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1. Introduction 

The aircraft is a flying vehicle that can fly freely in any direction and in any rotation. As a result, the aircraft has six 

degrees of freedom, and if it is assumed to be rigid, then the aircraft can fly to follow six paths freely. It can move forward, 

sideways, and down, and it can rotate about its axes with yaw, pitch, and roll. To describe the state of a system that has 

six degrees of freedom, one will involve six unknown quantities. To obtain these six unknowns, six simultaneous 

equations are needed for the equations of motion of an aircraft. Basically, it is hard to formulate the governing equation 

of flight motion. So, some sort of simplification needs to be introduced, such as the aircraft being considered a rigid body 

having a constant mass and a symmetrical shape between the left and right sides of the vertical plane. In addition, because 

the airplane is flying at a low altitude and a relatively low speed, it gives the impression that the earth is flat and can be 

considered an inertial reference frame. To formulate the governing equation of flight motion, one may require two 

reference frames: the inertial frame of reference and the fixed body reference frame. Using these two reference frames, 

one can derive the governing equation of flight motion, in terms of the force equation and momentum equation. By using 

a small perturbation theory and a linearization process, the governing equation of flight motion can be decoupled to 

become the governing equation for longitudinal flight motion and lateral-directional flight motion. 

The present work focused on the longitudinal flight motion, with a view to understanding the dynamic stability if 

some sort of small disturbance is introduced to the motion. Here two type aircraft models are used, namely the Learjet 

Abstract: The present work presents a comparative study on the longitudinal dynamic’s stability behavior for two 

aircraft models, namely the Learjet 24 and the Cessna 182. The longitudinal flight dynamics behaviors are evaluated 

by introducing a disturbance to the elevator. This device uses a single doublet impulse as well as multiple doublet 

impulses. The governing equation of longitudinal flight motion, which was derived based on a small perturbation 

theory and a linearized process by dropping the second order and above to the disturbance quantities, allowed one to 

formulate the governing equation of flight motion in the form of an equation known as the longitudinal equation of 

flight motion. This equation describes the flight behavior of an aircraft and can be expressed in the disturbance 

quantity as translational velocity in the x-direction u, angle of attack 𝛼, and pitch angle 𝜃. The implementation in the 

case of the Cessna 182 and the Learjet 24, where the Cessna 182 uses a single doublet impulse or a multiple doublet 

impulse, demonstrates that the aircraft response in these three variable states is better than that of the Learjet 24. 
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24 and Cessna 182 aircraft, while the disturbance models will be applied are a Single Doublet Impulse and a Multiple 

Doublets Impulse.  

 

2. Governing Equation of aircraft flight motion. 

Basically, the governing equation of aircraft flight motion as rigid body is already well established. The governing 

equation of flight motion starts by introducing two reference frames, namely the body fixed axis and Earth reference 

frame which will act as its the inertial frame. Fig. 1 shows these two reference frames. On the body fixed axis all 

quantities related to the flight behavior such as linear and angular velocity, forces and moments are defined with the 

positive sign as indicated in Fig. 2.  

 

 
Fig. 1 - The fixed body axis and the earth reference frame [1] 

 

On the body fixed axis all quantities related to the flight behavior such as linear and angular velocity, forces and 

moments are defined with the positive sign as indicated in Fig. 2.  

 

 
Fig. 2 - The definition of linear and angular velocity, forces and moment works on the aircraft [1] 

 

The attitude aircraft which refer to the earth reference frame described by the Euler angle, this Euler angle consist of 

three angles namely, Bank (roll) angle . Elevation (pitch) angle  and heading (yaw) angle .  The aircraft position at 

any instant refer to the Earth reference system denoted as [𝑥𝐸 , 𝑦𝐸 , 𝑧𝐸]. Fig. 3 show the definition of Euler in the context 

with the attitude of the aircraft. 

 
Fig. 3 - The Euler angle and the attitude of the aircraft [3] 
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Here one can notice that the flight behaviors of the aircraft can be adequately described by 12 variable states and 

stated in two groups given below [4]:  

 

 =  

[
 
 
 
 
 
𝑈
𝑉
𝑊
𝑃
𝑄
𝑅 ]
 
 
 
 
 

=  

[
 
 
 
 
 
longitudinal (forward) velocity

lateral (transverse) velocity

vertical velocity

roll rate
pitch rate 

yaw rate ]
 
 
 
 
 

 (1) 

  

 = 

[
 
 
 
 
𝑥𝐸
𝑦𝐸
𝑧𝐸


 ]
 
 
 
 

=  

[
 
 
 
 
 
earth-fixed x position 

earth-fixed y position

earth-fixed z position 

roll angle

pitch angle 

yaw angle ]
 
 
 
 
 

 (2) 

 

The first group variable state   is related to the implementation of the Newton 2nd law of momentum conservation. 

While the second group related with the aircraft position and altitude. These 12 variable states represent the unknown 

quantities; hence 12 equations are needed to solve the unknown, Nelson [5] had provide the governing equation of flight 

motion which relate to these twelve variables states in the form 

 

𝐹𝑥 −𝑚𝑔 sin = 𝑚(𝑈̇ + 𝑄𝑊 − 𝑅𝑉) (3) 

  

𝐹𝑦 +𝑚𝑔 cos sin = 𝑚(𝑉̇ + 𝑈𝑅 − 𝑃𝑉) (4) 

  

𝐹𝑧 +𝑚𝑔 cos  cos  = 𝑚(𝑊̇ + 𝑃𝑉 − 𝑄𝑈) (5) 

  

𝐿 =   𝑃̇𝐼𝑋𝑋 − 𝑅̇𝐼𝑋𝑍 − 𝑃𝑄𝐼𝑋𝑍 + 𝑅𝑄(𝐼𝑍𝑍 − 𝐼𝑌𝑌) (6) 

  

𝑀 = 𝑄̇𝐼𝑌𝑌 + 𝑃𝑅(𝐼𝑋𝑋 − 𝐼𝑍𝑍) + (𝑃
2 − 𝑅2)𝐼𝑋𝑍 (7) 

  

𝑁 = 𝑅̇𝐼𝑍𝑍 − 𝑃̇𝐼𝑋𝑍 + 𝑃𝑄(𝐼𝑌𝑌 − 𝐼𝑋𝑋) + 𝑄𝑅𝐼𝑋𝑍 (8) 

  

[
Φ̇
Θ̇
Ψ̇

] = [
1 sinΦ tanΘ cosΦ tanΘ
0 cosΦ − sinΦ
0 sinΦ sec Θ cosΦ sec Θ

] [
𝑃
𝑄
𝑅
] (9) 

  

[

𝑥𝐸̇
𝑦𝐸̇
𝑧𝐸̇

] =  [𝐴] [
𝑈
𝑉
𝑊
] (10) 

  

[𝐴] = [
cosΨ cosΘ − sinΨ cosΦ + cosΨ sinΘ sin sinΨ sinΦ + cosΨ cosΦ sinΘ
sinΨ cos Θ cosΨ cosΦ + sinΦ sin Θ sinΨ −cosΨ sinΦ + sinΘ sinΨ cosΦ
− sin Θ cos Θ sinΦ cos Θ cosΦ

] (11) 

 

Eq. (1) to (11) represent the governing equation of general flight motion which they are a non-linear and coupled 

each to other. However, for practical application most of aircraft fly at specific flight condition namely at a steady state 

flight and perturbed flight. Steady state flight means that the linear and angular acceleration with respect to the body 

frame [𝑥, 𝑦, 𝑧]𝑏 are zero. While perturbed flight condition describes that those flight condition, all motion variables of 

the aircraft experience a deviation from a set of original steady state values.  As result at this flight condition the variable 

states, force and moments can be written as: 

 

𝑈 =  𝑈1  +  𝑢;     𝑉 =  𝑉1  +  𝑣;       𝑊 =  𝑊1  +  𝑤 (12) 

  

𝑃 =  𝑃1  +  𝑝;     𝑄 =  𝑄1  +  𝑞;       𝑅 =  𝑅1  +  𝑟 (13) 
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 =  1  +  𝜙;      =  1  +  𝜃;        =  1  +  𝜓 (14) 

  

𝐹𝐴𝑥 = 𝐹𝐴𝑥1 + 𝑓𝐴𝑥;   𝐹𝐴𝑦 = 𝐹𝐴𝑦1 + 𝑓𝐴𝑦;   𝐹𝐴𝑧 = 𝐹𝐴𝑧1 + 𝑓𝐴𝑧 (15) 

  

𝐿𝐴 = 𝐿𝐴1 + 𝑙𝐴;   𝑀𝐴 = 𝑀𝐴1 +𝑚𝐴;   𝑁𝐴 = 𝑁𝐴1 + 𝑛𝐴 (16) 

  

𝐹𝑇𝑥 = 𝐹𝑇𝑥1 + 𝑓𝑇𝑥;   𝐹𝑇𝑦 = 𝐹𝑇𝑦1 + 𝑓𝑇𝑦;   𝐹𝑇𝑧 = 𝐹𝑇𝑧1 + 𝑓𝑇𝑧 (17) 

  

𝐿𝑇 = 𝐿𝑇1 + 𝑙𝑇;   𝑀𝑇 = 𝑀𝑇1
+𝑚𝑇;   𝑁𝑇 = 𝑁𝑇1 + 𝑛𝑇 (18) 

 

Above equation describe that the variable state composed two values, the values at the steady state condition denoted 

by subscript (1) and the perturbed quantity denoted by small later. Introducing Eq. (12-18) into the forces and moment 

equation and ignoring all term contain the second order and above of the perturbed quantities, one obtain the forces and 

moment equation in steady and perturbed flight condition as: 

 

𝑚(𝑢̇ + 𝑄1𝑤 + 𝑞𝑊1 − 𝑅1𝑣 − 𝑟𝑉1) = −𝑚𝑔𝜃 cosΘ1 + 𝑓𝑥 (19) 

  

𝑚(𝑣̇ + 𝑈1𝑟 + 𝑅1𝑢 − 𝑃1𝑤 − 𝑝𝑊1)  = −𝑚𝑔𝜃 sinΦ1 sin Θ1 +𝑚𝑔𝜙 cosΦ1 cosΘ1  + 𝑓𝑦 (20) 

  

𝑚(𝑤̇ + 𝑃1𝑣 + 𝑝𝑉1 − 𝑄1𝑢 − 𝑈1𝑞)  =  −𝑚𝑔𝜃 cosΦ1 sinΘ1 −𝑚𝑔𝜙 sinΦ1 cos Θ1 + 𝑓𝑧 (21) 

  

𝑝̇𝐼𝑋𝑋 − 𝑟̇𝐼𝑋𝑍 − (𝑃1𝑞 + 𝑄1𝑝)𝐼𝑋𝑍 + (𝑅1𝑞 + 𝑄1𝑟)(𝐼𝑍𝑍 − 𝐼𝑌𝑌) = 𝐿 (22) 

  

𝑞̇𝐼𝑌𝑌 + (𝑃1𝑟 + 𝑝𝑅1)(𝐼𝑋𝑋 − 𝐼𝑍𝑍) + (2𝑃1
2𝑝 − 2𝑅1

2𝑟)𝐼𝑋𝑍 = 𝑀 (23) 

  

𝑟̇𝐼𝑍𝑍 − 𝑝̇𝐼𝑋𝑍 + (𝑃1𝑞 + 𝑝𝑄1)(𝐼𝑌𝑌 − 𝐼𝑋𝑋) + (𝑄1𝑟 + 𝑅1𝑞)𝐼𝑋𝑍 = 𝑁 (24) 

 

While the equation of aircraft altitude, Eq. (9) becomes: 

 

𝑝 =  Φ̇ −  Ψ̇1 𝜃 cos1  −  Ψ̇1 sin1 (25) 

  

𝑞 = −Θ̇1 𝜙 cos1 − 𝜃̇  sin1 − Ψ̇1  sin 1 sin1 + Ψ̇1 𝜙 cos 1 cos1 + Ψ̇1   sin 1 cos1 (26) 

  

𝑟 =  −Ψ̇1 cos1 sin1 − Ψ̇1 𝜙 sin 1 cos1 − 𝜃̇  sin1+ Ψ̇1 cos 1 cos1 −Θ̇1 𝜙 cos1 (27) 

 

In perturbed flight conditions, it is not necessary one has to focus as well to cover to the aircraft position with respect 

to the earth reference frame, since in the perturbed flight one just deals with a short time a flight dynamics behavior. If 

one imposing that the aircraft start from the flight condition as a steady-state rectilinear wing-level flight. One can impose 

the following initial condition: 

 

• Angular velocities 𝑃1 = 𝑄1 = 𝑅1 = 0 

• Euler angles Φ1 = 𝑐𝑜𝑛𝑠𝑡., Θ1 = 𝑐𝑜𝑛𝑠𝑡., Ψ1 = 𝑐𝑜𝑛𝑠𝑡.; 
• Lateral velocity 𝑉1 = 0; 

• Roll angle Φ1 = 0, sinΦ1 = 0, cosΦ1 = 1 (wing level). 

 

The implementation above condition into Eq. (28) to (36) can be written as: 

 

𝑚(𝑢̇ + 𝑞𝑊1) = −𝑚𝑔𝜃 cos Θ1 + 𝑓𝑥 (28) 

  

𝑚(𝑣̇ + 𝑈1𝑟 − 𝑝𝑊1) = 𝑚𝑔𝜙 cosΘ1 + 𝑓𝑦 (29) 

  

𝑚(𝑤̇ − 𝑈1𝑞) =  −𝑚𝑔𝜃 sinΘ1 + 𝑓𝑧 (30) 

  

𝑝̇𝐼𝑋𝑋 − 𝑟̇𝐼𝑋𝑍 = 𝐿 (31) 

  

𝑞̇𝐼𝑌𝑌 = 𝑀 (32) 

  

𝑟̇𝐼𝑍𝑍 − 𝑝̇𝐼𝑋𝑍 = 𝑁 (33) 
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𝑝 = 𝜙̇ − 𝜓̇ sinΘ1 (34) 

  

𝑞 = 𝜃̇ (35) 

  

𝑟 = 𝜓̇ cos Θ1 (36) 

 

Above set equation can be decoupling to become equation which deal with a longitudinal flight motion, the motion 

just related to the vertical plane and the lateral – directional flight motion. In these two types of flight motion, for the 

case of longitudinal flight motion becomes: 

 

(𝑢̇ + 𝑞𝑊1) = −𝑚𝑔𝜃 cos Θ1 + 𝑓𝑥 (37) 

  

𝑚(𝑤̇ − 𝑈1𝑞) =  −𝑚𝑔𝜃 sinΘ1 + 𝑓𝑧 (38) 

  

𝑞̇𝐼𝑌𝑌 = 𝑀 (39) 

  

𝑞 = 𝜃̇ (40) 

 

The present work just deals with longitudinal flight, so it would relate to the case of solving Eq. (37)-(40).  This 

equation can be simplified by replacing the perturbed velocity component w in term of angle of attack  and the pitch 

rate q in term of perturbed elevation angle   by using the following relation 

 

𝑞 =  𝜃̇        𝑞̇ = 𝜃̈ (41) 

  

𝑤 ≈ 𝑉𝑝1    𝑤̇  ≈ 𝑉𝑝1̇  (42) 

  

In above equation, 𝑉𝑝1 is the aircraft velocity presented in the stability reference frame. By using Eq. (41-42), the 

longitudinal Eq. (37-40) can be converted from four equation into three equation in term with the variable state velocity 

component in x- direction u, angle of attack,  and the elevation (pitch) angle , in the form as: 

 

𝑢̇ = −𝑔𝜃 cos Θ1 +
1

𝑚
𝑓𝑥 (43) 

  

(𝑉𝑝1𝑤̇ − 𝑉𝑝1𝑞̇) =  −𝑔𝜃 sinΘ1 +
1

𝑚
𝑓𝑧 (44) 

  

𝜃̈𝐼𝑌𝑌 = 𝑀 (45) 

  

If the force and moment are linearized in presented in non-dimensional aerodynamics coefficients, the complete form 

of the longitudinal equation of motion becomes:  

 

𝑢̇ = −𝑔 𝑐𝑜𝑠 𝛩1 𝜃 + (𝑋𝑢 + 𝑋𝑇𝑢)𝑢 + 𝑋𝛼𝛼 + 𝑋𝛿𝐸𝛿𝐸 (46) 

  

𝑉𝑃1𝛼̇ = −𝑔 𝑠𝑖𝑛 𝛩1 𝜃 + 𝑍𝑢𝑢 + 𝑍𝛼𝛼̇  + (𝑍𝑞 + 𝑉𝑃1)𝜃̇ + 𝑍𝛿𝐸𝛿𝐸 (47) 

  

𝜃̈ = (𝑀𝑢 +𝑀𝑇𝑢)𝑢 + (𝑀𝛼 +𝑀𝑇𝛼)𝛼 +𝑀𝛼̇𝛼̇ + 𝑀𝑞𝜃̇ + 𝑀𝛿𝐸𝛿𝐸 (48) 

  

Where the coefficients of the term which appear in above equations are defined as given in the Table. 1 

 

Table 1 - The definition coefficient in the longitudinal flight motion [5] 

Longitudinal Dimensional Stability and Control Derivatives 

𝑋𝑢 = −
𝑞1𝑆(𝐶𝐷𝑈 + 𝐶𝐷1)

𝑚𝑈1
 
𝑓𝑡

𝑠𝑒𝑐2
 𝑋𝑇𝑢 = −

𝑞1𝑆(𝐶𝑇𝑥𝑢 + 2𝐶𝑇𝑥1)

𝑚𝑈1
 
1

𝑠𝑒𝑐
 

𝑋 = −
𝑞1𝑆(𝐶𝐷 − 𝐶𝐿1)

𝑚𝑈1
 
𝑓𝑡

𝑠𝑒𝑐2
 𝑋𝑒 = −

𝑞1𝑆 𝐶𝐷𝐸
𝑚

 
𝑓𝑡

𝑠𝑒𝑐2
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𝑍𝑢 = −
𝑞1𝑆(𝐶𝐿𝑈 +  2𝐶𝐿1)

𝑚𝑈1
 
𝑓𝑡

𝑠𝑒𝑐2
 

 

𝑍̇ = −
𝑞1𝑆(𝐶𝐿̇)

2𝑚𝑈1
   
1

𝑠𝑒𝑐
 𝑍 = −

𝑞1𝑆(𝐶 + 𝐶𝐷1)

2𝑚𝑈1
   
𝑓𝑡

𝑠𝑒𝑐2
 

𝑍𝐸 = −
𝑞1𝑆(𝐶𝐿𝐸)

𝑚
   
1

𝑠𝑒𝑐
 𝑍𝑞 = −

𝑞1𝑆𝑐 ̅ (𝐶𝐿𝑞)

2𝑚𝑈1
   
𝑓𝑡

𝑠𝑒𝑐
 

𝑀𝑢 =
𝑞1𝑆(𝐶𝑚𝑈 + 𝐶𝑚1)

𝑚𝐼𝑦𝑦
  

1

𝑓𝑡 𝑠𝑒𝑐
 𝑀𝑇𝑢 =

𝑞1𝑆(𝐶𝑚𝑇𝑈 + 𝐶𝑚𝑇1)

𝑈1𝐼𝑦𝑦
  

1

𝑓𝑡 𝑠𝑒𝑐
 

𝑀 =
𝑞1𝑆𝑐 ̅ 𝐶𝑚

𝐼𝑦𝑦
   

1

𝑠𝑒𝑐2
 𝑀𝑇 =

𝑞1𝑆𝑐 ̅ 𝐶𝑚𝑇
𝐼𝑦𝑦

   
1

𝑠𝑒𝑐2
 

𝑀𝐸 =
𝑞1𝑆𝑐 ̅ 𝐶𝑚𝐸

𝐼𝑦𝑦
   

1

𝑠𝑒𝑐2
 𝑀𝑞 =

𝑞1𝑆𝑐 ̅ 𝐶𝑚𝐸
𝐼𝑦𝑦

𝑐 ̅

2𝑈1
   

1

𝑠𝑒𝑐2
 

 

 

3. The Solution of Longitudinal Flight Motion 

Based on small perturbation theory and linearized implementation, the governing equation, which originally 

consisted of 12 equations, may be reduced to three equations for the scenario when the aircraft is flying in longitudinal 

motion. These equations are given in Eq. (46-48). If Laplace transforms are applied to that equation and assuming the 

zero initial condition for the disturbed quantities u,  and , the Laplace transform for the Eq. (46-48) becomes: 

 

(𝑠 − (𝑋𝑢 + 𝑋𝑇𝑢)) 𝑢(𝑠) − 𝑋𝛼𝛼(𝑠) + +𝑔 cos Θ1 𝜃(𝑠) = 𝑋𝛿𝐸𝛿𝐸(𝑠) (49) 

  

−𝑍𝑢𝑢(𝑠) + (𝑠(𝑉𝑃1 − 𝑍𝛼̇) − 𝑍𝛼)𝛼(𝑠) + (−𝑠(𝑍𝑞 + 𝑉𝑃1) + 𝑔 sin Θ1)𝜃(𝑠) = 𝑍𝛿𝐸𝛿𝐸(𝑠) (50) 

  

−(𝑀𝑢 +𝑀𝑇𝑢)𝑢(𝑠) − (𝑀𝛼̇𝑠 − (𝑀𝛼 +𝑀𝑇𝛼)) 𝛼(𝑠) + 𝑠(𝑠 − 𝑀𝑞)𝜃(𝑠) = 𝑀𝛿𝐸𝛿𝐸(𝑠) (51) 

  

or in matrix notation can be written as: 

 

[

(𝑠 − (𝑋𝑢 + 𝑋𝑇𝑢)) −𝑋𝛼 +𝑔 cos Θ1

−𝑍𝑢 (𝑠(𝑉𝑃1 − 𝑍𝛼̇) − 𝑍𝛼) (−𝑠(𝑍𝑞 + 𝑉𝑃1) + 𝑔 sinΘ1)

−(𝑀𝑢 +𝑀𝑇𝑢) −(𝑀𝛼̇𝑠 − (𝑀𝛼 +𝑀𝑇𝛼)) 𝑠(𝑠 − 𝑀𝑞)

]

[
 
 
 
 
𝑢(𝑠)

𝛿𝐸(𝑠)

𝛼(𝑠)

𝛿𝐸(𝑠)

𝜃(𝑠)

𝛿𝐸(𝑠)]
 
 
 
 

   =  [

𝑋𝛿𝐸
𝑍𝛿𝐸
𝑀𝛿𝐸

] (52) 

  

To solve Eq. (52), Cramer rule can be used to solve unknown quantities to yields: 

 

𝑢(𝑠)

𝛿𝐸(𝑠)
=

|

𝑋𝛿𝐸 −𝑋𝛼 +𝑔 cosΘ1

𝑍𝛿𝐸 (𝑠(𝑉𝑃1 − 𝑍𝛼̇) − 𝑍𝛼) (−𝑠(𝑍𝑞 + 𝑉𝑃1) + 𝑔 sinΘ1)

𝑀𝛿𝐸
−(𝑀𝛼̇𝑠 − (𝑀𝛼 +𝑀𝑇𝛼

)) 𝑠(𝑠 − 𝑀𝑞)

|

|

(𝑠 − (𝑋𝑢 + 𝑋𝑇𝑢)) −𝑋𝛼 +𝑔 cos Θ1

−𝑍𝑢 (𝑠(𝑉𝑃1 − 𝑍𝛼̇) − 𝑍𝛼) (−𝑠(𝑍𝑞 + 𝑉𝑃1) + 𝑔 sin Θ1)

−(𝑀𝑢 +𝑀𝑇𝑢
) −(𝑀𝛼̇𝑠 − (𝑀𝛼 +𝑀𝑇𝛼

)) 𝑠(𝑠 − 𝑀𝑞)

|

 =
𝑁𝑢𝑚𝑢(𝑠)

𝐷̅1(𝑠)
 (53) 

  

𝛼(𝑠)

𝛿𝐸(𝑠)
=

|

(𝑠 − (𝑋𝑢 + 𝑋𝑇𝑢)) 𝑋𝛿𝐸 +𝑔 cosΘ1
−𝑍𝑢 𝑍𝛿𝐸 (−𝑠(𝑍𝑞 + 𝑉𝑃1) + 𝑔 sinΘ1)

−(𝑀𝑢 +𝑀𝑇𝑢) 𝑀𝛿𝐸 𝑠(𝑠 − 𝑀𝑞)

|

|

(𝑠 − (𝑋𝑢 + 𝑋𝑇𝑢)) −𝑋𝛼 +𝑔 cos Θ1

−𝑍𝑢 (𝑠(𝑉𝑃1 − 𝑍𝛼̇) − 𝑍𝛼) (−𝑠(𝑍𝑞 + 𝑉𝑃1) + 𝑔 sin Θ1)

−(𝑀𝑢 +𝑀𝑇𝑢) −(𝑀𝛼̇𝑠 − (𝑀𝛼 +𝑀𝑇𝛼)) 𝑠(𝑠 − 𝑀𝑞)

|

=
𝑁𝑢𝑚𝛼(𝑠)

𝐷̅1(𝑠)
 (54) 
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𝜃(𝑠)

𝛿𝐸(𝑠)
=

|

(𝑠 − (𝑋𝑢 + 𝑋𝑇𝑢)) −𝑋𝛼 𝑋𝛿𝐸
−𝑍𝑢 (𝑠(𝑉𝑃1 − 𝑍𝛼̇) − 𝑍𝛼) 𝑍𝛿𝐸

−(𝑀𝑢 +𝑀𝑇𝑢) −(𝑀𝛼̇𝑠 − (𝑀𝛼 +𝑀𝑇𝛼)) 𝑀𝛿𝐸

|

|

(𝑠 − (𝑋𝑢 + 𝑋𝑇𝑢)) −𝑋𝛼 +𝑔 cos Θ1

−𝑍𝑢 (𝑠(𝑉𝑃1 − 𝑍𝛼̇) − 𝑍𝛼) (−𝑠(𝑍𝑞 + 𝑉𝑃1) + 𝑔 sinΘ1)

−(𝑀𝑢 +𝑀𝑇𝑢
) −(𝑀𝛼̇𝑠 − (𝑀𝛼 +𝑀𝑇𝛼

)) 𝑠(𝑠 − 𝑀𝑞)

|

=
𝑁𝑢𝑚𝜃(𝑠)

𝐷̅1(𝑠)
 (55) 

 

The expressions for the coefficients of the numerator polynomials (𝑁𝑢𝑚𝑢(𝑠), 𝑁𝑢𝑚𝛼(𝑠) and 𝑁𝑢𝑚𝜃(𝑠)) are given by: 

 

𝑁𝑢𝑚𝑢(𝑠) = 𝐴𝑢𝑠
3 + 𝐵𝑢𝑠

2 + 𝐶𝑢𝑠 + 𝐷𝑢  

𝐴𝑢 = 𝑋𝛿𝐸(𝑉𝑃1 − 𝑍𝛼̇)  

𝐵𝑢 = −𝑋𝛿𝐸[(𝑉𝑃1 − 𝑍𝛼̇)𝑀𝑞 +𝑀𝛼̇ + (𝑍𝑞 + 𝑉𝑃1)] + 𝑍𝛿𝐸𝑋𝛼   

𝐶𝑢 = 𝑋𝛿𝐸[𝑀𝑞𝑍𝛼 +𝑀𝛼̇𝑔 sinΘ1 − (𝑀𝛼 +𝑀𝑇𝛼)(𝑍𝑞 + 𝑉𝑃1)]  

𝐷𝑢 = 𝑔 sinΘ1 𝑋𝛿𝐸(𝑀𝑢 +𝑀𝑇𝑢
) + 𝑔 cosΘ1 𝑍𝛿𝐸(𝑀𝛼 +𝑀𝑇𝛼

) +𝑀𝛿𝐸
(𝑔 cos Θ1 𝑍𝛼 − 𝑔 sinΘ1 𝑋𝛼)  

(56) 

  

𝑁𝑢𝑚𝛼(𝑠) = 𝐴𝛼𝑠
3 + 𝐵𝛼𝑠

2 + 𝐶𝛼𝑠 + 𝐷𝛼      

𝐴𝛼 = 𝑍𝛿𝐸  

𝐵𝛼 = 𝑋𝛿𝐸𝑍𝑢 − 𝑍𝛿𝐸 ((𝑋𝑢 + 𝑋𝑇𝑢) +𝑀𝑞) + 𝑀𝛿𝐸(𝑍𝑞 + 𝑉𝑃1)   

𝐶𝛼 = 𝑋𝛿𝐸[(𝑍𝑞 + 𝑉𝑃1)(𝑀𝑢 +𝑀𝑇𝑢) − 𝑀𝑞𝑍𝑢] + 𝑍𝛿𝐸𝑀𝑞(𝑋𝑢 + 𝑋𝑇𝑢) − 𝑀𝛿𝐸[(𝑍𝑞 + 𝑉𝑃1)(𝑋𝑢 + 𝑋𝑇𝑢)]   

𝐷𝛼 = −𝑔 sinΘ1 𝑋𝛿𝐸(𝑀𝑢 +𝑀𝑇𝑢) + 𝑔 cosΘ1 𝑍𝛿𝐸(𝑀𝑢 +𝑀𝑇𝑢) +𝑀𝛿𝐸[𝑔 sinΘ1 (𝑋𝑢 + 𝑋𝑇𝑢) − 𝑔 cos Θ1 𝑍𝑢]  

(57) 

  

𝑁𝑢𝑚𝜃(𝑠) = 𝐴𝜃𝑠
2 + 𝐵𝜃𝑠 + 𝐶𝜃     

𝐴𝜃 = 𝑍𝛿𝐸𝑀𝛼̇ +𝑀𝛿𝐸
(𝑉𝑃1 − 𝑍𝛼̇)  

𝐵𝜃 = 𝑋𝛿𝐸[𝑍𝑢𝑀𝛼̇ + (𝑉𝑃1 − 𝑍𝛼̇)(𝑀𝑢 +𝑀𝑇𝑢)] + 𝑍𝛿𝐸[(𝑀𝛼 +𝑀𝑇𝛼) − 𝑀𝛼̇(𝑋𝑢 + 𝑋𝑇𝑢)]

− 𝑀𝛿𝐸[(𝑉𝑃1 − 𝑍𝛼̇)(𝑋𝑢 + 𝑋𝑇𝑢) − 𝑍𝛼] 

𝐶𝜃 = 𝑋𝛿𝐸[(𝑀𝛼 +𝑀𝑇𝛼)𝑍𝑢 − (𝑀𝑢 +𝑀𝑇𝑢)𝑍𝛼] − 𝑍𝛿𝐸[(𝑀𝛼 +𝑀𝑇𝛼)(𝑋𝑢 + 𝑋𝑇𝑢) + 𝑋𝛼(𝑀𝑢 +𝑀𝑇𝑢)] +

𝑀𝛿𝐸[(𝑋𝑢 + 𝑋𝑇𝑢)𝑍𝛼 − 𝑍𝛼𝑍𝑢]     

 

(58) 

While denominator 𝐷̅1(𝑠) is given as: 

 

𝐷̅1(𝑠) = 𝐴1𝑠
4 + 𝐵1𝑠

3 + 𝐶1𝑠
2 + 𝐷1𝑠 + 𝐸1  

𝐴1 = (𝑉𝑃1 − 𝑍𝛼̇)  

𝐵1 = −(𝑉𝑃1 − 𝑍𝛼̇)(𝑋𝑢 + 𝑋𝑇𝑢 +𝑀𝑞) − 𝑍𝛼 −𝑀𝛼̇(𝑍𝑞 + 𝑉𝑃1)    

𝐶1 = (𝑋𝑢 + 𝑋𝑇𝑢)[𝑀𝑞(𝑉𝑃1 − 𝑍𝛼̇) + 𝑍𝛼 +𝑀𝛼̇(𝑍𝑞 + 𝑉𝑃1)] + 𝑀𝑞𝑍𝛼 − 𝑍𝑢𝑋𝛼 +𝑀𝛼̇𝑔 sin Θ1 −

(𝑀𝛼 +𝑀𝑇𝛼)(𝑍𝑞 + 𝑉𝑃1)  

𝐷1 = 𝑔 sinΘ1 [(𝑀𝛼 +𝑀𝑇𝛼
) − 𝑀𝛼̇(𝑋𝑢 + 𝑋𝑇𝑢)] + 𝑔 cos Θ1 [𝑀𝛼̇𝑍𝑢 + (𝑀𝑢 +𝑀𝑇𝑢

)(𝑉𝑃1 − 𝑍𝛼̇)]

− 𝑋𝛼(𝑀𝑢 +𝑀𝑇𝑢)(𝑍𝑞 + 𝑉𝑃1) + 𝑍𝑢𝑋𝛼𝑀𝑞 + (𝑋𝑢 + 𝑋𝑇𝑢)[(𝑀𝛼 +𝑀𝑇𝛼)(𝑍𝑞 + 𝑉𝑃1) − 𝑀𝑞𝑍𝛼] 

𝐸1 = 𝑔 cosΘ1 [𝑍𝑢(𝑀𝛼 +𝑀𝑇𝛼) − 𝑍𝛼(𝑀𝑢 +𝑀𝑇𝑢)] + 𝑔 sinΘ1 [(𝑀𝑢 +𝑀𝑇𝑢)𝑋𝛼 − (𝑋𝑢 + 𝑋𝑇𝑢)(𝑀𝛼 +𝑀𝑇𝛼)] 

(59) 

  

Through Eq. (53) to Eq. (59), one can evaluate how the response of the aircraft in the speed u, the angle of attack  

and the pitch angle  , if the aircraft disturb in line with the elevator movement. In the presence of a sudden vertical flow, 

their effects can be simulated by using elevator deflection angle to follow a particular sequence. Here the flight behaviour 

of the aircraft in the longitudinal motion investigates by introducing the movement of the elevator deflection follow two 

type of disturbance models (a) a single doublet impulse and (b) a multiple doublet impulse.  

In a single doublet impulse, as function of time the elevator deflected follows the sequence as given by function 

below: 

 



Pairan et al., Progress in Aerospace and Aviation Technology Vol. 2 No. 2 (2022) p. 81-91 

88 

𝑠𝑖(𝑡)  =  

{
 
 

 
 
0                        0 ≤ 𝑡 ≤ 200
−40                    200 < 𝑡 ≤ 205
0                   205 < 𝑡 ≤ 3200
40               3200 < 𝑡 ≤ 3205
0            3205  ≤ 𝑡 ≤ 12001

 (60) 

 

While as a multiple doublet impulse, the elevator deflection will follow function as below 

 

𝑚𝑖(𝑡)  =  

{
 
 
 
 

 
 
 
 

0                        0 ≤ 𝑡 ≤ 200
−40                     200 < 𝑡 ≤ 215
0                   215 < 𝑡 ≤ 400
4                   400 < 𝑡 ≤ 415
0                  415 < 𝑡 ≤ 800
−2                   800 < 𝑡 ≤ 815
0                 815 < 𝑡 ≤ 1000
2              1000 < 𝑡 ≤ 1015
0            1015 < 𝑡 ≤ 12001

 (61) 

 

To solve longitudinal flight problem by using Eq. (53) to Eq. (59) need the geometry, mass, the aircraft inertia, the 

flight condition, and certain aerodynamic characteristics of the aircraft are needed. In the case of Learjet 24 and Cessna 

182 aircraft, the required data for longitudinal flight dynamic analysis as given in the Table 2.  

 

Table 2 Geometry, Mass, Inertia and Aerodynamics Data of the Learjet 24 and the Cessna 182 Aircraft. 

Aircraft Model Learjet 24 Cessna 182 

Wing Surface (ft2) 230.00 174.00 

Mean Aerodynamic 

Chord (MAC) (ft) 
7.000 4.90 

Wingspan (ft) 34.00 36.00 

Flight Condition 

Altitude (Ft) 40000.0 5000.0 

Mach Number 0.7000 0.2010 

True airspeed (
𝐹𝑡

𝑆𝑒𝑐
) 677.00 220.10 

Dynamic pressure 

(lbs/ft2) 
134.60 49.60 

Location of CG - % 

MAC 
0.3200 0.2640 

Steady-state angle of 

attack (deg) 
1.50 0.0000 

Aircraft’s mass and inertia data 

Mass (lbs) 9000.00 2650.00 

Moment of inertia x-

axis (slug ft2) 
6000.00 948.00 

Moment of inertia y-

axis (slug ft2) 
17800.0 1346.0 

Moment of inertia z-

axis (slug ft2) 
25000.0 1967.0 

Moment of inertia xz-

axis (slug ft2) 
1400.00 0.00000 

Aircrafts longitudinal steady state input data 

𝐶𝐿1 0.2800 0.3070 

𝐶𝐷1  0.0279 0.0320 

𝐶𝑚1
 0.0000 0.0000 

𝐶𝑇𝑋1  0.0279 0.0320 

𝐶𝑚𝑇1  0.0000 0.0000 

𝐶𝐷0  0.0216 0.0270 

𝐶𝐷𝑢 0.1040 0.0000 

𝐶𝐷𝛼 0.2200 0.1210 

𝐶𝑇𝑋𝑢 - 0.0700 - 0.0960 

𝐶𝐿0 0.1300 0.3070 

𝐶𝐿𝑢 0.2800 0.0000 

𝐶𝐿𝛼 5.84 4.41 

𝐶𝐿𝛼̇ 2.20 1.70 

𝐶𝐿𝑞 4.70 3.90 

𝐶𝑚0
 0.0500 0.0400 

𝐶𝑚𝑢
 0.0700 0.0000 

𝐶𝑚𝛼
 - 0.6400 - 0.6130 

𝐶𝑚𝛼̇
 - 6.70 - 7.27 

𝐶𝑚𝑞
 - 15.50 - 12.40 

𝐶𝑚𝑇𝑢 - 0.0030 0.0000 

𝐶𝑚𝑇𝛼 0.0000 0.0000 

𝐶𝐿𝛽 - 0.1000 - 0.0923 

𝐶𝐿𝑝 - 0.4500 - 0.4840 

𝐶𝐿𝑟 0.1400 0.0798 

𝐶𝑌𝛽 - 0.7300 - 0.3930 

𝐶𝑌𝑝  0.0000 -0.0750 

𝐶𝑌𝑟  0.4000 0.2140 
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𝐶𝑛𝛽 0.1240 0.0587 

𝐶𝑛𝑇𝛽 0.0000 0.0000 

𝐶𝑛𝑝 - 0.0220 - 0.0278 

𝐶𝑛𝑟 - 0.2000 - 0.0937 

Aircrafts control derivatives data 

𝐶𝐷𝛿𝐸
/𝐶𝐷𝑖𝐻

 0.0/0.0 0.0000 

𝐶𝐿𝛿𝐸
/𝐶𝐿𝑖𝐻

 0.46/0.94 0.4300 

𝐶𝑚𝛿𝐸
/𝐶𝑚𝑖𝐻

 -1.24/-2.5 -1.122 

𝐶𝐿𝛿𝐴
 0.1780 0.2290 

𝐶𝐿𝛿𝑅
 0.0210 0.0147 

𝐶𝑌𝛿𝐴
 0.0000 0.000 

𝐶𝑌𝛿𝑅
 0.1400 0.1870 

𝐶𝑛𝛿𝐴
 - 0.0200 - 0.02160 

𝐶𝑛𝛿𝑅
 -0.740 -0.0645 

 

 

 

4. Result and Discussion 

The current study compares the longitudinal flight characteristics of two aircraft. Those two aircraft are the Learjet 

24 and the Cessna 182. As mentioned in the previous subchapter, there are two types of disturbance models used in this 

study: a single doublet impulse (Eq. (60)) and a multiple doublet impulse (Eq. (61). The Learjet 24 is designed to fly at 

a high subsonic velocity (M = 0.7), while the Cessna 182 flies at a low subsonic velocity (M=0.2). Using the same 

condition of single doublet input, namely that both aircraft’s elevators were deflected at 40, up and down. Fig. 4-6 shows 

that the aircraft can return to its origin as the disturbance disappears. Because of the single doublet signal, the short period 

mode occurs in the immediate transient and lasts for a few seconds. The phugoid mode occurs shortly after the short 

period mode ends and often lasts quite a long time. 

 

 
Fig. 4 - Comparison aircraft response the angle of attack between Cessna 182 and Learjet 24 in a single doublet 

impulse 

 
Fig. 5 - Comparison aircraft response the velocity in x-direction between Cessna 182 and Learjet 24. in a single 

doublet impulse 
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Fig. 6 - Comparison aircraft response the pitch angle in x- between Cessna 182 and Learjet 24 in a single doublet 

impulse. 

 

While in the case of a disturbance model with a multiple doublet impulse, the comparison response between these 

two airplanes from the angle of attack response is shown in Fig. 7, while the velocity and pitch angle responses are shown 

in Fig. 8 and Fig. 9. Results in Fig. 7-9 show that the aircraft can return to its origin as the disturbance disappears, but it 

takes a longer time compared to the single doublet input disturbance. 

 

 
Fig. 7 - Comparison aircraft response the angle of attack  -between Cessna 182 and Learjet 24. Case a multiple 

doublet impulse.  

 

 
Fig. 8 - Comparison aircraft response the velocity in x-direction between Cessna 182 and Learjet 24. Case a 

multiple doublet impulse 
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Fig. 9 - Comparison aircraft response pitch angle in x-direction between Cessna 182 and Learjet 24. Case a 

multiple doublet impulse 

 

5. Conclusion and Future Work  

Using the results from two model aircraft, one can identify that the longitudinal equation of flight motion can be 

solved by using the Laplace transform. The comparison shows how the velocity in the x-direction, the angle of attack, 

and the pitch angle change over time. Results in terms of velocity disturbance u in the x-axis direction, the angle of attack, 

and the pitch angle for the case of the Cessna 182 show that this airplane will be able to dump the oscillation as the 

disturbance is lifted. While for the Learjet 24, when a single doublet impulse is applied, the aircraft response is as good 

as the Cessna 182. As the disturbance is gone, the oscillation just occurred for a short time. However, when the multiple 

doublet impulse occurs, this airplane needs more time to make the disturbance disappear. Simulation results for the two 

different aircraft models are presented, and a comparative analysis between them is shown successfully. 
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