
 
PROGRESS IN AEROSPACE AND AVIATION TECHNOLOGY VOL. 2 NO. 2 (2022) 69-80 

  

   

 

© Universiti Tun Hussein Onn Malaysia Publisher’s Office 

 

PAAT 

 

 http://penerbit.uthm.edu.my/ojs/index.php/paat  

Progress in 

Aerospace and 

Aviation 

Technology 

 e-ISSN: 2821-2924  

 

*Corresponding author: bambangb@uthm.edu.my                      69 
2022 UTHM Publisher. All right reserved. 

penerbit.uthm.edu.my/ojs/index.php/paat 

 

The Lateral and Directional Stability Behavior for Two 

Aircraft Models  
 
Syariful Syafiq Shamsudin1, Bambang Basuno2*, Muhammed Firdaus2, Latifah 

Md Ariffin2, Nor Zelawati Asmuin2 

 
1Research Center of Unmanned Vehicle, Faculty of Mechanical and Manufacturing Engineering, 

 Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, MALAYSIA 
 

2Department of Aeronautical Engineering, Faculty of Mechanical and Manufacturing Engineering (FKMP), 

 Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Johor, MALAYSIA. 

 

*Corresponding Author 

DOI: https://doi.org/10.30880/paat.2022.02.02.008 

Received 15 November 2022; Accepted 19 December 2022; Available online 31 December 2022 

 

1. Introduction  
Understanding an aircraft's flight behavior can be accomplished in two ways: (1) by investigating it over a long 

period of time, or (2) by investigating it in a short period of time, with an order of magnitude in just a few seconds [1]. 

The first approach is called "understanding aircraft behavior from the aircraft performance point of view." Through this 

approach, one can estimate the range, endurance, take-off distance, landing distance, etc. The second approach to 

understanding the flight behavior in a short time is called the aircraft’s dynamics and stability point of view. This approach 

allows one to identify the aircraft response if some sort of disturbance is applied to it. The disturbance may appear 

naturally in the form of gust velocities or be due to deliberately deflecting control surfaces. 

Basically, the flight dynamic stability of the aircraft can be split into two directions of flight, namely the longitudinal 

dynamic stability and the lateral and directional dynamic stability. The present work focuses on the lateral and directional 

dynamic stability of the aircraft as applied to the cases of two aircraft models, namely the Beechcraft 99 and the Cessna 

T37. The lateral and directional flight behavior can be investigated through the behaviors of the side slip angle 𝛽, roll 

angle Φ and yaw angle Ψ plotted with respect to time in the presence of disturbance. Such disturbances can be created 

Abstract: The current study looks at flight behavior in lateral and directional motion. The investigation involves setting 

up the aircraft under an equilibrium condition with a small disturbance applied to it. Plotting the side slip angle, roll 

angle, and yaw angle with respect to time in the presence of disturbances can be used to investigate flight behavior in 

lateral and directional motion. Here the disturbance can be simulated by the movement of the aileron or rudder, in which 

these two control surfaces can be designed to move in a single impulse or multiple impulse disturbance mode. These 

two disturbance modes are used on the Beechcraft 99 and Cessna T37 aircraft. Both impulse disturbance models are 

used for the aileron and the rudder. However, in the current work, the Beechcraft 99 receives a single impulse, whereas 

the Cessna T37 receives multiple impulses. The implementation of such disturbances found that the Beechcraft 99 

represented the aircraft that would be able to go back to its initial condition in response to a single impulse disturbance 

mode while the Cessna T37 aircraft requires a little more time to return to its original yaw angle. Following the 

implementation of these two types of disturbances, it was discovered that each aircraft has the ability to return to its 

initial condition, but at varying times to reach its steady state solution. 
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through the movement of the aileron or rudder in single impulse mode or multiple impulse mode. The Beechcraft 99 

aircraft is subjected to the implementation of single impulses for aileron and rudder, and it has been discovered that this 

aircraft is capable of returning the side slip angle (𝛽), roll angle (Φ), and yaw angle (Ψ) to their initial conditions as soon 

as the disturbance is disappeared. These three variable states give slightly different responses when the multiple impulse 

is applied. With the implementation of this disturbance model on the Cessna T37, this aircraft needs more time to make 

its yaw angle return to its initial condition. 

 

2. Governing Equation of Flight Motion 
To formulate the governing equation of flight motion one needs at least two types of coordinate systems. The first 

coordinate system is the inertial frame reference 𝐹𝐸 and the second one is the body fixed coordinate frame 𝐹𝐵 . The first 

coordinate frame of reference is used to allow the implementation the Newton’s second law of translational motion and 

the angular motion, While the second coordinate frame of reference is used to describe the motion on the airplane. Fig. 

1 describes these two coordinates system is related.  

 

 
Fig. 1 - Earth fixed and body fixed co-ordinate systems [1] 

 

In more precisely, the flight behavior presented in term of velocities, position and attitude can be described in 12 

state variables as follows [2]: 

 

𝒗 =  

[
 
 
 
 
 
𝑈
𝑉
𝑊
𝑃
𝑄
𝑅 ]
 
 
 
 
 

=  

[
 
 
 
 
 
longitudinal (forward)velocity

lateral (transverse) velocity

vertical 

roll rate
pitch rate 

yaw rate ]
 
 
 
 
 

 (1) 

  

 = 

[
 
 
 
 
𝑥𝐸
𝑦𝐸
𝑧𝐸
Φ
Θ
Ψ]
 
 
 
 

=  

[
 
 
 
 
 
earth-fixed x position 

earth-fixed y position

earth-fixed z position 

roll angle

pitch angle 

yaw angle ]
 
 
 
 
 

 (2) 

 

While for the forces and moments are denoted in vector notation as 𝑭𝑩 = [𝑋 𝑌 𝑍]𝑇 and 𝑴𝑩 = [𝐿 𝑀 𝑁]𝑇 

where 𝑋, 𝑌, and 𝑍 are the longitudinal, transverse, and vertical forces, and 𝐿, 𝑀, and 𝑁 are the roll, pitch, and yaw 

moments. The definition of notation vector velocity   , position and attitude  and forces and moment as shown in the 

Fig. 2.  
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Fig. 2 - Definition notation velocity, position and forces [3] 

 

The implementation the Newton second law of translational and angular motion generate the dynamic equation of 

flight motion as [2]: 

 

𝑋 = 𝑚[𝑈̇ + 𝑄𝑊 − 𝑅𝑉 + 𝑔 sin] (3) 

  

𝑌 = 𝑚[𝑉̇ + 𝑈𝑅 −𝑊𝑃 − 𝑔 cos  sin] (4) 

  

𝑍 = 𝑚[𝑊̇ + 𝑉𝑃 − 𝑄𝑈 − 𝑔 cos  cos] (5) 

  

𝐿 =  𝐼𝑥  𝑃̇ − 𝐼𝑥𝑧[𝑅̇ + 𝑃𝑄] + (𝐼𝑧 − 𝐼𝑦) 𝑄𝑅 (6) 

  

𝑀 = 𝐼𝑦 𝑄̇ + 𝐼𝑥𝑧[𝑃
2 − 𝑅2] + (𝐼𝑥 − 𝐼𝑧) 𝑃𝑅 (7) 

  

𝑁 =  𝐼𝑧 𝑅̇ − 𝐼𝑥𝑧  [𝑃̇ − 𝑄𝑅] + (𝐼𝑦 − 𝐼𝑥) 𝑃𝑄 (8) 

 

While the governing equation of flight motion related to the attitude and position of the aircraft with respect to the 

Earth fixed reference frame is called as kinematic equation: 

 

[

𝑥𝐸̇
𝑦𝐸̇
𝑧𝐸̇

] =  [𝐴] [
𝑈
𝑉
𝑊
] 

 

(9) 

where,  

[𝐴] = [
cosΨ cosΘ − sinΨ cosΦ + cosΨ sinΘ sin sinΨ sinΦ + cosΨ cosΦ sinΘ
sinΨ cos Θ cosΨ cosΦ + sinΦ sin Θ sinΨ −cosΨ sinΦ + sinΘ sinΨ cosΦ
− sin Θ cos Θ sinΦ cos Θ cosΦ

] 
(10) 

and,  

[
Φ̇
Θ̇
Ψ̇

]  =   [

1 sinΦ tan Θ cosΦ tanΘ
0 cosΦ − sinΦ

0
sinΦ

cos Θ

cosΦ

cos Θ

] [
𝑃
𝑄
𝑅
] (11) 

 

Flat earth 

Reference frame
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The system equation that describes flight behavior can be solved using the Fourth Order Runge-Kutta Scheme, as 

demonstrated by Ozdemir and Kavsaoglu [4]. It is true that the system equation, which consists of 12 first-order 

differential equations, is non-linear and that the equations are coupled to each other. However, for a particular flight 

condition and if one is just interested in investigating the flight behavior due to a disturbance imposed on the equilibrium 

flight condition in a short time, it is not necessary to solve these twelve equations. Here one may just focus on the first 

six equations, namely the dynamic equations. 

To include the presence of thrust, T, aircraft weight, mg and aerodynamic forces, the dynamics Eq. (3-8) can be 

written as [5]: 

 

𝑚[𝑈̇ + 𝑄𝑊 − 𝑅𝑉] = −𝑚𝑔 sin+ 𝐹𝐴𝑥 + 𝑇𝐴𝑥  (12) 

  

𝑚[𝑉̇ + 𝑈𝑅 −𝑊𝑃] = 𝑚𝑔 cos sin + 𝐹𝐴𝑥 + 𝑇𝐴𝑥 (13) 

  

𝑚[𝑊̇ + 𝑉𝑃 − 𝑄𝑈] = 𝑚𝑔 cos cos + 𝐹𝐴𝑧 + 𝑇𝐴𝑧  (14) 

  

𝐼𝑥  𝑃̇ − 𝐼𝑥𝑧[𝑅̇ + 𝑃𝑄] + (𝐼𝑧 − 𝐼𝑦)𝑄𝑅 = 𝐿𝐴 + 𝐿𝑇 (15) 

  

𝐼𝑦𝑄̇ + 𝐼𝑥𝑧[𝑃
2 − 𝑅2] + (𝐼𝑥 − 𝐼𝑧)𝑃𝑅 = 𝑀𝐴 +𝑀𝑇 (16) 

  

𝐼𝑧𝑅̇ − 𝐼𝑥𝑧[𝑃̇ − 𝑄𝑅] + (𝐼𝑦 − 𝐼𝑥) 𝑃𝑄 = 𝑁𝐴 + 𝑁𝑇 (17) 

 

In solving the above equation, one can introduce that the aircraft is in steady state condition [4]. It is meant that the 

linear and the angular accelerations with respect to the aircraft body frame x, y, and z are zero. Hence, 

 

 =  

[
 
 
 
 
 
𝑈
𝑉
𝑊
𝑃
𝑄
𝑅 ]
 
 
 
 
 

= 𝒄𝒐𝒏𝒔𝒕; 𝒗̇  =  

[
 
 
 
 
 
𝑈̇
𝑉̇
𝑊̇
𝑃̇
𝑄̇

𝑅̇ ]
 
 
 
 
 

= 𝟎 

  

In the steady state if the corresponding flight conditions are denoted by subscript 1, and in this flight condition, the 

flight is perturbed, in such condition the flight variables can be written as:  

 

𝑈 =  𝑈1  +  𝑢;     𝑉 =  𝑉1  +  𝑣;       𝑊 =  𝑊1  +  𝑤 (18) 

  

𝑃 =  𝑃1  +  𝑝;     𝑄 =  𝑄1  +  𝑞;       𝑅 =  𝑅1  +  𝑟 (19) 

  

 =  1  +  𝜙;      =  1  +  𝜃;        =  1  +  𝜓 (20) 

  

𝐹𝐴𝑥 = 𝐹𝐴𝑥1 + 𝑓𝐴𝑥;   𝐹𝐴𝑦 = 𝐹𝐴𝑦1 + 𝑓𝐴𝑦;   𝐹𝐴𝑧 = 𝐹𝐴𝑧1 + 𝑓𝐴𝑧 (21) 

  

𝐿𝐴 = 𝐿𝐴1 + 𝑙𝐴;   𝑀𝐴 = 𝑀𝐴1 +𝑚𝐴;   𝑁𝐴 = 𝑁𝐴1 + 𝑛𝐴 (22) 

  

𝐹𝑇𝑥 = 𝐹𝑇𝑥1 + 𝑓𝑇𝑥;   𝐹𝑇𝑦 = 𝐹𝑇𝑦1 + 𝑓𝑇𝑦;   𝐹𝑇𝑧 = 𝐹𝑇𝑧1 + 𝑓𝑇𝑧 (23) 

  

𝐿𝑇 = 𝐿𝑇1 + 𝑙𝑇;   𝑀𝑇 = 𝑀𝑇1
+𝑚𝑇;   𝑁𝑇 = 𝑁𝑇1 + 𝑛𝑇 (24) 

 

and imposing the conditions associated with steady-state flight conditions: 

 

𝑈̇ = 𝑈̇1 + 𝑢̇ =  𝑢̇ ;        𝑉̇ = 𝑉̇1 + 𝑣̇ =  𝑣̇; (25) 

  

𝑊̇ = 𝑊̇1 + 𝑤̇ =  𝑤̇ ;     𝑃̇ = 𝑃̇1 + 𝑝̇ =  𝑝̇; (26) 

  

𝑄̇ = 𝑄̇1 + 𝑞̇ =  𝑞̇ ;         𝑅̇ = 𝑅̇1 + 𝑟̇ =  𝑟̇; (27) 

 

Introducing disturbance in steady flight by using the relationship as given by Eq. (18-27) and substitute into the 

dynamics equation as given by Eq. (12-17), yields: 
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𝑚[𝑢̇ + (𝑄1 + 𝑞)(𝑊1 + 𝑤) − (𝑅1 + 𝑟)(𝑉1 + 𝑣)] = −𝑚𝑔 sin(1 + 𝜃) + (𝐹𝐴𝑥1 + 𝑓𝐴𝑥) + (𝐹𝑇𝑥1 + 𝑓𝑇𝑥) (28) 

  

𝑚[𝑣̇ + (𝑈1 + 𝑢)(𝑅1 + 𝑟) − (𝑃1 + 𝑝)(𝑊1 + 𝑤)]

= 𝑚𝑔 cos(1 + 𝜃) sin(1 + 𝜙) + (𝐹𝐴𝑦1 + 𝑓𝐴𝑦) + (𝐹𝑇𝑦1 + 𝑓𝑇𝑦) 
(29) 

  

𝑚[𝑤̇ + (𝑃1 + 𝑝)(𝑉1 + 𝑣) − (𝑄1 + 𝑞)(𝑈1 + 𝑢)]

= 𝑚𝑔 cos(1 + ) cos (1 + 𝜙) + (𝐹𝐴𝑧1 + 𝑓𝐴𝑧) + (𝐹𝑇𝑧1 + 𝑓𝑇𝑧) 
(30) 

  

𝐼𝑥  𝑝̇ −  𝐼𝑥𝑧 𝑟̇ − 𝐼𝑥𝑧 (𝑃1 + 𝑝)(𝑄1 + 𝑞) + (𝐼𝑧 − 𝐼𝑦)(𝑄1 + 𝑞)(𝑅1 + 𝑟) = (𝐿𝐴1 + 𝑙𝐴) + (𝐿𝑇1 + 𝑙𝑇) (31) 

  

𝐼𝑥  𝑞̇ +  𝐼𝑥𝑧[(𝑃1 + 𝑝)
2 − (𝑅1 + 𝑟)

2] + (𝐼𝑥 − 𝐼𝑧)(𝑃1 + 𝑝)(𝑅1 + 𝑟) = (𝑀𝐴1 +𝑚𝐴) + (𝑀𝑇1 +𝑚𝑇) (32) 

  

𝐼𝑧 𝑟̇ − 𝐼𝑥𝑧𝑝̇ +  𝐼𝑥𝑧(𝑄1 + 𝑞)(𝑅1 + 𝑟) + (𝐼𝑦 − 𝐼𝑥) (𝑃1 + 𝑝)(𝑄1 + 𝑞) = (𝑁𝐴1 + 𝑛𝐴) + (𝑁𝑇1 + 𝑛𝑇) (33) 

 

The kinematic equation which gives the relationship between Euler angle (, , )  and rate of angular velocity (𝑝, 

𝑞, 𝑟) in the context of the presence perturbation from the steady state flight condition can be given as [5]: 

 

𝑝 =  Φ̇ −  Ψ̇1 𝜃 cos1  −  Ψ̇1 sin1 (34) 

  

𝑞 = −Θ̇1 𝜙 cos1 − 𝜃̇  sin1 − Ψ̇1  sin 1 sin1 + Ψ̇1 𝜙 cos 1 cos1 + Ψ̇1   sin 1 cos1 (35) 

  

𝑟 =  −Ψ̇1 cos1 sin1 − Ψ̇1 𝜙 sin 1 cos1 − 𝜃̇  sin1+ Ψ̇1 cos 1 cos1 −Θ̇1 𝜙 cos1 (36) 

 

In steady-state rectilinear wing-level flight, one can imposed the following assumptions:  

 The angular velocities 𝑃1  = 𝑄1  =  𝑅1 =  0;  

 Euler angles 1  = 𝑐𝑜𝑛𝑡𝑠; 1  =  𝑐𝑜𝑛𝑠𝑡; and 1 =  𝑐𝑜𝑛𝑠𝑡.  
 Lateral velocity 𝑉1  =  0;  

 Roll angle 1 = 0, sin1 = 0, and cos1 =  1  (wing level). 

 

The usage of the abovementioned condition would simplify Eq. (28-36) to become: 

 

𝑚[𝑢̇ + 𝑞𝑊1] = −𝑚𝑔  cos1 + (𝑓𝐴𝑥  +  𝑓𝑇𝑥) (37) 

  

𝑚[𝑣̇ + 𝑟𝑈1 −  𝑝𝑊1]  =  𝑚𝑔𝜙  cos1 + (𝑓𝐴𝑦  +  𝑓𝑇𝑦) (38) 

  

𝑚[𝑤̇ − 𝑞𝑈1]    = − 𝑚𝑔  cos1 + (𝑓𝐴𝑧  +  𝑓𝑇𝑧) (39) 

  

𝐼𝑥  𝑝̇ −  𝐼𝑥𝑧 𝑟̇ = 𝑙𝐴 + 𝑙𝑇 (40) 

  

𝐼𝑥  𝑞̇ = 𝑚𝐴 +𝑚𝑇 (41) 

  

𝐼𝑧𝑟̇ − 𝐼𝑥𝑧𝑝̇ = 𝑛𝐴 + 𝑛𝑇 (42) 

  

𝑝 =  𝜙̇  − 𝜓̇ sin1 (43) 

  

𝑞 = 𝜃̇ (44) 

  

𝑟 =  𝜓̇   cos1     (45) 

 

In the lateral – directional flight motion, one will deal with the motion of x-z plane which will move out of some x-z 

plane fixed in space. Translation in the y direction, roll about the x axis, and yaw about the z axis would all cause the x-

z plane of the aircraft to move out of that arbitrarily fixed x-z plane in space [6].  The governing equation of flight motion 

consists of the Y force (Eq. (38)), L moment (Eq. (40)), and N moment equation (Eq. (45)). However, to make the number 

of unknown quantities the same as the number of equations, two additional equations from the kinematics formulation 

are needed. As result in the governing equation of the lateral and directional flight motion becomes: 
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𝑚[𝑣̇ + 𝑟𝑈1 −  𝑝𝑊1]  =  𝑚𝑔  ϕ cos1 + (𝑓𝐴𝑦  +  𝑓𝑇𝑦) (46) 

  

𝐼𝑥  𝑝̇ −  𝐼𝑥𝑧 𝑟̇ = 𝑙𝐴 + 𝑙𝑇 (47) 

  

𝐼𝑧𝑟̇ − 𝐼𝑥𝑧𝑝̇ = 𝑛𝐴 + 𝑛𝑇 (48) 

  

𝑝 =  𝜙̇  −  Ψ̇ sin1 (49) 

  

𝑟 =  Ψ̇ cos1 (50) 

 

If the forces and moments from the aerodynamics and restrict to the motion in the lateral dan directional flight 

direction only, the governing equation of flight motion Eq. (37) to (45) can be simplified to becomes: 

 

(𝑉𝑃1𝛽̇ + 𝑉𝑃1ψ̇) = 𝑔𝜙 + 𝑌𝛽𝛽 + 𝑌𝜙̇𝜙̇ + 𝑌ψ̇ψ̇ + 𝑌𝛿𝐴𝛿𝐴 + 𝑌𝛿𝑅𝛿𝑅 (51) 

  

𝜙̈ −
𝐼𝑋𝑍
𝐼𝑋𝑋

ψ̈ = 𝐿𝛽𝛽 + 𝐿𝜙̇𝜙̇ + 𝐿ψ̇ψ̇ + 𝐿𝛿𝐴𝛿𝐴 + 𝐿𝛿𝑅𝛿𝑅 (52) 

  

ψ̈ −
𝐼𝑋𝑍
𝐼𝑍𝑍

𝜙̈ = 𝑁𝛽𝛽 + 𝑁𝜙̇𝜙̇ + 𝑁ψ̇ψ̇ + 𝑁𝛿𝐴𝛿𝐴 + 𝑁𝛿𝑅𝛿𝑅 (53) 

 

where,  

 

𝑌𝜙̇ = 𝑌𝑃 ,      𝑌ψ̇ = 𝑌𝑟  ,   𝐿𝜙̇ = 𝐿𝑃 ,   𝐿ψ̇ = 𝐿𝑟 ,        

𝑁𝜙̇ = 𝑁𝑝,    𝑁ψ̇ = 𝑁𝑟  
(54) 

  

 

Table 1 shows the definition of variables which appear in the Eq. (51-53). 

 

Table 1 - The definition variables in the lateral – directional flight motion [5] 

𝒀 =
𝒒𝟏𝑺𝑪𝒀

𝒎
 
𝒇𝒕

𝒔𝒆𝒄𝟐
 𝒀𝒑 =

𝒒𝟏𝑺𝑪𝒀𝒑

𝒎

𝒃

𝟐𝑼𝟏
 
𝒇𝒕

𝒔𝒆𝒄𝟐
 

𝒀𝒓 =
𝒒𝟏𝑺𝑪𝒀𝒓
𝒎

 
𝒃

𝟐𝑼𝟏

𝒇𝒕

𝒔𝒆𝒄𝟐
 𝑌𝐴 =

𝑞1𝑆𝐶𝑌𝐴
𝑚

 
𝑓𝑡

𝑠𝑒𝑐2
 

𝒀𝑹 =
𝒒𝟏𝑺𝑪𝒀𝒓
𝒎

 
𝒇𝒕

𝒔𝒆𝒄𝟐
 

 

𝑳 =
𝒒𝟏𝑺𝑪𝓵

𝑰𝒙𝒙
 𝒃  

𝟏

𝒔𝒆𝒄𝟐
 𝐿𝑝 =

𝑞1𝑆𝐶ℓ𝑝

𝐼𝑥𝑥

𝑏

2𝑈1
 
1

𝑠𝑒𝑐
 

𝑳𝒓 =
𝒒𝟏𝑺𝑪𝓵𝒓
𝑰𝒙𝒙

 
𝒃

𝟐𝑼𝟏
 
𝟏

𝒔𝒆𝒄
 𝐿𝐴 =

𝑞1𝑆𝐶ℓ𝐴
𝐼𝑥𝑥

𝑏 
1

𝑠𝑒𝑐2
 

𝑳𝑹 =
𝒒𝟏𝑺𝑪𝓵𝑹
𝑰𝒙𝒙

 𝒃  
𝟏

𝒔𝒆𝒄𝟐
 

 

𝑵 =
𝒒𝟏𝑺𝑪𝒏

𝑰𝒛𝒛
 𝒃  

𝟏

𝒔𝒆𝒄𝟐
 𝑁𝑇𝐵 =

𝑞1𝑆𝐶𝑛𝑇

𝐼𝑧𝑧
 𝑏  

1

𝑠𝑒𝑐2
 

𝑵𝒑 =
𝒒𝟏𝑺𝑪𝒏𝒑

𝑰𝒛𝒛
 
𝒃

𝟐𝑼𝟏
 
𝟏

𝒔𝒆𝒄
 𝑁𝑟 =

𝑞1𝑆𝐶𝑛𝑟
𝐼𝑧𝑧

 
𝑏

2𝑈1
 
1

𝑠𝑒𝑐
 

𝑳𝑨 =
𝒒𝟏𝑺𝑪𝒏𝑨
𝑰𝒛𝒛

 𝒃  
𝟏

𝒔𝒆𝒄𝟐
 𝐿𝑅 =

𝑞1𝑆𝐶ℓ𝐴
𝐼𝑥𝑥

𝑏 
1

𝑠𝑒𝑐2
 

 

3. The Solution of Lateral and Directional Flight Motion 
As the first order differential equation with zero initial condition, one can use a Laplace transform for solving a 

differential equation system. In Laplace transform, Eq. (51-53) becomes: 
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[

(𝑠𝑉𝑃1 − 𝑌𝛽) −(𝑠𝑌𝑝 + g) 𝑠(𝑉𝑃1 − 𝑌𝑟)

−𝐿𝛽 𝑠(𝑠 − 𝐿𝑝) −𝑠(𝑠𝐼1 + 𝐿𝑟)

−𝑁𝛽 −𝑠(𝑠𝐼2 − 𝑁𝑝) 𝑠(𝑠 − 𝑁𝑟)

]

{
  
 

  
 
𝛽(𝑠)

𝛿(𝑠)

𝜙(𝑠)

𝛿(𝑠)

ψ(𝑠)

𝛿(𝑠)}
  
 

  
 

= {

𝑌𝛿
𝐿𝛿
𝑁𝛿

} (55) 

  

where 𝛿(𝑠) can be considered either 𝛿𝐴(𝑠) or 𝛿𝑅(𝑠). Here the the dimensional control derivatives 𝑌𝛿 , 𝐿𝛿 , 𝑁𝛿    can be 

associated either to the ailerons or to the rudder. To solve Eq. (55) and so the unknown quantities [
𝛽(𝑠)

𝛿(𝑠)
,
(𝑠)

𝛿(𝑠)
,
(𝑠)

𝛿(𝑠)
 ]  can 

be defined, one can use the Cramer’s rule. The results are: 

 

𝛽(𝑠)

𝛿(𝑠)
=

|

𝑌𝛿 −(𝑠𝑌𝑝 + g cosΘ1) 𝑠(𝑉𝑃1 − 𝑌𝑟)

𝐿𝛿 𝑠(𝑠 − 𝐿𝑝) −𝑠(𝑠𝐼1 + 𝐿𝑟)

𝑁𝛿 −𝑠(𝑠𝐼2 − 𝑁𝑝) 𝑠(𝑠 − 𝑁𝑟)

|

|

(𝑠𝑉𝑃1 − 𝑌𝛽) −(𝑠𝑌𝑝 + g cos Θ1) 𝑠(𝑉𝑃1 − 𝑌𝑟)

−𝐿𝛽 𝑠(𝑠 − 𝐿𝑝) −𝑠(𝑠𝐼1 + 𝐿𝑟)

−𝑁𝛽 −𝑠(𝑠𝐼2 − 𝑁𝑝) 𝑠(𝑠 − 𝑁𝑟)

|

=
𝑁𝛽
𝛿(𝑠)

𝐷̅2(𝑠)
 (56) 

  

𝜙(𝑠)

𝛿(𝑠)
=

|

(𝑠𝑉𝑃1 − 𝑌𝛽) 𝑌𝛿 𝑠(𝑉𝑃1 − 𝑌𝑟)

−𝐿𝛽 𝐿𝛿 −𝑠(𝑠𝐼1 + 𝐿𝑟)

− (𝑁𝛽 + 𝑁𝑇𝛽) 𝑁𝛿 𝑠(𝑠 − 𝑁𝑟)

|

|

(𝑠𝑉𝑃1 − 𝑌𝛽) −(𝑠𝑌𝑝 + 𝑔 𝑐𝑜𝑠 𝛩1) 𝑠(𝑉𝑃1 − 𝑌𝑟)

−𝐿𝛽 𝑠(𝑠 − 𝐿𝑝) −𝑠(𝑠𝐼1 + 𝐿𝑟)

−𝑁𝛽 −𝑠(𝑠𝐼2 − 𝑁𝑝) 𝑠(𝑠 − 𝑁𝑟)

|

=
𝑁𝜙
𝛿(𝑠)

𝐷̅2(𝑠)
 (57) 

  

ψ(𝑠)

𝛿(𝑠)
=

||

(𝑠𝑉𝑃1 − 𝑌𝛽) −(𝑠𝑌𝑝 + 𝑔 𝑐𝑜𝑠 𝛩1) 𝑌𝛿

−𝐿𝛽 𝑠(𝑠 − 𝐿𝑝) 𝐿𝛿

−(𝑁𝛽 + 𝑁𝑇𝛽) −𝑠(𝑠𝐼2 − 𝑁𝑝) 𝑁𝛿

||

|

(𝑠𝑉𝑃1 − 𝑌𝛽) −(𝑠𝑌𝑝 + 𝑔 𝑐𝑜𝑠 𝛩1) 𝑠(𝑉𝑃1 − 𝑌𝑟)

−𝐿𝛽 𝑠(𝑠 − 𝐿𝑝) −𝑠(𝑠𝐼1 + 𝐿𝑟)

−𝑁𝛽 −𝑠(𝑠𝐼2 − 𝑁𝑝) 𝑠(𝑠 − 𝑁𝑟)

|

=
𝑁ψ
𝛿(𝑠)

𝐷̅2(𝑠)
 (58) 

 

where: 

 

𝑁𝛽
𝛿(𝑠) = 𝑠(𝐴𝛽𝑠

3 + 𝐵𝛽𝑠
2 + 𝐶𝛽𝑠 + 𝐷𝛽 

𝐴𝛽 = 𝑌𝛿(1 − 𝐼1𝐼2) 

𝐵𝛽 = −𝑌𝛿(𝐿𝑝 + 𝑁𝑟 + 𝐼1𝑁𝑝 + 𝐼2𝐿𝑟) + 𝑌𝑝(𝐿𝛿 + 𝐼1𝑁𝛿) + 𝑌𝑟(𝐿𝛿𝐼2 + 𝑁𝛿) − (𝑉𝑝1(𝐿𝛿𝐼2 + 𝑁𝛿) 

𝐶𝛽 = 𝑌𝛿(𝐿𝑝𝑁𝑟 − 𝑁𝑝𝐿𝑟) + 𝑌𝑝(𝐿𝑟𝑁𝛿 −𝑁𝑟𝐿𝛿) + 𝑔(𝐿𝛿 + 𝐼1𝑁𝛿) + 𝑌𝑟(𝐿𝛿𝑁𝑝 −𝑁𝛿𝐿𝑝) − 𝑉𝑝1(𝐿𝛿𝑁𝑝 − 𝑁𝛿𝐿𝑝) 

𝐷𝛽 = 𝑔(𝐿𝑟𝑁𝛿 − 𝑁𝑟𝐿𝛿) 

(59) 

  

𝑁𝜙
𝛿(𝑠) = 𝑠(𝐴𝜙𝑠

2 + 𝐵𝜙𝑠 + 𝐶𝜙) 

𝐴𝛽 = 𝑉𝑃1(𝐿𝛿 + 𝐼1𝑁𝛿) 

𝐵𝜙 = 𝑉𝑃1(𝐿𝑟𝑁𝛿 − 𝑁𝑟𝐿𝛿) + 𝑌𝛽(𝐿𝛿 + 𝐼1𝑁𝛿) + 𝑌𝛿(𝐿𝛽 + 𝐼1𝑁𝛿) 

𝐶𝜙 = −𝑌𝛽(𝐿𝑟𝑁𝛿 −𝑁𝑟𝐿𝛿) + 𝑌𝛿(𝐿𝑟𝑁𝛽 − 𝑁𝛽𝐿𝑟) + 𝑉𝑃1(𝐿𝛿𝑁𝛽 − 𝐿𝛽𝑁𝛿) − 𝑌𝑟(𝐿𝛿𝑁𝛽 − 𝐿𝛽𝑁𝛿) 

 

(60) 

  

𝑁ψ
𝛿(𝑠) = 𝐴ψ𝑠

3 + 𝐵ψ𝑠
2 + 𝐶ψ𝑠 + 𝐷ψ 

𝐴ψ = 𝑉𝑃1(𝑁𝛿 + 𝐼2𝐿𝛿) 

𝐵ψ = 𝑉𝑃1(𝐿𝛿𝑁𝑃 − 𝑁𝛿𝐿𝑃)−𝑌𝛽(𝑁𝛿 + 𝐼2𝐿𝛿) + 𝑌𝛿(𝐿𝛽𝐼2 +𝑁𝛽) 

(61) 
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𝐶ψ = −𝑌𝛽(𝐿𝛿𝑁𝑃 − 𝑁𝛿𝐿𝑃) + 𝑌𝑃(𝐿𝛿𝑁𝛽 − 𝐿𝛽𝑁𝛿) + 𝑌𝛿(𝐿𝛽𝑁𝑃 − 𝐿𝑃𝑁𝛿) 

𝐷ψ = 𝑔(𝐿𝛿𝑁𝛽 − 𝐿𝛽𝑁𝛿) 

 

The denominator 𝐷̅2(𝑠) is given as: 

 

𝐷̅2(𝑠) = 𝑠(𝐴2𝑠
4 + 𝐵2𝑆

3 + 𝐶2𝑠
2 + 𝐷2𝑠 + 𝐸2) 

𝐴2 = 𝑉𝑃1(1 − 𝐼1𝐼2) 

𝐵2 = −𝑌𝛽(1 − 𝐼1𝐼2) − 𝑉𝑃1(𝐿𝑝 + 𝑁𝑟 + 𝐼1𝑁𝑝 + 𝐼2𝐿𝑟) 

𝐶2 = 𝑉𝑃1(𝐿𝑃𝑁𝑟 −𝑁𝑃𝐿𝑟) + 𝑌𝛽(𝐿𝑝 + 𝑁𝑟 + 𝐼1𝑁𝑝 + 𝐼2𝐿𝑟) − 𝑌𝑝(𝐿𝛽 + 𝐼1𝑁𝛽) + 𝑉𝑃1(𝐿𝛽𝐼2 +𝑁𝛽)

− 𝑌𝑟(𝐿𝛽𝐼2 −𝑁𝛽) 

𝐷2 = −𝑌𝛽(𝐿𝑝𝑁𝑟 − 𝑁𝑝𝐿𝑟) + 𝑌𝑝(𝐿𝛽𝑁𝑟 − 𝐿𝑟𝑁𝛽) − 𝑔(𝐿𝛽 + 𝐼1𝑁𝛽) + 𝑉𝑃1(𝐿𝛽𝑁𝑝 − 𝐿𝑝𝑁𝛽)

− 𝑌𝑟(𝐿𝛽𝑁𝑝 − 𝐿𝑝𝑁𝛽) 

𝐸2 = 𝑔(𝐿𝛽𝑁𝑟 − 𝐿𝑟𝑁𝛽) 

(62) 

 

Using Eq. (59-62), one can define how the side slip angle , roll angle   and yaw angle   will behave with 

respect to time for a given a disturbance 𝛿(𝑠). 

 

4. Disturbance Models  
To simulate the behavior of the airplane from the point view of lateral and directional flight motion by using Eq. 

(56-62), here the single impulse 𝑠𝑖(𝑡),  and  the multiple impulse 𝑚𝑖(𝑡)  are  defined respectively as [5]: 

 

𝑠𝑖(𝑡)  =  

{
 
 

 
 
0                        0 ≤ 𝑡 ≤ 200
−𝑎                     200 < 𝑡 ≤ 205
0                   205 < 𝑡 ≤ 3200
𝑏               3200 < 𝑡 ≤ 3205
0            3205  ≤ 𝑡 ≤ 12001

 (63) 

  

𝑚𝑖(𝑡)  =  

{
 
 
 
 

 
 
 
 
0                        0 ≤ 𝑡 ≤ 200
−𝑎                     200 < 𝑡 ≤ 215
0                   215 < 𝑡 ≤ 400
𝑏                   400 < 𝑡 ≤ 415
0                  415 < 𝑡 ≤ 800
−𝑑                   800 < 𝑡 ≤ 815
0                 815 < 𝑡 ≤ 1000
𝑒              1000 < 𝑡 ≤ 1015
0            1015 < 𝑡 ≤ 12001

 (64) 

 

The amplitude of the disturbance can be prescribed the same or different values. In the case of a single impulse, the 

present work set the value of 𝑎 = 𝑏 = 4, while for the case multiple impulse use 𝑎 = 𝑏 = 5 while 𝑐 = 𝑑 = 2. 
 

 

5. Discussion and Results 
The current study compares the lateral and directional flight characteristics of two aircraft. Those two aircraft are the 

Beechcraft 99 and the Cessna T37. The Beechcraft Model 99 is a civilian aircraft produced by US aircraft manufacturer 

Beechcraft. This aircraft was designed as a commuter twin-engine aircraft with 15 to 17 passenger seats. The Cessna T37 

aircraft is also manufactured by a US aircraft manufacturer named Cessna Aircraft Company, whose base is in Wichita, 

Kansas, in the U.S. state of Kansas. In the context of lateral-directional dynamic stability analysis, the required data for 

these two aircraft is shown in Table 2. 

  

Table 2 - The Aircraft Data for Beechcraft 99 and Cessna T37 aircraft [5,6,7,8] 

Aircraft Model 

Wing geometry data  Beechcraft 99 Cessna T37 

Wing area S (𝑓𝑡2) 280 182 

Wing mean aerodynamic chord (𝑓𝑡) 6.5 5.47 

Wingspan (𝑓𝑡) 46 33.8 

Flight Condition   

Altitude (𝑓𝑡) 5000 30000 
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Mach number  0.310 0.549 

True airspeed (
𝑓𝑡

𝑠𝑒𝑐
) 340 456 

Dynamic pressure (
𝑙𝑏

𝑓𝑡3
) 118.3 92.7 

Location c.g (%Mac) 0.16 0.27 

Steady state angle of attack (deg) 0 2 

Mass Properties    

Mass (lb) 7000 6360 

Moment of inertia x-axis 𝐼𝑥𝑥  ( 𝑠𝑙𝑢𝑔 𝑓𝑡
2) 10085 7985 

Moment of inertia y-axis 𝐼𝑦𝑦 ( 𝑠𝑙𝑢𝑔 𝑓𝑡
2) 15148 3326 

Moment of inertia z-axis 𝐼𝑧𝑧 ( 𝑠𝑙𝑢𝑔 𝑓𝑡
2) 23046 11183 

Product of inertia xz, 𝐼𝑥𝑛  ( 𝑠𝑙𝑢𝑔 𝑓𝑡
2) 1600 0 

Stability derivatives   

𝐶ℓ -0.13 -0.0944 

𝐶ℓ𝑝 -0.50 -0.442 

𝐶ℓ𝑟 0.14 0.0926 

𝐶𝑌 -0.59 -0.346 

𝐶𝑌𝑝 -0.19 0.0827 

𝐶𝑌𝑟 0.39 0.3 

𝐶𝑛 0.08 0.1106 

𝐶𝑛𝑇 0 0 

𝐶𝑛𝑝 0.019 -0.0243 

𝐶𝑛𝑟 -0.197 -0.139 

Control derivatives    

𝐶ℓ𝐴 0.156 0.181 

𝐶ℓ𝑅 0.0109 0.015 

𝐶𝑌𝐴 0 0 

𝐶𝑌𝑅  0.145 0.2 

𝐶𝑛𝐴 -0.0012 -0.0254 

𝐶𝑛𝑅 -0.0772 -0.0365 

 

 

5.1 Case the Beechcraft 99 Aircraft 
If the single impulse as defined by Eq. (56) is applied to the aircraft, the output response of the aircraft to such a 

disturbance is shown in Fig. 3. In the dynamic simulation, the deflection of the aileron is set between -8° (down) and +5° 

(upward). Fig. 3 shows that the aircraft is able to return to its origin as the disturbance disappears. When this single 

impulse function is used to generate a disturbance for the rudder with a similar deflection angle, (+50), the aircraft 

responds as shown in Fig. 4. Using the above results, one can identify the sideslip effect, 𝛽(𝑡) and the yaw angle, (𝑡) 
is not the same as the roll angle, 𝜙(𝑡). The relative airflow that causes the rudder to deflect −4° increases the angle of 

yaw (𝑡)  by two times. As the disturbance fades, the sideslip angle 𝛽(𝑡) and angle roll, 𝜙(𝑡) are damped towards zero. 
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Fig. 3 - The aircraft response in a side slip angle 𝜷(𝒕), roll angle (𝒕) and the yaw angle (𝒕) due to a single 

impulse aileron disturbance model on the Beechcraft 99 aircraft. 

 

 

 

Fig. 4 - The aircraft response in a side slip angle 𝜷(𝒕), roll angle (𝒕) and the yaw angle (𝒕) due to a single 

impulse rudder disturbance model on the Beechcraft 99 aircraft. 
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5.2 Case the Cessna T37 
For the case of the Cessna T37, the disturbance model in use is the multiple impulse as given by Eq. (57). This 

disturbance model uses the magnitudes 𝑎 = 𝑏 = 50 and 𝑐 = 𝑑 = 20. If multiple impulses are applied to simulate the 

presence of disturbance due to aileron, the aircraft response is shown in Fig. 6. Fig. 5 shows that side slip angle 𝛽(𝑡) peak 

at amplitude -0.3º and 0.3º which is similar to the peak of the disturbance. It is discovered that the side slip can return to 

its original state of 0º after 110 seconds. Considering the roll angle  vs. time: the roll angle reaches its peak value at 

0.8º and −1.3° before decreasing to 0º completely after 200 sec. While in view of yaw angle behavior, the yaw angle 

reaches their peak value at -5.5º and 0.5º. The yaw angle cannot go back to its original value. 

 

 

Fig. 5 - The Cessna T37’s response to the multiple impulse aileron disturbance model 

 

The same disturbance model as given by Eq. (57) is applied to the rudder. The aircraft responses for the side slip 

angle β(t), roll angle Φ(𝑡), and yaw angle Ψ(𝑡), are shown in Fig. 6. This figure shows the rudder deflected upward (-4) 

and downward (+4)., The side slip angle β reaches the peak angle at -1 deg. When the second disturbance excited this 

angle, it was still oscillating; as a result, the oscillation vanished after 140 seconds. In similar appearances, the first 

disturbance still makes the roll angle oscillate at the time the second disturbance is introduced. In the presence of a second 

disturbance, the roll angle achieves its convergent solution at 300 sec. 

 

 

Fig. 6 - The Cessna T37’s response to the multiple impulse of rudder disturbance model 
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6 Conclusion and Future Work  
Using the results from two model aircraft, one can identify that the lateral–directional equation of flight motion can 

be solved by using the Laplace transform. Here one can obtain how the side slip angle, β, the roll angle,  and the yaw 

angle,  change with respect to time. In the case of a single impulse applied to the aileron and rudder, the Beechcraft 99 

aircraft were able to return to their original condition as the disturbance lifted. However, in the case of multiple impulses 

applied to the Cessna T37, there is a slight difference in response between aileron and rudder. In the case where a rudder 

acts as a source of disturbance, the three variable states (β, , ) of the Cessna T37 are plotted with respect to time, 

showing that the tendency goes to zero immediately as the disturbance disappears. However, when aileron is in use, the 

yaw angle response needs more time to go back to its initial condition. It is true that the present work treats aileron and 

rudder separately, therefore, an investigation of the aircraft response with aileron and rudder as a combined source of 

disturbance may need to be carried out. This is the proposed work for the future work. 

 

Acknowledgement 
This research was supported by Universiti Tun Hussein Malaysia (UTHM) through Tier 1 (vot Q112). 

 

References 

[1] Tulapurkara E.G, Flight dynamics II - Airplane stability and control, Web Courses from NPTEL. 

[2] Thor I. Fossen, Mathematical Models for Control of Aircraft and Satellites, Department of Engineering 

Cybernetics Norwegian University of Science and Tech. Norway, 2011. 

[3]  McLean, D. Automatic flight control systems, Measurement and Control, vol. 36, 172-175, 1990. 

[4] Ugur Ozdemir Mehmet S. Kavsaoglu,"Linear and nonlinear simulations of aircraft dynamics using body axis 

system", Aircraft Engineering and Aerospace Technology, vol. 80(6) pp. 638 – 648, 2008. 

[5]  Napolitano M.R, Aircraft Dynamics: From Modelling to Simulation, John Wiley & Sons, Inc., 2012. 

[6]  Frederico R. Garza and Eugene A. Morelli: A Collection of Nonlinear Aircraft Simulations in MATLAB, 

NASA/TM-2003-212145, 2003. 

[7]  Nelson, Robert C., Flight stability and automatic control, McGraw-Hill, Inc, USA, 1989 

[8]  Roskam J., Airplane Flight Dynamics and Automatic Flight Controls, DAR Corp, 2018 

 

 


