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Abstract 

The linear bottleneck assignment problem (LBAP), which is a variation of the classical assignment 

problem, seeks to minimize the longest completion time rather than the sum of the completion times when 

a number of jobs are to be assigned to the same number of workers. If the completion times are not 

certain, then it is said to be a fuzzy LBAP. Here we propose a new algorithm to solve fuzzy LBAP with 

completion times as intuitionistic fuzzy numbers. 

Keywords: Fuzzy linear bottleneck assignment problem, Intuitionistic fuzzy numbers, Generalized trapezoidal 
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1.0 Introduction 

Linear bottleneck assignment problems were introduced by Fulkerson, Glicksberg and Gross 

(1953) and occur, e.g., in connection with assigning jobs to parallel machines so as to minimize the latest 

completion time. Like the classical assignment problem, LBAP arises in a wealth of practical settings. For 

example, consider a serial assembly line where each of the operators is to be assigned to one of the work 

stations to perform a specific task. Since the speed of the line is controlled by the slowest station (i.e., the 

bottleneck), it is important to identify the operator-station pairings with the minimum longest processing 

time to maximize the system’s productivity. Another example of the LBAP pertains to the distribution of 

meals to patients in a hospital. The food is normally cooked in the main kitchen and delivered in bulk to 

serving stations in the building to be reheated. The meals are then placed in individual trays, loaded onto 

carts, and distributed to patients in different areas of the facility. In order to ensure that the food received 

by the patients is as warm as possible, it is desirable to allocate the carts to the wings so that the longest 

distance travelled (and hence the longest delivery time) is short as possible. Other applications of the 

concept of bottleneck assignment include partitioning an area into political districts so that the maximum 

deviation of any district population from the mean district population is as small as possible (Garfinkel & 

Nemhauser, 1970), transportation of perishable goods from warehouses to markets to minimize spoilage 

(Ravindran & Ramaswami, 1977), and location of fire stations within a city to reduce the longest response 

time to an emergency to the extent possible (Kuo, 2011). 

 
In real life situations, the parameters of the LBAP are imprecise numbers instead of fixed real 

numbers because the distance (cost or time) vary due to different reasons. To overcome this, we make use 

of the theory of fuzzy sets introduced by Zadeh (1965) and the theory of intuitionistic fuzzy sets 
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introduced by Atanassov (1986) and Atanassov (1989). If the completion time is a not a crisp value, then 

the corresponding problem becomes a fuzzy LBAP. Here, we are introducing a new algorithm for solving 

fuzzy a LBAP with parameters as generalized trapezoidal intuitionistic fuzzy numbers. 

 

 The rest of the paper is organized as follows. In Section 2, a comprehensive survey of the solution 

methods for the LBAP in the current literature is conducted. In section 3, we present the basic concepts of 

generalized trapezoidal intuitionistic fuzzy numbers, matchings and a method to rank the generalized 

trapezoidal intuitionistic fuzzy numbers. Following an extensive discussion of intuitionistic fuzzy LBAP 

in section 4, we suggest a new algorithm for solving an intuitionistic fuzzy LBAP with completion times 

as generalized trapezoidal intuitionistic fuzzy numbers in section 5 and provide a numerical example to 

illustrate its implementation in section 6. Finally, the conclusion is given in section 7. 

2.0 Literature Review 

The LBAP has been studied extensively over the past six decades, and a number of solution 

procedures have been proposed. The study of the LBAP dates back to 1953 when Fulkerson et al., (1953) 

designed an algorithm to solve a production line assignment problem. Inspired by the seminal work, 

Gross (1959) developed a more efficient solution scheme for the LBAP. Ford and Fulkerson (1962) 

considered a maxi-min version of the LBAP in which agents were to be assigned to tasks to maximize the 

minimum efficiency. Subsequently, Page (1963) showed how to convert the LBAP into an equivalent 

CAP and solve it by using the Hungarian method. 

 

In the early 1970s, Edmonds and Fulkerson (1970) suggested a threshold algorithm for a general 

class of bottleneck problems including the LBAP. Ravindran and Ramaswami (1977) noted that the maxi-

min version of the LBAP can be treated as a maxi-min permutation problem and solved by using the 

procedure they developed. Meanwhile, Bhatia (1977) proposed an iterative process to find the minimum 

bottleneck by solving a series of special CAPs through the Hungarian method. 
 

One of the first inquiries into the LBAP in the 1980s was a shortest augmenting path method in 

combination with a labeling technique introduced by Derigs (1984). Mazzola and Neebe (1988) examined 

two versions of the bottleneck generalized assignment problem in which each machine is allowed to 

perform multiple tasks subject to the capacity constraint. Much of the research on the LBAP in the 1990s 

and 2000s was devoted to the analysis, comparison, and improvement of the computational efficiencies of 

various solution algorithms. One of the new schemes designed during this period of time was based on 

strong spanning trees due to Armstrong and Jin (1992). More recently, Pentico (2007) carried out a state-

of-the-art survey of the CAP as well as many of its variations including the LBAP, while Kuo (2011) 

provided an in-depth treatment of the stochastic LBAP. 

 

In sum, the LBAP has been researched for quite some time and there exists a body of literature on 

the solution algorithms. Of particular interest to us are the similar procedures developed by Page (1963) 

and Mazzola and Neebe (1988), respectively. Both studies tackle the LBAP by transforming it into 

equivalent CAPs, which represent a significant departure from the rest of the approaches. Recently, Kuo 

and Nicholls (2014) developed a turnpike approach for solving the LBAP. But no one has considered the 

parameters as fuzzy numbers. Thus, a more efficient algorithm is needed to solve the problem when the 

parameters are imprecise numbers. 
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3.0 Preliminary Concepts 

3.1   Intuitionistic fuzzy sets and intuitionistic fuzzy numbers 

In this section we will review the basic concepts of intuitionistic fuzzy sets and intuitionistic 

fuzzy numbers. 

 

Definition 3.1.1 (Atanassov, 1986 & Atanassov, 1989): Let X be the universal set. An intuitionistic fuzzy 

set (IFS) A in X is given by 

 

   (    ( )   ( ))      

 

where the functions   ( )   ( ) define respectively, the degree of membership and degree of non-

membership of the element     to the set A, which is a subset of X, and for every    ,     ( )  
   ( )      

 

Definition 3.1.2: An IFS    (    ( )   ( ))      of the real line  is called an intuitionistic fuzzy 

number (IFN) if 

 

a) A is convex for the membership function   ( ), i.e., if  

   (    (   )  )     (  )    (  ) for all           [   ]  
 

b) A is concave for the non-membership function  ( ), i.e., if 

  (    (   )  )     (  )    (  ) for all           [   ]  
 

c) A is normal, that is, there is some      such that   (  )    and   (  )   . 

 

Definition 3.1.3 (Generalized Trapezoidal Intuitionistic Fuzzy Number): An intuitionistic fuzzy 

number A is said to be a generalized trapezoidal intuitionistic fuzzy number (GTIFN) with parameters 

 

                       , 

 

 

and denoted by 

 

  (                       ;     )  or   ((           ) (           )      ) 

 

if its membership and non-membership functions  are as follows: 

 

             ( )                                                        

                                     (
    

     
)                                

                                                                                                     

                                                  (
    

     
)                                    
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and 

 

                                     ( )                                                                                

                                                          
(    )    (    )

     
                                      

                                                                                                                      

                                                        
(    )    (    )

     
                                     

                                                                                                                                . 

 

where                and           . 

 If                         , then the corresponding intuitionistic fuzzy number is of 

the form 

 

  ((           )      ). 
 

3.2 Arithmetic operations on generalized trapezoidal intuitionistic fuzzy numbers 

Let 

 

  ((           ) (           )      ) 
 

And 

 

  ((           ) (           )      )  
 

be two GTIFNs and   be a real number.  

 
Then  

 

(i)      ((                       ),(                       )     ) 

                     where                and                
 

 

(ii)     ((                       ) (                       )     ) 

                     where                and                
 

(iii)        ((               ) (               )      ) if     

       ((               ) (               )      ) if     . 

3.3 Matchings 

Let   be a graph with vertex set    ( ) and edge set    ( ) and   has no loops. 
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Definition 3.3.1: A subset   of  , i.e., a subset   of edges of  , is called a matching in   if no two of 

the edges in   are adjacent, in other words, if for any two edges   and   in   the two end vertices of   

are both different from the two end vertices of  . 

 

 If the vertex   of the graph   is the end vertex of some edge in the matching   then   is said to 

be  -saturated and we say that  saturates  . Otherwise   is  -unsaturated. 

 

Definition 3.3.2: If   is a matching in   such that every vertex of   is  -saturated, then   is called a 

perfect matching.  

 

Definition 3.3.3: A matching   in   is called maximum if   has no matching    with a greater number 

of edges than   has. 

3.4.  Ranking of generalized trapezoidal intuitionistic fuzzy numbers  

The ranking order relation between two GTIFNs is a difficult problem. However, GTIFNs must 

be ranked before the action is taken by the decision maker. In this paper we use the following method for 

ranking generalized trapezoidal intuitionistic fuzzy numbers (Gani & Mohamed, 2015). 

 

If   ((           ) (           )      ),  then   ( )  
   (  )    (  )

     
,   where  

 

 (  )  (
               

  
) (

   

  
)  and   (  )  (

               

  
) (

      

  
). 

 

If   ((           )      ), then 

 

 (  )  (
               

  
) (

   

  
)  and   (  )  (

               

  
) (

      

  
). 

4.0  Intuitionistic Fuzzy Linear Bottleneck Assignment Problems 

Let   jobs and   machines be given. The cost coefficient  ̃   is the time needed for machine   to 

complete job  , where  ̃  
   are generalized trapezoidal intuitionistic fuzzy numbers. If the machines work 

in parallel and we want to assign the jobs to the machines such that the latest completion time is as early 

as possible, we get a linear bottleneck assignment problem (LBAP) of the form 

 

       
         ̃  ( ). 

 

If we describe permutations by the corresponding permutation matrices   (   ), a LBAP can 

be modeled as 

 

      
       

 ̃      

such that 

 

∑   
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∑   

 

   

                 

 

         . 

 

 A slight generalization of LBAPs is min-cost maximum matching problems with a bottleneck 

objective: Let   (     ) be a bipartite graph with edge set  . Every edge [   ] has length    , where 

     ( ̃  )The bottleneck min-cost maximum matching problem can be formulated as follows: 

 

 Find a maximum matching in   such that the maximum length of an edge in this matching is as 

small as possible: 

 

        [   ]                              . 

 

Associated with each intuitionistic fuzzy LBAP, there is an    matrix 

 

 ̃  [ ̃  ]  [

 ̃   ̃    ̃  

 ̃   ̃    ̃   
 ̃  

 
 ̃  

 
 

 
 ̃  

] 

 

of intuitionistic fuzzy numbers, we call it the cost matrix. 

5.0 The Proposed Algorithm 

The proposed algorithm alternates between two phases. In the first phase a cost element    the 

threshold value   is chosen from the matrix   [   ]  [ ( ̃  )]and a threshold matrix   is defined by 

 

  ̅  {
                 

                 
 

 

In the second phase it is checked whether for the cost matrix  ̅ there exists an assignment with 

total cost 0. To check this we construct a bipartite graph   (     ) with | |  | |    and edges 

[   ]    if and only if    ̅     In other words, we have to check whether a bipartite graph with threshold 

matrix  ̅ contains a perfect matching or not. The fuzzy element corresponding to the smallest value   , 

for which the corresponding bipartite graph contains a perfect matching gives the optimum value of the 

intuitionistic fuzzy LBAP. 

 

Algorithm 

 

Let  ̃  [ ̃  ] be the     cost matrix and                 ̃      

 

Step 1: First we form the matrix   [   ]  [ ( ̃  )] of ranks of the fuzzy costs by using the 

given ranking method. 

 

Step 2:  Find   
       {   } and   

       {   }. 
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Step 3: If  
    

 , then      
  and any permutation of           is optimal. Otherwise go to 

Step 4. 

 

Step 4: Let    {      
        

 }. If     , then go to Step 7. If     , then find the 

median    of   , which is given by 

      {     |{            }|  
 

 
|  |}. 

 

Step 5: Find the threshold matrix  ̅[  ]  (  ̅ )corresponding to    and construct a bipartite 

graph   (     ) with | |  | |    and edges [   ]    if and only if    ̅     

 

Step 6: Find a maximum cardinality matching in   [  ] . If the cardinality of the maximum 

matching is  , then  [  ]  allows a perfect matching and set   
    , otherwise set 

  
     and go to Step 4. 

 

Step 7: If      , then either  [  
 ] or  [  

 ] allows a perfect matching. 

 

Step 8: Find    
            [  ] allows a perfect matching}. It will give the optimal value of    

6.0 Numerical Example  

Consider an intuitionistic fuzzy LBAP with rows representing 4 jobs            and columns 

representing the 4 machines            . The cost matrix [ ̃  ] is given whose elements are generalized 

trapezoidal intuitionistic fuzzy numbers. The objective is to assign the jobs to the machines such that the 

latest completion time is as early as possible, if the machines work in parallel. 

Jobs 
Machines 

1 2 3 4 

A ((3,5,6,8), 

(2,4,7,10);0.6,0.1) 

((5, 8, 11, 13), 

(4,6,12,14);0.7,0.2) 

((8, 10, 11, 15), 

(7,9,13,17);0.5,0.3) 

((5, 8, 10, 12), 

(4,7,11,13);0.5,0.3) 

B 
((7, 9, 10, 12), 

(6,8,11,13);0.7,0.1) 

((3, 5, 6,8), 

(1,4,7,10);0.4,0.3) 

((6, 8, 10, 12), 

(5,7,11,13);0.7,0.1) 

((5, 8, 10, 12), 

(4,6,11,13);0.8,0.1) 

C 
((2, 4, 5,7 ), 

(1,3,6,8);0.6,0.1) 

((5, 7, 10, 12), 

(4,6,11,14);0.7,0.1) 

((8, 11, 13, 15), 

(7,9,14,16);0.6,0.2) 

((4, 6, 7, 10), 

(2,5,8,11);0.8,0.1) 

D 
((6, 8, 10, 12), 

(5,7,11,13);0.8,0.1) 

((2, 5, 6, 8), 

(1,3,7,9);0.7,0.1) 

((5, 7, 10, 14), 

(4,6,12,15);0.6,0.2) 

((2, 4, 5, 7), 

(1,3,6,8);0.7,0.1) 

 

Solution: We first form the matrix   [   ]  [ ( ̃  )]of ranks by using the given ranking method. It is 

given by 
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  [   ]  [

          
          

          
          

          
          

          
          

] 

 

 

Here   
        and   

         Therefore,   

 

   

                       

                                                                                       
 

and median    of    is         
 

 

 

The corresponding threshold matrix  [  ] is given by 

 

 [     ]  [

  
  

  
  

  
  

  
  

] 

 

The corresponding bipartite graph is  

y
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x
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x
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The maximum cardinality matching, shown by the thick lines, has 4 edges. Thus the graph 

 [  ]   [     ] allows a perfect matching.  So set   
        and   

         Then  

 

                                                                

 

and median    of    is        The corresponding threshold matrix  [  ] is given by 

 

 [     ]  [

  
  

  
  

  
  

  
  

] 
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The corresponding bipartite graph is  
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The maximum cardinality matching, shown by the thick lines, has 2 edges. Thus the graph 

 [  ]   [     ] does not allow a perfect matching. So set   
        and   

         Then     
                                          and median    of    is        The corresponding 

threshold matrix  [  ] is given by 
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The maximum cardinality matching, shown by the thick lines, has 3 edges. Thus the graph 

 [  ]   [     ] does not allow a perfect matching. So set   
        and   

         Then     
                             and median    of    is         

 

The corresponding threshold matrix  [  ] is given by 

 

 

 [     ]  [

  
  

  
  

  
  

  
  

] 

 

The corresponding bipartite graph is  
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  The maximum cardinality matching, shown by the thick lines, has 3 edges. Thus the graph 

 [  ]   [     ] does not allow a perfect matching. So set   
        and   

         Then     

{                   }   . 

 

So either  [  
 ]   [     ]  or  [  

 ]   [     ]  allows a perfect matching. Since we have 

already checked the feasibilities of the current values, we have obtained that that  [     ] allows a 

perfect matching and  [     ] does not allow a perfect matching. Now   

 

   
            [  ]                                 

 

Hence the fuzzy element corresponding to    
       , that is, 

 ̃   ((         ) (         )        )  is the optimal value of   . 

7. 0 Conclusion 

In this paper, a new algorithm has been developed for solving intuitionistic fuzzy linear 

bottleneck assignment problems with completion times as generalized trapezoidal intuitionistic fuzzy 

numbers, by using the given ranking method. There are several papers in the literature for solving LBAP, 

but no one has used completion times as generalized intuitionistic fuzzy numbers. The algorithms is easy 
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to understand and can be used for all types of linear bottleneck assignment problems with completion 

times  as crisp, fuzzy and intuitionistic fuzzy numbers. 
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