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Abstract: The present work presents a comparative study on the longitudinal dynamic’s stability behavior for two
aircraft models, namely the Learjet 24 and the Cessna 182. The longitudinal flight dynamics behaviors are evaluated
by introducing a disturbance to the elevator. This device uses a single doublet impulse as well as multiple doublet
impulses. The governing equation of longitudinal flight motion, which was derived based on a small perturbation
theory and a linearized process by dropping the second order and above to the disturbance gquantities, allowed one to
formulate the governing equation of flight motion in the form of an equation known as the longitudinal equation of
flight motion. This equation describes the flight behavior of an aircraft and can be expressed in the disturbance
quantity as translational velocity in the x-direction u, angle of attack «, and pitch angle 6. The implementation in the
case of the Cessna 182 and the Learjet 24, where the Cessnha 182 uses a single doublet impulse or a multiple doublet
impulse, demonstrates that the aircraft response in these three variable states is better than that of the Learjet 24.

Keywords: Longitudinal stability, Cessna 182, Learjet 24, longitudinal, multiple, and single doublet impulse flight
simulation.

1. Introduction

The aircraft is a flying vehicle that can fly freely in any direction and in any rotation. As a result, the aircraft has six
degrees of freedom, and if it is assumed to be rigid, then the aircraft can fly to follow six paths freely. It can move forward,
sideways, and down, and it can rotate about its axes with yaw, pitch, and roll. To describe the state of a system that has
six degrees of freedom, one will involve six unknown quantities. To obtain these six unknowns, six simultaneous
equations are needed for the equations of motion of an aircraft. Basically, it is hard to formulate the governing equation
of flight motion. So, some sort of simplification needs to be introduced, such as the aircraft being considered a rigid body
having a constant mass and a symmetrical shape between the left and right sides of the vertical plane. In addition, because
the airplane is flying at a low altitude and a relatively low speed, it gives the impression that the earth is flat and can be
considered an inertial reference frame. To formulate the governing equation of flight motion, one may require two
reference frames: the inertial frame of reference and the fixed body reference frame. Using these two reference frames,
one can derive the governing equation of flight motion, in terms of the force equation and momentum equation. By using
a small perturbation theory and a linearization process, the governing equation of flight motion can be decoupled to
become the governing equation for longitudinal flight motion and lateral-directional flight motion.

The present work focused on the longitudinal flight motion, with a view to understanding the dynamic stability if
some sort of small disturbance is introduced to the motion. Here two type aircraft models are used, namely the Learjet
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24 and Cessna 182 aircraft, while the disturbance models will be applied are a Single Doublet Impulse and a Multiple
Doublets Impulse.

2. Governing Equation of aircraft flight motion.

Basically, the governing equation of aircraft flight motion as rigid body is already well established. The governing
equation of flight motion starts by introducing two reference frames, namely the body fixed axis and Earth reference
frame which will act as its the inertial frame. Fig. 1 shows these two reference frames. On the body fixed axis all
quantities related to the flight behavior such as linear and angular velocity, forces and moments are defined with the
positive sign as indicated in Fig. 2.

Xe
(North)

Ye
(East) Qe

Zy
Fig. 1 - The fixed body axis and the earth reference frame [1]

On the body fixed axis all quantities related to the flight behavior such as linear and angular velocity, forces and
moments are defined with the positive sign as indicated in Fig. 2.

Lift (positive upwards)
Drag
(positive rearwards)

All directions shown are positive
U, V, R are the forward, side and yawing velocities
L, M, N are roll, pitch and yaw moments
P, Q, R are the angular velocities,
roll, pitch and yaw
@, ©, ¥ are roll, pitch and yaw angles

Y, N.R, L.P.®

Vi Thrust
(positive forwards)

Fig. 2 - The definition of linear and angular velocity, forces and moment works on the aircraft [1]

The attitude aircraft which refer to the earth reference frame described by the Euler angle, this Euler angle consist of
three angles namely, Bank (roll) angle @. Elevation (pitch) angle ® and heading (yaw) angle . The aircraft position at
any instant refer to the Earth reference system denoted as [xg, yg, z¢]. Fig. 3 show the definition of Euler in the context
with the attitude of the aircraft.

Af/.

Fig. 3 - The Euler angle and the attitude of the aircraft [3]
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Here one can notice that the flight behaviors of the aircraft can be adequately described by 12 variable states and
stated in two groups given below [4]:

[longitudinal (forward) Velocity]
| lateral (transverse) velocity |
| vertical velocity |
| roll rate I
| pitch rate |
l yaw rate J

M

Xg earth-fixed x position
[}’El | earth-fixed y position |

Zp| _ earth-fixed z position @
D roll angle

o pitch angle

# yaw angle

17:

The first group variable state v is related to the implementation of the Newton 2" law of momentum conservation.
While the second group related with the aircraft position and altitude. These 12 variable states represent the unknown
quantities; hence 12 equations are needed to solve the unknown, Nelson [5] had provide the governing equation of flight
motion which relate to these twelve variables states in the form

F.—mgsin® =m(U + QW —RV) ()
F, + mg cos @sin ®=m(V + UR — PV) 4
F, + mgcos © cos @=m(W + PV — QU) (5)
L= P[XX - RIXZ —PQIy; + RQ(IZZ - IYY) (6)
M = Qlyy + PR(Ixx — Ip;) + (P2 — RY)Iy, (7)
N = R[ZZ - P[XZ + PQ(IYY - IXX) + QRIx; (8)
b 1 sin®tan® cos®tan@®][P
e|=10 cos ® —sin® ||Q 9)
P 0 sin®sec® cosdsecO®lLlR
Xg U
ye|= [A]|V (10)
Zg w
cosWcos® —sinWcos® + cos¥Wsin®sin@ sinW¥sin® + cosW¥ cos ® sin O
[A] = |sinWcos® cosWcos® +sin® sin®@sin¥  — cos ¥ sin P + sin O sin ¥ cos ¢ (11)
—sin® cos O sin @ cos O cos @

Eqg. (1) to (11) represent the governing equation of general flight motion which they are a non-linear and coupled
each to other. However, for practical application most of aircraft fly at specific flight condition namely at a steady state
flight and perturbed flight. Steady state flight means that the linear and angular acceleration with respect to the body
frame [x, y, z], are zero. While perturbed flight condition describes that those flight condition, all motion variables of
the aircraft experience a deviation from a set of original steady state values. As result at this flight condition the variable
states, force and moments can be written as:

U=U+u V=V+yv wWw=w +w (12)
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D=d, +p O=0,+6, Y=V +p (14)
Fpax = Faxy + faxs Fay = FAy1 + fays Faz = Fazy + faz (15)
Ly=La, +l; My=M, +my Ny=Ny +n, (16)
Fry = Froy + fr FTyzFTy1+ny; Fry = Fryy + frs @17
Ly =Ly + 1y My=My +my; Np=Np +ng (18)

Above equation describe that the variable state composed two values, the values at the steady state condition denoted
by subscript (1) and the perturbed quantity denoted by small later. Introducing Eq. (12-18) into the forces and moment
equation and ignoring all term contain the second order and above of the perturbed quantities, one obtain the forces and
moment equation in steady and perturbed flight condition as:

m(u+ Qw + qW; — Riv —rV;) = —mg6 cos 0; + f, (19)

m(v + U;r + Ryu — Pbw — pW;) = —mg6 sin @, sin ©; + mg¢ cos ®; cosO; + f, (20)
mw + P,v +pV; — Q.u—U,;q) = —mg0 cos ®, sin®; — mge sin ®; cos 0, + f, (21)
Plxx — Tlxz — (P1q + Q1p)Ixz + (R1q + Qur)Uzz — Iyy) =L (22)

qlyy + (Pyr + pR)Uxx — Izz) + (2P,°p — 2R, *r)Ix; = M (23)

Tlzz — Dlxz + (P1q + pQ1)Uyy — Ixx) + (Q17 + Riq)Ixz =N (24)

While the equation of aircraft altitude, Eq. (9) becomes:

p=&— W 0cos®, — ¥, sin®, (25)
q=—-0,¢pcos®, — 6 sin®d, — ¥, fsin ®,sin®; + ¥, ¢ cos ®; cos®; + ¥; sin ®; cos O, (26)
r = —W, 0cos d, sin@; — ¥, ¢ sin @, cos®; — 6 sin D+ ¥, cos d; cos O; —0, ¢ cos D, (27)

In perturbed flight conditions, it is not necessary one has to focus as well to cover to the aircraft position with respect
to the earth reference frame, since in the perturbed flight one just deals with a short time a flight dynamics behavior. If
one imposing that the aircraft start from the flight condition as a steady-state rectilinear wing-level flight. One can impose
the following initial condition:

« Angular velocities P, = Q, =R, =0

* Euler angles ®; = const., ®; = const., ¥; = const.,

« Lateral velocity V; = 0;

* Roll angle ®; = 0, sin®; = 0, cos ®; = 1 (wing level).

The implementation above condition into Eq. (28) to (36) can be written as:

m(u + qW;) = —mgl cos 0, + f, (28)
m( + U;r — pW;) = mgep cos0; + f, (29)
m(w — Uy q) = —mgf@sin@; + f, (30)
Plxx —Tlxz =L (31)

qlyy =M (32)

Tlzz —=plxz =N (33)
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p=¢—1sind, (34)
q=10 (35)
r= 1/) cos 0, (36)

Above set equation can be decoupling to become equation which deal with a longitudinal flight motion, the motion
just related to the vertical plane and the lateral — directional flight motion. In these two types of flight motion, for the
case of longitudinal flight motion becomes:

(t+ qW;) = —mg6 cos 0, + f; 37)
m(w — Uyq) = —mg@sin@, + f, (38)
qlyy =M (39)

g=0 (40)

The present work just deals with longitudinal flight, so it would relate to the case of solving Eq. (37)-(40). This
equation can be simplified by replacing the perturbed velocity component w in term of angle of attack o and the pitch
rate g in term of perturbed elevation angle 6 by using the following relation

qg=6 > g=46 (41)
w=Va dPw =V, a (42)
In above equation, V,,, is the aircraft velocity presented in the stability reference frame. By using Eq. (41-42), the

longitudinal Eg. (37-40) can be converted from four equation into three equation in term with the variable state velocity
component in x- direction u, angle of attack, « and the elevation (pitch) angle 8, in the form as:

. 1
u=-—gbcos0; + Efx (43)
. . . 1
(Vplw — Vplq) = —g6sinB; + Efz (44)

If the force and moment are linearized in presented in non-dimensional aerodynamics coefficients, the complete form
of the longitudinal equation of motion becomes:

u=—gcos @19+(Xu+XTu)u+Xaa+X5565 (46)
V& =—gsin®, 0+ Zyu+Zya +(Z;+Vp, )0 + Z5,6¢ (47)
6 = (My + Mg )u+ (Mg + My, )a + Myd + My + M5, 55 (48)

Where the coefficients of the term which appear in above equations are defined as given in the Table. 1

Table 1 - The definition coefficient in the longitudinal flight motion [5]

Longitudinal Dimensional Stability and Control Derivatives
a1S(Cpup+ Cp1) ft S (Cru + 2Cr0) 1

X, = Xy =

mU, sec? mUy sec
q:1S(Cpo— Cry) ft _ SCpsx ft
a= " Ksg =————
mU, sec? m sec?
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_ q:1S(Cry + 2Cy) ft

Z,=

mU, sec?

_ _qlS(CLa) 1 7 _@:S(C+ Cpy) St
e~ 2mU; sec “ 2mU, sec?
S 1S(Creg) 1 _ @St (Cy) ft

m sec a 2mU,; sec

415Gy + Cm1) _@1SCury + Cr1) 1

M = I Mru = Uyl
ml,, ftsec 1lyy ftsec
q,5¢ C 1 4,S€ Coree 1
M, = I - sec? Mrq = I = sec?
vy vy c
Mo = q15C Cep 1 _@SC Gl © 1
ok L,y sec? a L, 2U; sec?

3. The Solution of Longitudinal Flight Motion

Based on small perturbation theory and linearized implementation, the governing equation, which originally
consisted of 12 equations, may be reduced to three equations for the scenario when the aircraft is flying in longitudinal
motion. These equations are given in Eq. (46-48). If Laplace transforms are applied to that equation and assuming the
zero initial condition for the disturbed quantities u, a and 6, the Laplace transform for the Eq. (46-48) becomes:

(s - (X, + XTu)) u(s) — Xpa(s) + +g cos 0, 6(s) = X5,.6:(s) (49)
—Z,u(s) + (S(VP1 - Zd) - Za)a(s) + (—S(Zq + Vpl) + g sin @1)9(5) = Z5,65(s) (50)
—(My, + Mz, )u(s) — (M,-xs — (M, + Mra)) a(s) + s(s — M,)0(s) = M5, 6x(s) (51)
or in matrix notation can be written as:
u(s)
(s — (Xu + XTu)) —Xg +g cos 04 5E(s) X5z
. (s)
~Z, Vo, =Ze) =Za)  (=5(Zq+Vp) +gsin@)||5- 5| = [Zsp (52)
—(My, +Myg)  —(Mgs — (M + Mg)) s(s — M) 0(s). Mg
SE(s)
To solve Eqg. (52), Cramer rule can be used to solve unknown quantities to yields:
Xsp —X, +g cos 0,
Zs,  (s(Vp,—Z4)—Zy) (—s(Zy+Vp) +gsin®,)
u(s) Ms, —(Mgs — (M, + MTa)) s(s —Mg) _ Num,(s) (53)
5:) |5 — (K + Xr, ) X, <030, Do)
—Zy, (s(Vo, = Z4)—2,)  (—s(Zy+Vp,) +gsind,)
—(My +Mz)  —(Mys — (Mg + My)) s(s —M,)
(s—(Xy+Xz,)) Xsp +g cos 0,
-7, Zsy (—s(Zy+Vp)+gsin®,)
as) —(My, +Mz) Ms, s(s — M) _ Numy,(s) )
5:) |G — (Ku+ X1,) X, 9050, Do)
—Zy (s(Vo, =Z4) —Z,)  (—s(Zy +Vp,) + gsin®,)
—(My+Mz)  —(Mys — (Mg + Mr)) s(s —M,)
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(s = (Xu + Xr,)) —Xa Xog
—Zy (s(Vo, = Za) —Zo)  Zs,
0(s) _ —(My +Mz)  —(Mgs— (M, +Myr,)) Ms, _ Numy(s) (55)
8p(s) (s — (X, + XTu)) -X, +g cos 0, D, (s)
7, (s(Vo, = Z4) —Zy)  (—5(Zg+Vp) + gsin®,)
—(My +Mz)  —(Mys— (Mg + My)) s(s —M,)

The expressions for the coefficients of the numerator polynomials (Num,,(s), Num,(s) and Numg(s)) are given by:

Numy(s) = Ays® + B,s?> + Cys + D,

Ay = X5, (Vo, — Z4)

By = —Xs [(Vo, = Zs)Mg + My + (Zy + Vi,)| + Zs, X, (56)
Cy = X55[MyZy + Mg sin®, — (My + Mr,)(Z, + Vp)]

D, = gsin®, X5, (M, + Mr,) + g cos 0, Zs, (M, + Mz,) + M5, (g cos 0, Z, — gsin 0, X,)

Numy(s) = Ays® + Bys? + C,s + Dy,
Aa = ZaE

Ba = XoyZy — Zsy (Xu + Xp,) + M) + Moy (Zg + V,) (57)
Co = X(FE[(ZCI + VPl)(Mu + MTu) - MqZu] + ZﬂEMq(Xu + XTu) - MSE[(Zq + VPl)(Xu + XTu)]
Dy = —gsin®, X5, (M, + My, ) + g cos 0, Zs, (M, + Mr,) + Ms, [g sin®, (X, + X1, ) — g cos 0, Z,]

Numgy(s) = Ags? + Bgs + Cy
Ag = Zs My + M5, (Vo, — Z;)
By = Xsp|ZuMe + (Vo, — Z5)(My, + My)| + Zs,[(My + M) — My (X, + X7,
= M, [(Ve, = Za) (Xu + X1,) = Za] (58)
Co = Xop|(Mo + My )Z,, — (My + My, )Z,| = Z5,[(My + Mr)(Xy + X1,) + Xo(My, + Mz,)| +
M |(Xy + X1,)Zo — ZoZy

While denominator D, (s) is given as:

D,(s) =A;s*+ B;s®+ C;s?+ D;s+E;
Ay = Vo, — Zy)
By = —(Vp, — Zs) (X + Xp, + My) — Zo — My (Zy + Vp,)
Cr =Xy +X0,)[My(Vo, = Zo) + Zo + My (Zy + V)| + MyZy — Z, Xy + Mg sin ©; —
(My + Mg )(Zy + V5,) (59)
D, = gsin®, [(My + Mz,) — My (X, + Xz,)| + g cos ©; [MeZy + (My, + Mr,)(Vo, — Z4)]
— Xo(My + M7 )(Zy + V,) + ZyXoMy + (Xy + Xp, ) [(My + M) (Zg + Ve,) — MyZ4]
Ey = gcos®y [Z,(My + My,) — Zo(My, + My,)| + g sin @, [(My, + My )X, — (Xy + X)) (Mg + Mz,)]

Through Eg. (53) to Eq. (59), one can evaluate how the response of the aircraft in the speed u, the angle of attack «
and the pitch angle 4, if the aircraft disturb in line with the elevator movement. In the presence of a sudden vertical flow,
their effects can be simulated by using elevator deflection angle to follow a particular sequence. Here the flight behaviour
of the aircraft in the longitudinal motion investigates by introducing the movement of the elevator deflection follow two
type of disturbance models (a) a single doublet impulse and (b) a multiple doublet impulse.

In a single doublet impulse, as function of time the elevator deflected follows the sequence as given by function
below:

87



Pairan et al., Progress in Aerospace and Aviation Technology Vol. 2 No. 2 (2022) p. 81-91

0
—40
O5i(t) = jo

s

0

0 <t <200
200 <t <205

205 <t <3200
3200 <t <3205
3205 <t <12001

(60)

While as a multiple doublet impulse, the elevator deflection will follow function as below

—40
0
4
Oomi(t) = 0
-2

0
2
0

To solve longitudinal flight problem by using Eq.

0 <t <200

200 <t <215
215<t <400
400 <t <415
415 <t <800
800 <t <815
815 <t <1000
1000 <t <1015
1015 <t <£12001

(61)

(53) to Eq. (59) need the geometry, mass, the aircraft inertia, the

flight condition, and certain aerodynamic characteristics of the aircraft are needed. In the case of Learjet 24 and Cessha
182 aircraft, the required data for longitudinal flight dynamic analysis as given in the Table 2.

Table 2 Geometry, Mass, Inertia and Aerodynamics Data of the Learjet 24 and the Cessna 182 Aircraft.

Aircraft Model Learjet 24 Cessna 182 Cm, 0.0000 0.0000
C
Wing Surface (ft?) 230.00 174.00 Txa 0.0279 0.0320
Mean Aerodynamic 2,000 4.90 Cmr, 0.0000 0.0000
Chord (MAC) (ft) ' ' Cp, 0.0216 0.0270
Wingspan (ft) 34.00 36.00 Cp, 0.1040 0.0000
Flight Condition Cp, 0.2200 0.1210
Altitude (Ft) 40000.0 5000.0 Crx, -0.0700 -0.0960
Mach Number 0.7000 0.2010 Cr, 0.1300 0.3070
True airspeed (1) 677.00 220.10 Cry 0.2800 0.0000
v Ci, 5.84 4.41
ynamic pressure
(Ibs/ft?) 134.60 49.60 C, 2.20 1.70
Locatlol\r;lg\ECG -% 0.3200 0.2640 CLq 4.70 3.90
Steady-state angle of 150 0.0000 Cmy 0.0500 0.0400
attack (deg) : ' Com, 0.0700 0.0000
Aircraft’s mass and inertia data Cmg - 0.6400 -0.6130
Mass (Ibs) 9000.00 2650.00 Crmyg -6.70 -7.27
Moment of inertiax- g1 o5 948.00 Cing - 15.50 -12.40
axis (shug ft ) C 0.0030 0.0000
Moment of mer;ua y- 17800.0 1346.0 mTy, - 0. .
y axis (SIfU_g ft’) Conr,e 0.0000 0.0000
oment of inertia z-
axis (slug f2) 25000.0 1967.0 CL,; -0.1000 -0.0923
Momentof inertiaxz- 5499 0,00000 Cu -0.4500  -0.4840
axis (slug ft?)
- . ) C, 0.1400 0.0798
Aircrafts longitudinal steady state input data c T
-0.7300 -0.3930
CL, 0.2800 0.3070 ‘e
Cy. 0.0000 -0.0750
Cp, 0.0279 0.0320 P
Cy 0.4000 0.2140
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Cnp 0.1240 0.0587
Carg 0.0000 0.0000
Cny -0.0220 -0.0278
C, -0.2000 - 0.0937
Aircrafts control derivatives data
Cps,/Cpy, 0.0/0.0 0.0000
CrsglCLyy, 0.46/0.94 0.4300
Cmgy/ Cmyyy -1.24/-2.5 -1.122

4. Result and Discussion

Cls, 0.1780
Clsy 0.0210
Crs,, 0.0000
Crsy 0.1400
Chs,, -0.0200
Crgp -0.740

0.2290
0.0147
0.000
0.1870
-0.02160
-0.0645

The current study compares the longitudinal flight characteristics of two aircraft. Those two aircraft are the Learjet
24 and the Cessna 182. As mentioned in the previous subchapter, there are two types of disturbance models used in this
study: a single doublet impulse (Eqg. (60)) and a multiple doublet impulse (Eq. (61). The Learjet 24 is designed to fly at
a high subsonic velocity (M = 0.7), while the Cessna 182 flies at a low subsonic velocity (M=0.2). Using the same
condition of single doublet input, namely that both aircraft’s elevators were deflected at 4°, up and down. Fig. 4-6 shows
that the aircraft can return to its origin as the disturbance disappears. Because of the single doublet signal, the short period
mode occurs in the immediate transient and lasts for a few seconds. The phugoid mode occurs shortly after the short

period mode ends and often lasts

quite a long time.

Alpha vs.Time

4
I
X54

2HY3.2226

[ X 26.6

Alpha (deg)
o

Y -0.024291

Cessna 182

100 200
Time (s)

300

Alpha (deg)

Alpha vs.Time

X 5.725
Y 4.2001

X 29175

| Y 0.043477
.

Lear Jet 24

50 100 150 200

Time (s)

250

Fig. 4 - Comparison aircraft response the angle of attack between Cessna 182 and Learjet 24 in a single doublet

impulse
s Velocity vs.Time Velocity vs.Time
4
2 o X 89.825
) YSSwene @ Y 0.045608
E ! 2 .
= 2
s (3]
S-2 8.
2 >
4 [ x 10525
X 10.525 Y -6.4949
6! v 75186 Cessna182 : Lear Jet 24
L
-8
0 100 200 300 100 200
Time (s) Time (s)

300

Fig. 5 - Comparison aircraft response the velocity in x-direction between Cessna 182 and Learjet 24. in a single

doublet impulse
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6 Theta vs.Time
-
4 H X 5.525
Y 4.8919
g 2
i) X 48.65
[+ ] .
2 .-{\ Y 0,058_104
f‘—: oF 0\__; L A
21N Cessna 182
4
0 100 200
Time (s)

300

Theta (deg)

Theta vs.Time

X 5.6
Y 5.6257

X 30.15
Y -1.0484

Lear Jet 24

100 200
Time (s)

300

Fig. 6 - Comparison aircraft response the pitch angle in x- between Cessna 182 and Learjet 24 in a single doublet
impulse.

While in the case of a disturbance model with a multiple doublet impulse, the comparison response between these
two airplanes from the angle of attack response is shown in Fig. 7, while the velocity and pitch angle responses are shown
in Fig. 8 and Fig. 9. Results in Fig. 7-9 show that the aircraft can return to its origin as the disturbance disappears, but it
takes a longer time compared to the single doublet input disturbance.

Fig. 7 - Comparison

Alpha vs.Time

3 -
X 5.425
2 || Y 3.1641

X 27.05
Y -0.036741

Alpha (deg)
(=]

-

[

Cessnha 182

0 100
Time (s)

200

300

Alpha (deg)

= Alpha vs.Time
-
| x6.15
Y 4.2882
X 128275
L Y 0.19661
0 I N A= s
[
( Lear Jet 24
-5
0 100 200
Time (s)

300

aircraft response the angle of attack a -between Cessna 182 and Learjet 24. Case a multiple
doublet impulse.

Velocity vs.Time

6

4

2 X 58.15

Y 0.67903

» .
=)
2
8
< -2
>

-4

6 X10475 Cessna 182

| Y -7.9304
8le
0 100 200
Time (s)

300

Velocity(ft/s)

Velocity vs.Time

60 .
X 52.625
40 Y 61.8662
20
0
-20
-40
lear jet 24
-60
0 100 200
Time (s)

300

Fig. 8 - Comparison aircraft response the velocity in x-direction between Cessna 182 and Learjet 24. Case a
multiple doublet impulse
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Fig. 9 - Comparison aircraft response pitch angle in x-direction between Cessna 182 and Learjet 24. Case a
multiple doublet impulse

5. Conclusion and Future Work

Using the results from two model aircraft, one can identify that the longitudinal equation of flight motion can be
solved by using the Laplace transform. The comparison shows how the velocity in the x-direction, the angle of attack,
and the pitch angle change over time. Results in terms of velocity disturbance u in the x-axis direction, the angle of attack,
and the pitch angle for the case of the Cessna 182 show that this airplane will be able to dump the oscillation as the
disturbance is lifted. While for the Learjet 24, when a single doublet impulse is applied, the aircraft response is as good
as the Cessna 182. As the disturbance is gone, the oscillation just occurred for a short time. However, when the multiple
doublet impulse occurs, this airplane needs more time to make the disturbance disappear. Simulation results for the two
different aircraft models are presented, and a comparative analysis between them is shown successfully.
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