposed system.
5.2.1 Implementation of Strong Password

Figure 4 shows the Java code for implementing strong password in the system. The password is not
allow to be empty. The minimum length and maximum length are set for the password. The minimum
length of password is 10 characters and maximum length of password is 20 characters. The pattern of
password must consists of at least one capital letter, one small letter, one number, and one symbol. The
system will reject the registration and print error message if fail to meet these requirements.

public static String checkPassword(String password) {
String error = null;

if(checkEmpty(password)) {

error = "Password cannot be empty.";
}
else if(password.length() < 18) {

error = "Minimum of 1@ characters is required for password.";
}
else if(password.length() > 20) {

error = "Maxminmum of 20 characters is allowed for password.";
}
else {

String passwordRegex = "~(?=.*\\d)(?=.*[a-z]) (?=.*[A-Z]) (2= *[1@\\$%\\"&*]) [0-9a-zA-ZI@#\\$%\\"&*]{10,}3";
Pattern passwordPattern = Pattern.compile(passwordRegex);
Matcher passwordMatcher = passwordPattern.matcher(password);
if(!passwordMatcher.matches()) {
error = "Password must consist of minimum 10 characters, include at least one capital letter, small letter, number, and symbol.”;
}
}

return error;

Figure 4: Strong Password
5.2.2 Implementation of Secure HTTP Response Header

The Secure HTTP Response Header enhance the security of the web page by restrict the browser
to load data from unknown source. Figure 5 shows the Java function to set HTTP response header for
every page send to the users.

public void doFilter(ServletRequest reguest, ServletResponse response, FilterChain chain) throws IOException, ServletException {
if(request.isSecure() && response instanceof HttpServletResponse) {
HttpServletResponse resp = (HttpServletResponse) response;
resp.addHeader("Content-Security-Policy",
"default-src "self'; "
+ "script-src 'self' ‘unsafe-inline' ‘unsafe-eval® 'unsafe-hashes® https://unpkg.com/web3@latest/; "
+ "connect-src 'self' https://ropsten.infura.io/v3/29¢@676abll54efeaandb256392959¢; "
+ "font-src *; "
+ "img-src 'self' data: 'unsafe-inline'; "
+ "style-src * 'self' 'unsafe-inline’; "
+ "base-uri 'self'; "
+ "form-action 'self';");
resp.addHeader("Strict-Transport-Security”, "max-age=31622400; includeSubDomains");
resp.addHeader("X-Frame-Options", "DENY");
resp.addHeader("X-XSS-Protection”, "1; mode=block");
resp.addHeader("X-Content-Type-Options”, "nosniff");
resp.addHeader("Referrer-Policy", "no-referrer™);

chain.doFilter(request, response);

}

Figure 5: Set HTTP Response Header
53 Implementation of Electronic Medical Record Security Module

This section presents the electronic medical record security properties implemented in the proposed
system.

64

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

5.3.1 Implementation of Authorized Access Property

Authorized access property indicates the system should identify both hospital staff users and patient
users. System authenticates and authorizes users with their username, password, and roles. Figure 6
shows the Java code for staff authentication. Staff'is able to access the system if the username, password,
and staff type are correct.

staff = StaffDB.getStaffByUsernameAndStaffType(staffUsername, staffType);
if (staffUsername.equals(staff.getStaffUsername()) && staffPassword.equals(staff.getStaffPassword())) {
if (staff.isStaffEmailVerify()) {
if (staff.isStaffStatus()) {
AuditlogDB.addAuditlog(setAuditlog(staff));// store login action into audit log

StaffSession staffSession = new StaffSession();
staffSession.setStaffID(staff.getStaffID());
staffSession.setStaffType(staff.getStaffTypeName());
staffSession.setStaffAccID(staff.getStaffAccID());
staffSession.setStaffUsername(staff.getStaffUsername());
staffSession.setStaffName(staff.getStaffName());
staffSession.setStaffEmail(staff.getStaffEmail());
staffSession.setHospitalID(staff.getHospitalID());

session.setAttribute("staffSession”, staffSession);
session.setMaxInactiveInterval(30 * 60);

return true;

B

else {
request.setAttribute("staffStatus”, "inactive™);
return false;

¥

}

Figure 6: Authentication of Staff

5.3.2 Implementation of Confidentiality Property

Confidentiality property indicates that the system should protect the confidentiality of data. The
proposed system protects the confidentiality of password stored in the database by PBKDF2 algorithm.
Password is hashed with salt before stored into database. Figure 7 shows the Java function for PBKDF2
which hash the password and salt together to produce 512 bytes of the hash value. Figure 8 shows the
system stores the password and salt together in the database, the password is stored as hex string which
is not readable by human to protect the confidentiality of password.

protected String hashPassword() {
final char[] passwordChars = getPassword().toCharArray();
final byte[] saltBytes = getSalt().getBytes();

try {
SecretKeyFactory skf = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256");
PBEKeySpec spec = new PBEKeySpec(passwordChars, saltBytes, 10000, 64 * 8);
SecretKey key = skf.generateSecret(spec);
byte[] hashedBytes = key.getEncoded();
return Hex.encodeHexString(hashedBytes);

)} catch (NoSuchAlgorithmException | InvalidKeySpecException e) {
throw new RuntimeException(e);

Y

Figure 7: PBKDF?2 function

STAFF_PASSWORD STAFF_SALT
50118272b373354c56e93bcac3e77f37ad628af... 523ukm4RVxM9516Me8V5kIvXEug
b72c4792d13f9d808a7d36652d9528490a€969... K-OVy3obsDxduT3xfLRcsmwWbGI
5d43a8416ef6e31590b1397157663a98e4ca28f... 5Gswrc2QFpGxTVpovxvI6GiLnts

Figure 8: Password and Salt stored in database

5.3.3 Implementation of Patient’s Consent Property

Patient’s consent property indicates that hospital staff (doctor or nurse) needs to request patients to
access their medical records. Patients can control their medical records by allow or deny others access
to their medical records. Figure 9 shows hospital staff (doctor or nurse) interface to search patients by
patient’s name or IC to request access to their medical records. Figure 10 shows the patient interface to

views the access request list. Patient may accept or reject staff (doctor or nurse) access to their medical
records.

65

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

Request Access Medical Record

No Patient Name Patient IC Gender Access Duration Action
1 Loh Chee Ming 980401085205 Male 1 day -

Figure 9: Request Access Medical Record (Hospital Staff)

Access Request List
Quick Search

No Hospital Hospital Staff Name Duration Date & Time Action

1 Hospital Ming [Doctor] Doctor Ling 1 day 01/06/2021 03:52 PM m

Figure 10: Access Request List (Patient)
5.3.4 Implementation of Patient’s Consent Property

Information ownership property indicates that the patients have the right to access their own medical
records. Figure 11 shows the system display patient’s medical records in table form. Patients may click
the “View” button to view the detail of the medical record.

Medical Record
Quick Search Hospital Name Hospital Name v I%HH' dd/mm/yyyy [m] I%EH'
No Hospital Doctor Name Visit Date & Time Diagnosis Created Date & Time Action
1 Hospital Ming Doctor Ling 03/06/2021 09:53 AM fever 03/06/2021 07:51 PM
2 Hospital Ming Doctor Ling 01/06/2021 01:46 PM cough 01/06/2021 03:29 PM

Figure 11: Patient View Medical Record
5.3.5 Implementation of Relevance Property

Relevance states that only the relevant entity allow to access the patient’s medical records. System
implements relevance property by using Role-Based Access Control (RBAC). System ensures only
relevance staff users access to certain page to perform actions. Figure 12 shows the Java code for
redirect page based on role. The system redirects the staff to the page based on their staff type after
login successfully. The staff only can perform actions authorized for their staff type.

if (session.getAttribute(“"adminSession”) != null && staffType.equals("admin")) {//admin login successful
response.sendRedirect("AdminPanel");// after login successfully, redirect to AdminPanel
return;

else if (session.getAttribute("staffSession™) != null) {//staff login successful
if (staffType.equals("receptionist”)) {
response.sendRedirect ("ReceptionistPanel");
return;

else if (staffType.equals(“doctor")) {
response.sendRedirect("DoctorPanel");
return;

}

else if (staffType.equals("nurse")) {
response.sendRedirect("NursePanel™);
return;

Figure 12: Redirect staff to page based on role
5.3.6 Implementation of Information Consistency Property

Information consistency property indicates that the system should able to ensure the consistency of
data and detect any unauthorized modification of data. The proposed system displays error message to
warn the users when detect any unauthorized modification of medical record. System stores the hash

66

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

value of medical record in the Ethereum blockchain for reference to check the integrity of the medical
records. Figure 13 shows the Javascript function that stores hash value into the Ethereum blockchain.
This function contract with the smart contract on the Ethereum blockchain to store the medical record’s
hash value on the blockchain. Figure 14 shows the system print error message when the hash values in

database and blockchain are different.

function pushHashToBlockchain(medicalRecordHash) {

//encodeABI pushHash Solidity method
var encodedABI = pushHash.encodefBI();

//prepare transaction data

var tx = {
from: ownerAddress,
to: contractAddress,
gas: 3000000,
gasPrice: 20000000000,
data: encodedABI

¥

//sign and send transaction

tran.on('receipt’, receipt => {

s
tran.on(error’, console.error);

DH

var pushHash = contract.methods.pushHash(medicalRecordHash);

web3.eth.accounts.signTransaction(tx, privateKey).then(signed => {
var tran = web3.eth.sendSignedTransaction(signed.rawTransaction);

storeBlockchainIdx(web3.eth.abi.decodeParameter('uint256', receipt.logs[@].data));

Figure 13: Store Hash value to Ethereum Blockchain

Medical Detail

Patient Name: Loh Chee Ming

Medical Record has been unauthorized modified.

Figure 14: Error message for unauthorized modified medical record

5.3.7 Implementation of Audits Property

Audits property indicates that the system should record the activities of the staff in the audit log. This
mechanism allows the admin to monitor the staff’s activities on the system, thus providing
accountability. Figure 15 shows the system display audit log in table form for admin. Admin may search

the audit log by staff name, subject name, or date.

Audit Log
Staff Name

No Staff Name Staff Type Subject Name Subject Type
1 000N Doctor Doctor

ting
2 (000 Doctor Doctor

ting
3 [00002] LeeYong Receptionist
4 (00002 LeeYong Receptionist Loh Che Ming (S20401085305) Patient
5 [00002]LeeYong Receptionist Doctor Doctor Ling, atient: Loh Chee Ming Doctor and

(980401085305) Patient

6 (00002 LeeYong Receptionist -

00001) Doct

Ling

Action

Login

Login

Login
Add patient to the patient list

Assign doctor for patient

Login

Login

Date & Time

24/05/2021 03:18 PM

30/05/2021 04:37 AM

01/06/2021 01:46 PM

01/06/2021 01:46 PM

01/06/2021 01:51 PM

01/06/2021 02:06 PM

01/06/2021 02:45 PM

Figure 15: Audit Log

6. Result and Discussion

This section presents the security test plan result, penetration testing result, and user acceptance

form result.

6.1 Result Test Plan

Table 8 shows the result of security test plan for the proposed system. There are 12 security test

plans. The developed system had passed all these test plans.

67

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

Table 8: Security Test Plan Result

No Check List Actual Result
1 Ensure the error message not direct indicate which part of the authentication Pass
data incorrect. For example, error message should not show “incorrect
username” or “incorrect password”.
2 Enforce the password complexity inside the policy. For example, require Pass
password with minimum 10 characters and maximum 20 characters, at least
one capital letter, at least one small letter, at least one number, at least one
symbol.
3 Password should be obscured in the text box. Pass
4 Ensure users only can perform actions based on the role. Pass
5 Auto Logout user after inactivity for 30 minutes. Pass
6 Ensure user is not allowed to reset password using expired email link or Pass
email link that already been used.
7 Minimum and maximum length, and invalid format input in input field are Pass
denied.
8 User must input correct old password and input new password satisfied the Pass
strong password requirement to change password.
9 Password in the database is hashed with PBKDF?2 algorithm. Pass
10 Salt is added to the password before hashed with PBKDF2 algorithm. Pass
11 Medical record only allows to update when diagnosis, diagnosis description, Pass
medical advice and prescription, remark, and medical record timestamp
columns are empty.
12 Display warning message when the medical record was unauthorized Pass
modified.
6.2 Penetration Testing Result

Pentest-Tools.com and SSL Trust are two pentest tools that used to scan the developed system.
Based on the Pentest-Tools, the proposed system has the secure response HTTP header include Strict-
Transport-Security, Content-Security-Policy, X-Frame-Options, X-XSS-Protection, X-Content-Type-
Options, and Referrer-Policy. These security headers restrict the browser from download malicious
content when load the web page and prevent Cross-Site Scripting (XSS) attack. Figure 16 shows the
pentest result of Pentest-Tools.com.

e ~ hing was found for r
W Website is accessible. Nothing was found for missing

™ Nothing was found for client access policies

™ Nothing was found for missing HTTP header - Referrer.
m MNothing was found for robots. txt file.

® Nothing was found for Secure flag of cookie.
M MNothing was found for use of untrusted certificates.

® Nothing was found for directory listing.
™ Nothing was found for missing HTTP header - X-XSS-Protection,

™ Nothing was found for secure communication.

™ Nothing was found for domain too loose set for cookies.

Nothing was found for missing HTTP header - X-Frame-Options.
® Nothing was found for HttpOnly flag of cookie.

ntent Security Policy

™ Nothing was found for missing HTTP header - Strict-Transport-Security.

® Nothing was found for missing HTTP header - X-Content-Type-Options

Figure 16: Pentest-Tools.com Result

For SSL Trust, there are two types of scan performed. The first type of scan is for malware and
virus detection. The second type of scan is for vulnerability examination. For the malware and virus
section, the result shows that the developed system did not compromised by any malware and virus.
SSL Trust report shows the proposed system has a secure connection through TLS protocol with a valid
certificate. For the vulnerability scan report, the proposed system is secure from attacks such as

68

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

Heartbleed, CCS, ROBOT, DROWN, and LOGJAM. Figure 17 shows the certificate check and
protocol check result.

Protocols
Protocal Risk Resuits
Certificate(s) ssw2 oK ot offered
cen_signatureAlgorithm SHA256 with RSAOK cen_keySize RSA 2048 bitsINFO b K not olersd
st NFQ oHered
cert_trust Ok via SAN wikdcard and cert_chain_of_trust passed.OK
CNwildeard (same wio st o Hered
SNIOK cent_expirationStatus. 382 == 60 daysOK.
nsi2 oK efferea
cet_criRevoked not revokedOK
nsia wFo wnrased 1o a wea

cert_ocspRevoked not revokedOK

NN INFO

ALPN_HTTFZ oK n2

Figure 17: SSL Trust Certificate Check and Protocol Check Result
6.3 User Acceptance Result

The user acceptance form collects data from users by using Google Form. There are two user
acceptance forms which are for doctor and patient. The form consists of three sections. Section A
collects respondent information, Section B collects testing result, and Section C collects feedback.

6.3.1 User Acceptance (Doctor) Result

For the doctor acceptance form, there are three question in Section A which collect information of
the responders include name, email, and job scope. There are four questions in Section B which collects
testing result from responders as shown in Table 9. Section C collects feedback from the responders.
There is one question ask for suggestions and comments of responder regarding the system.

Table 9: User Acceptance Form for Doctor (Section B) Questions

No Section B Questions Test Result
Yes | No
1 | Doctor may add new medical record for patients.
2 | Doctor cannot modify saved medical records.
3 | Doctor only can view the medical records created by him.
4 | Doctor requests patients to access patient's medical records.

There are 2 responders for the user acceptance form for doctor. Both 2 responders are clinic doctors
from AMC Clinic Seremban 2. Figure 18 shows their responses for the four questions in Section B.
Based on the chart, two of the responders choose “Yes” for all of the four questions. The result shows
that the system passes the test from the doctor users.

User Acceptance Form for Doctor (Section B) Chart

2

[o]

Question 1 Question 2 Question 3 Question 4
Questions

Number of Responders

HYes M No

Figure 18: User Acceptance Form for Doctor (Section B) Chart

69

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

For the feedback in Section C, two of the responders give the same comment which is add medical
record process is slow. They suggest to speed up the process of add medical record.

6.3.2 User Acceptance (Patient) Result

For the patient acceptance form, there are three question in Section A which collect information of
the responders include name, email, and job scope. There are four questions in Section B which collects
testing result from responders as shown in Table 10. Section C collects feedback from the responders.
There is one question ask for suggestions and comments of responder regarding the system.

Table 10: User Acceptance Form for Patient (Section B) Questions

No Section B Questions Test Result
Yes | No

1 | Patient can update own general medical history.

2 | Patient can view own medical records.

3 | Patient can accept or reject doctor or nurse access to their medical
records.

4 | Patient gets error message for incorrect pattern of password
(minimum 10 characters, at least one uppercase, one lowercase, one
number, and one symbol) input when registration.

There are 5 responders for the user acceptance form for patient. Both 5 responders are students.
Figure 19 shows their responses for the four questions in Section B. Based on the chart, five of the
responders choose “Yes” for all of the four questions. The result shows that the system passes the test
from the doctor users.

User Acceptance Form for Patient (Section B) Chart

6
5
o 4
<
c 3
o
T2
&
« 1
o
@ 0
Mel
£ Question 1 Question 2 Question 3 Question 4
=] .
= Questions
HYes No

Figure 19: User Acceptance Form for Patient (Section B) Chart

For the feedback in Section C question, two of the responders give the same suggestion that is to
add booking consultation function for the system. One of the responders gives a comment which is nice
and simple design website. Two of the responders did not give any comments and suggestions.

7. Conclusion

The proposed system, Electronic Medical Record System using Ethereum Blockchain and Role-
Based Access Control has been developed successfully and achieved all of the objectives and fulfil the
security requirements of electronic medical record. The proposed system stores the medical record’s
hash value in the blockchain. By comparing the hash value of the medical records stored in the database
and the hash value stored in the blockchain, it may detect any unauthorized modification of medical
records.

The proposed system protects the confidentiality of medical records by implement role-based
access control. The system only allows specific role such as doctor to access created medical records.

70

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

Also, the doctos and nurses only allowed access or view the granted medical records from their patients.
Patients are able to grant or revoke doctors and nurse to access their medical records.

For the future works of the proposed system, improvement can be done by enhancing the security
of the system. The future works for electronic medical record system included:

o Add a function to ensure every user creates a private key during registration for interaction with
the Ethereum blockchain. It may provide security when the user uses the system to interact with
the blockchain.

o Redirects the user to the root page when their session is destroyed after inactivate for 30 minutes.

¢ Add a notification function to notify patients when there are new access medical records requests
from hospital staff.

Acknowledgement

The authors would like to thank the Faculty of Computer Science and Information Technology,
Universiti Tun Hussein Onn Malaysia for its support and encouragement throughout the process of
conducting this study.

References

[1] J. Tsai and G. Bond, “A comparison of electronic records to paper records in mental health
centers,” Int. J. Qual. Heal. Care, vol. 20, no. 2, pp. 136-143, 2007.

[2] R. Painter, “Doctor And Physician Assistant Alter Patient’s Medical Record—You Won’t
Believe What Happened Next,” Painter Law Firm, 2017.

[3] S. Hegarty, “Former ProMedica employee suspected of stealing identities,” 13abc Action News,
2019.

[4] A. Whelan, “Former Penn medical assistant accused of improperly accessing patient records,”
The Philadelphia Inquirer, 2019.

[5] A.A. Alkandari, I. F. Al-Shaikhli, and M. A. Alahmad, “Cryptographic Hash Function: A High
Level View,” in 2013 International Conference on Informatics and Creative Multimedia, 2013,
pp. 128-134.

[6] D.K.N. and R. Bhakthavatchalu, “Parameterizable FPGA Implementation of SHA-256 using
Blockchain Concept,” in 2019 International Conference on Communication and Signal
Processing (ICCSP), 2019, pp. 370-374.

[7] S. Sanadhya and P. Sarkar, Attacking Reduced Round SHA-256, vol. 2008. 2008.

[8] D. Ravillaand C. S. R. Putta, “Implementation of HMAC-SHA256 algorithm for hybrid routing
protocols in MANETS,” in 2015 International Conference on Electronic Design, Computer
Networks Automated Verification (EDCAV), 2015, pp. 154-159.

[9] G. Hatzivasilis, “Password-Hashing Status,” 2017.

[10] M. S. Turan, E. Barker, W. Burr, and L. Chen, “Recommendation for password-based key
derivation,” NIST Spec. Publ., vol. 800, p. 132, 2010.

[11] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An Overview of Blockchain Technology:
Architecture, Consensus, and Future Trends,” in 2017 IEEE International Congress on Big Data
(BigData Congress), 2017, pp. 557-564.

[12] H. Atlam, A. Alenezi, M. Alassafi, and G. Wills, “Blockchain with Internet of Things: Benefits,
Challenges and Future Directions,” Int. J. Intell. Syst. Appl., vol. 10, Jun. 2018.

71

Loh et al., Applied Information Technology and Computer Science Vol. 2 No. 2 (2021) p. 53-72

[13] G. A. Oliva, A. E. Hassan, and Z. M. J. Jiang, “An exploratory study of smart contracts in the
Ethereum blockchain platform,” Empir. Softw. Eng., pp. 1-41, 2020.

[14] R.C.Barrows Jr. and P. D. Clayton, “Privacy, Confidentiality, and Electronic Medical Records,”
J. Am. Med. Informatics Assoc., vol. 3, no. 2, pp. 139—148, Mar. 1996.

[15] J.J. P. C. Rodrigues, L. de la Torre, G. Fernandez, and M. Lopez-Coronado, “Analysis of the
security and privacy requirements of cloud-based electronic health records systems,” J. Med.
Internet Res., vol. 15, no. 8, pp. e186—¢186, Aug. 2013.

[16] S.Kulathilaka, “““eHospital-Dompe “project--the story of the transformation of a district hospital
in Sri Lanka,” Sri Lanka J. Bio-Medical Informatics, vol. 4, no. 2, 2013.

[17] J.Huang, Y. W. Qi, M. R. Asghar, A. Meads, and Y. Tu, “MedBloc: A Blockchain-Based Secure
EHR System for Sharing and Accessing Medical Data,” in 2019 18th IEEE International
Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE
International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), 2019,
pp- 594-601.

[18] K. Mendis et al., “Cloud-Based Open Source Primary Care Electronic Patient Record System
for Sri Lankan Citizens,” in 2019 National Information Technology Conference (NITC), 2019,
pp. 41-46.

[19] hhims.org, “Hospital Health Information Management System User Handbook.” 2011.

[20] A. R. Hevner, “Object-Oriented System Development Methods,” vol. 35, M. C. B. T.-A. in C.
Yovits, Ed. Elsevier, 1992, pp. 135-198.

72

