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1. Introduction 
Commercial aircraft selection is a pivotal process guided by multifaceted factors that significantly influence the 

performance and efficiency of these intricate flying machines. Achieving optimal efficiency hinges on the meticulous 
design of aircraft that minimizes drag across all operational configurations. This necessitates the creation of airframes 
devoid of irregularities, characterized by smooth surfaces, flush-fitted doors, and precisely aligned control surfaces. 

The process of selecting commercial aircraft for the aviation industry embodies a critical facet of aircraft design 
and performance. Commercial aircraft selection problem aims to provide comprehensive insights into the intricate 
strategy underpinning aircraft selection since the dawn of the aviation era, thereby ensuring that contemporary aircraft 
perpetually adhere to the highest benchmarks of safety and operational efficiency. The evolving landscape of air 
transportation, catalyzed by the deregulation, liberalization, and privatization trends, prompted airlines to embrace 
novel strategies in response. Among these strategies, selecting a commercial aircraft using multidimensional decision-
making support model emerged as a prominent analytical paradigm. Competitive airlines in aviation sector, employing 
a point-to-point flight network structure and emphasizing cost-effectiveness, strive to cater to price-conscious 
passengers while maximizing profitability. 

Abstract: Multidimensional decision-making issues invariably entail a profusion of factors and dimensions 
necessitating consideration. In such intricate environments, decision-making can be notably challenging. To 
navigate this complexity, the realm of multiple criteria decision-making approaches is indispensable, helping in 
unraveling convoluted predicaments. This paper introduces a novel approach fuzzy combinative multiple criteria 
decision-making analysis — crafted to address fuzzy decision analysis challenges. At the heart of this method lies 
the utilization of the Euclidean distance as the primary measure and the rectilinear distance as the secondary 
measure, both calibrated in accordance with the negative-ideal solution. Determining the desirability of 
alternatives rests on these distances. Further augmenting the evaluation, the process involves combining the 
Euclidean and rectilinear distances through fuzzy combinative multiple criteria decision-making analysis. The 
efficacy and stability of the fuzzy decision analysis are underscored through a numerical example, illustrating the 
proposed method's procedural nuances. A comparative analysis comparing both Euclidean distance and rectilinear 
distance with the weighted sum model and the weighted product model is also conducted. This scrutiny 
underscores the efficiency of the proposed method while affirming the reliability of its outcomes. 
 
 
Keywords: Euclidean distance, rectilinear distance, commercial aircraft selection, weighted sum model, weighted 
product model, fuzzy combinative multiple criteria decision-making analysis 
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In the contemporary aviation sector, characterized by intense competition, the challenge lies in providing aircraft 
models of high quality while simultaneously offering competitive pricing to end customers. Notably, aviation 
management plays a pivotal role in the broader realm of supply chain management. A pivotal strategic decision for 
airlines is fleet planning, especially commercial aircraft selection, which significantly impacts long-term viability and 
competitive success. In this context, aviation management delves into the complex arena of aircraft selection for fleet 
planning, exploring proper aircraft models. Given the multifaceted considerations—ranging from technical attributes 
and economic factors to passenger preferences and strategic alignment—this decision-making landscape necessitates a 
multiple criteria approach [1-4]. 

Commercial aircraft selection poses a complex, multi-criteria problem involving both qualitative and quantitative 
factors. Commercial aircraft selection criteria depend on industry characteristics, corporate strategies, and several 
variables specific to individual companies. In particular, the fact that management strategies, corporate culture and 
competitive positioning differ among institutions emphasizes the importance of expert evaluations in determining the 
relevant criteria. Traditionally, commercial aircraft selection methods have leaned towards multidimensional decisions. 
The challenge in commercial aircraft selection lies in identifying the optimal choice amidst diverse alternatives, with 
considerations spanning service quality, costs, and risks. Efficiently integrating expert assessments to facilitate sound 
decision-making requires a systematic approach [5-10]. 

The Analytical Hierarchy Process (AHP), the Technique for Order of Preference by Similarity to Ideal Solution 
(TOPSIS), the Preference Analysis for Reference Ideal Solution (PARIS), and the Preference Ranking Organization 
Method for Enrichment Evaluation (PROMETHEE), and Fuzzy Multiple Criteria Decision Making (FMCDM) emerge 
as prevalent multiple-criteria decision-making (MCDM) methods [11]. This study introduces a novel approach, fuzzy 
combinative multiple criteria decision-making analysis (FC-MCDM), designed to address the intricate nature of aircraft 
selection decisions. To operationalize the FC-MCDM method, a multiple-criteria decision making framework is 
adopted, enriched with the application of Fuzzy sets to account for decision makers' perceptions. This method leverages 
two primary distance metrics—Euclidean and Rectilinear—calculated based on the negative-ideal solution. By 
considering a multitude of factors, the proposed method provides a robust framework to navigate the complex decision-
making environment. The FC-MCDM method employs Euclidean and Rectilinear distances from the negative-ideal 
solution to gauge an alternative's overall performance. Notably, it relies on Euclidean distance as the primary 
assessment measure, with rectilinear distance used for comparisons. The parameter λ  controlling the closeness of 
combinative Euclidean and Rectilinear distances is affording flexibility to the method. 

The proposed FC-MCDM methodology is substantiated through practical application, wherein twenty commercial 
aircraft alternatives are evaluated using six decision criteria. This study contributes to the burgeoning body of research 
on commercial aircraft selection decision support models by introducing a holistic and robust approach that aligns with 
the unique challenges and objectives of airlines. In contrast to existing MCDM methods like the Weighted Sum Model 
(WSM) and the Weighted Product Model (WPM), the FMCDM method is, a distinctive in its comprehensive approach, 
seeks to provide a holistic solution to multiple-criteria decision-making challenges inherent in commercial aircraft 
selection. Through a detailed presentation of the FC-MCDM method, accompanied by a numerical example and 
comparative analysis, this research contributes to advancing the understanding and application of MCDM techniques in 
the aviation sector. The subsequent sections of this paper delineate the fuzzy sets theory, and FC-MCDM methodology 
in Section 2, the application of the proposed FC-MCDM model is presented in Section 3, and finally, research findings, 
and conclusions are presented in Section 4.  
 
2. Methodology  

This section delves into the realm of fuzzy sets, proposing corresponding linguistic variable values for fuzzy 
numbers. It also introduces the classical combinative Multiple Criteria Decision Making Analysis (MCDM) and 
Entropy Weight Method for determining criteria weights in a complex challenging MCDM problem [12-28]. 

 

2.1 Definition of Fuzzy Sets 
A fuzzy set is a mathematical concept used to represent uncertainty and vagueness in set membership. It is defined 

as a generalization of a classical (crisp) set where elements have partial degrees of membership ranging between 0 (not 
a member) and 1 (full membership). Formally, a fuzzy set A in a universe of discourse X is defined by its membership 
function ( )A xµ , which assigns a degree of membership ( )A xµ to each element x in X. Mathematically, a fuzzy set A in 
X is defined as [29-31]: 

 

{ }( , ( )) | ,0 ( ) 1A AA x x x X xµ µ= ∈ ≤ ≤         (1) 

Where A represents the fuzzy set,  x is an element from the universe of discourse X, and ( )A xµ is the membership 
function that assigns a degree of membership to x, where 0 ( ) 1A xµ≤ ≤ . 
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Basic Operations on Fuzzy Sets: 
Union (OR): 

For two fuzzy sets A and B with membership functions ( )A xµ  and ( )B xµ , the union of A and B denoted as A B∪  
is defined as: 

 
( )( ) max( ( ), ( ))A BA B x x xµ µ µ∪ =  for all x in X.                    (2) 

 
Intersection (AND): 

For two fuzzy sets A and B with membership functions ( )A xµ  and ( )B xµ , the intersection of A and B denoted as 
A B∩ is defined as: 

 
( )( ) min( ( ), ( ))A BA B x x xµ µ µ∩ =  for all x in X.                                   (3) 

 
Extended Operations on Fuzzy Sets: 

In addition to the basic operations, fuzzy sets can be operated upon using extended operations, which provide more 
flexibility in handling fuzzy information. 
 
Complement (NOT): 

For a fuzzy set A with membership function ( )A xµ , the complement of A denoted as CA  is defined as: 

 
( ) 1 ( )C AA
x xµ µ= −  for all x in X.                                (4) 

 
Fuzzy Addition (Algebraic Sum): 

For two fuzzy sets A and B with membership functions ( )A xµ  and ( )B xµ , the fuzzy addition (A + B) is defined as: 

 
( )( ) ( ) ( ) ( )* ( )A B A BA B x x x x xµ µ µ µ µ+ = + −  for all x in X.                  (5) 

 
Fuzzy Scaling (Multiplication): 

For a fuzzy set A with membership function ( )A xµ  and a scalar α, the fuzzy scaling (αA) is defined as: 

 
( )( ) * ( )AA x xµ α α µ= for all x in X.                    (6) 

In fuzzy set theory, the inclusion and equality of fuzzy sets are important concepts for comparing and 
characterizing fuzzy sets.  

Inclusion of Fuzzy Sets: 

Fuzzy set A is said to be included in fuzzy set B if and only if the membership function of fuzzy set A is less than 
or equal to the membership function of fuzzy set B for all elements in the universal set X. This is denoted as A ⊆ B. 

Equality of Fuzzy Sets 
Fuzzy set A is said to be equal to fuzzy set B if and only if the membership functions of fuzzy sets A and B are 

equal for all elements in the universal set X. This is denoted as A B= . 
Relationships between Inclusion and Equality. The inclusion and equality of fuzzy sets are related in the following 

ways: 



Ardil, Journal of Sustainable and Manufacturing in Transportation Vol. 3 No. 2 (2023) p. 38-55 

40 

1. Reflexivity: Every fuzzy set is included in itself. 

 A A⊆  for all fuzzy sets A           (7) 

This property states that every fuzzy set is a subset of itself. This is because the membership function of a 
fuzzy set is always less than or equal to itself for all elements in the universal set X. 

2. Transitivity: If fuzzy set A is included in fuzzy set B and fuzzy set B is included in fuzzy set C, then fuzzy set 
A is included in fuzzy set C. 

If  A B⊆  and B C⊆ , then A C⊆  for all fuzzy sets A, B, and C       (8) 

This property states that if fuzzy set A is a subset of fuzzy set B and fuzzy set B is a subset of fuzzy set C, then 
fuzzy set A is a subset of fuzzy set C. This is because the membership function of fuzzy set A is always less 
than or equal to the membership function of fuzzy set B for all elements in the universal set X, and the 
membership function of fuzzy set B is always less than or equal to the membership function of fuzzy set C for 
all elements in the universal set X. Therefore, the membership function of fuzzy set A is always less than or 
equal to the membership function of fuzzy set C for all elements in the universal set X. 

3. Antisymmetry: If fuzzy set A is included in fuzzy set B and fuzzy set B is included in fuzzy set A, then fuzzy 
set A is equal to fuzzy set B.  

If A B⊆ and B A⊆ , then A B=  for all fuzzy sets A and B                                                                             (9) 

This property states that if fuzzy set A is a subset of fuzzy set B and fuzzy set B is a subset of fuzzy set A, then 
fuzzy set A is equal to fuzzy set B. This is because the membership function of fuzzy set A is always less than 
or equal to the membership function of fuzzy set B for all elements in the universal set X, and the membership 
function of fuzzy set B is always less than or equal to the membership function of fuzzy set A for all elements 
in the universal set X. Therefore, the membership functions of fuzzy sets A and B must be equal for all 
elements in the universal set X. 

4. Inclusiveness: If fuzzy set A is included in fuzzy set B, then fuzzy set A is a subset of fuzzy set B. 

If A B⊆ , then A B⊆ for all fuzzy sets A and B                                                                (10)      

This property states that if fuzzy set A is a subset of fuzzy set B, then fuzzy set A is strictly included in fuzzy 
set B. This is because the membership function of fuzzy set A is always less than or equal to the membership 
function of fuzzy set B for all elements in the universal set X, and there must be at least one element in the 
universal set X for which the membership function of fuzzy set A is strictly less than the membership function 
of fuzzy set B. 

5. Completeness: If fuzzy set A is equal to fuzzy set B, then the inclusion of fuzzy set A in fuzzy set B is 
complete. 

If A B= , then A B⊆ for all fuzzy sets A and B                      (11) 

This property states that if fuzzy set A is equal to fuzzy set B, then the inclusion of fuzzy set A in fuzzy set B is 
complete. This is because the membership functions of fuzzy sets A and B are equal for all elements in the 
universal set X, and therefore the membership function of fuzzy set A is always less than or equal to the 
membership function of fuzzy set B for all elements in the universal set X. 

These extended operations broaden the scope for conducting more intricate operations and transformations on 
fuzzy sets, rendering them well-suited for modeling and managing uncertainty across a range of domains. These 
domains encompass not only fuzzy logic, fuzzy control, and fuzzy decision-making but also extend to the realm of 
intuitionistic fuzzy sets and their fuzzy MCDM applications in engineering and management.  

 
2.2 Linguistic Variable Values 

The relationships between criteria and alternatives are determined based on the linguistic variable values in Table 
1. These linguistic variable values are represented by fuzzy numbers, which range from 0.0 (Extremely 
Unimportant/Extremely Low) to 1.0 (Extremely Important/Extremely High). The fuzzy numbers are used to represent 
the subjective judgments of the decision-makers about the relative importance of each criterion. 

 
 

Table 1 - Correspondence of linguistic variable values 

Linguistic variable value ( iL ) Fuzzy number ( )A xµ  
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Extremely Important (EI) / Extremely High (EH) 1.0 
Very Important (VI) / Very High (VH) 0.9 
Intermediate 0,8 
Important (I) / High (H) 0.7 
Intermediate 0.6 
Fair (F) / Medium (M) 0.5 
Intermediate 0,4 
Unimportant (U) / Low (L) 0.3 
Intermediate 0.2 
Very Unimportant (VU) / Very Low (VL) 0.1 
Extremely Unimportant (EU) / Extremely Low (EL) 0.0 

(Author's own work based on fuzzy sets [29]) 
 

       The evaluation values in the initial decision matrix are based on the linguistic variable values scale in Table 1. For 
example, if a criterion is considered to be "Very Important" for a particular alternative, then the evaluation value for 
that criterion and alternative would be 0.9. 
 
2.3 Combinative Multiple Criteria Decision Making Analysis 

This section introduces a novel approach called combinative multiple criteria decision making analysis (CMCDM) 
to address the complexities of multidimensional problems. The CMCDM method enhances decision-making by 
combining the Euclidean distance and rectilinear distance into a single ranking metric. This combination, optimized 
through an objective criterion, provides decision-makers with unique advantages, such as evaluating confidence 
intervals for the relative importance of alternatives and reducing the estimated variance of ranking results. The 
CMCDM method offers a more comprehensive and reliable approach to ranking alternatives compared to traditional 
methods. The sequential steps specific to the proposed CMCDM methodology are as follows: 
 
Step 1. Building the decision matrix. 
 

[ ]ij mxnX x=                                (12)              
 
where m indicates the alternatives and n indicates the criteria. ijx  indicates the performance index value of the 

alternative i according to the criterion j.  
 

Step 2. Normalizing the decision matrix. 
 

max

min

ij
b

iji
ij

iji
c

ij

x
if j

x
r

x
if j

x


∈Ω


= 


∈Ω


                                                                                                                                                   (13) 

 
where ijr  indicates the normalized value of the alternative i according to the criterion j. Also bΩ  and cΩ  represent 

the sets of benefit and cost criteria, respectively. 
 
Step 3. A  m×n  matrix ( )ij mxnv  is built with the index elements of the weighted normalized decision matrix:  
 

ij j ijv rω=                                                                                                                                                              (14) 
 

where (0 1)j jω ω< <  denotes the weight of 𝑗𝑗th criterion, and 
1

1n
jj

ω
=

=∑ . 
Step 4. Let 1...minj i m ijv v== , the vector 1...( )j j nv v ==  is the negative ideal solution (NIS).  
 
Step 5. Distances between each alternative i and a negative ideal solution (NIS) are calculated.  
 
- Euclidean Distance. The Euclidean distance between an alternative i and NIS is as follows: 
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( )2

1

n
i j ijj

E v v
=

= −∑                                                                                                                                                (15) 

- Rectilinear distance. The distance between two points is the sum of the absolute values of the difference of their 
respective Cartesian coordinates. The rectilinear distance between an alternative i and the NIS is the follows: 
 

1
| |n

i j ijj
R v v

=
= −∑                                                                                                                                                (16) 

Final scores of alternative i for MCDM method are between 0 and 1. Alternatives are, then, ranked by descending 
order of final scores. 
 
Step 6. The MCDM method effectively merges the significance of Euclidean and rectilinear distances by introducing a 
parameter, denoted as λ , which falls within the range of 0 to 1. This parameter plays a pivotal role in determining the 
overall relative distance importance by harmonizing the weighted relative importance of both Euclidean and Rectilinear 
distances. The value of λ  serves as the governing factor for accentuating either the Euclidean or Rectilinear relative 
distance importance, with a setting of 1 placing a strong emphasis on the Euclidean distance and a setting of 0 
emphasizing the rectilinear distance.  
 

(1 ) , 1, 2,...,i i iS E R i nλ λ= + − =                                                                                                                      (17) 
 

where composite distance iS  metric combines Euclidean distance iE  and rectilinear distance iR using a parameter 
λ . This parameter λ  controls the balance between the two distance metrics in the composite distance, where a value 
of 0 would give full weight to the rectilinear distance, and a value of 1 would give full weight to the Euclidean distance, 
and values between 0 and 1 represent a weighted combination of the two. This composite distance metric artfully 
amalgamates the Euclidean and Rectilinear distances, ultimately yielding heightened levels of accuracy and precision in 
various applications. 
 

Final scores of alternative i for MCDM method are between 0 and 1. Alternatives are, then, ranked by descending 
order of final scores. 
 
Step 7. Weighted Sum Model (WSM). Operation refers to an additive aggregation in where criteria values are linearly 
combined using weights. Emphasis is on criteria values that are scaled and combined additively. 
 

1

n
i j ijj

rω
=

Φ =∑                                                                                                                                                (18) 

 
Final scores of alternative i for WSM method are between 0 and 1. Alternatives are, then, ranked by descending 

order of final scores. 
 
Step 8. Weighted Product Model (WPM). Operation refers to a multiplicative aggregation, where criteria values are 
raised to the power of their weights and then multiplied. Emphasis is on criteria values that are multiplied together, 
giving greater influence on the highest values. 
 

1
jn

i ijj
r ω

=
Ψ =∏                                                                                                                                               (19) 

 
Final scores of alternative i for WSM method are between 0 and 1. Alternatives are, then, ranked by descending 

order of final scores. 
 
Step 9. The MCDM method is a unique combination of weighted sum model (WSM) and weighted product model 
(WPM). 
 

(1 ) , 1, 2,...,i i i i nλ λΘ = Φ + − Ψ =                                                                                                                    (20) 
 

where composite analysis iΘ combines the WSM ( iΦ ) method and the WPM ( iΨ ) method using a parameter λ . 
This parameter λ  controls the balance between the two multidimensional models in the composite analysis, where a 
value of 0 would give full weight to the WPM method, and a value of 1 would give full weight to the WSM method, 
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and values between 0 and 1 represent a weighted combination of the two. MCDM method is transformed into WPM 
when the value of λ  is 0, and WSM method when it is 1. This composite analysis combines WSM and WPM methods, 
providing a high level of accuracy and precision in a variety of applications.  
 
2.4 Entropy Weight Method 

The entropy weight method is recommended as an approach within classical multiple criteria decision making 
(MCDM) methods to determine the objective weights assigned to criteria. Entropy is a fundamental concept in 
information theory, serving as a quantification of uncertainty. In the realm of decision-making, the Entropy method is a 
valuable technique employed to determine the weight coefficients of various criteria. It enables the calculation of 
criteria weights based on available data, effectively removing the need for subjective personal judgments and biases 
from decision-makers. Consequently, this approach fosters objectivity in the decision-making process. The Entropy 
method typically consists of five essential steps [32]:  

 
Step 1. Building the decision matrix. 
 

[ ]ij mxnX x=                                     (21) 
 
where m indicates the alternatives and n indicates the criteria. ijx  indicates the performance index value of the 

alternative i according to the criterion j.  
 

Step 2. Normalizing the decision matrix. 
 

ij
ij m

iji i

x
p

x
=

=
∑

                                                                                                                                                                  (22) 

 
where ijp  indicates the normalized value of the alternative i according to the criterion j.  
 

Step 3. Computing the entropy measure. 
 

1 ln
ln( )

n
j ij ijj i

E p p
m =

= − ∑                                                                                                                                             (23) 

 
where jE  indicates the entropy value of the criterion j. 

 
Step 4. Defining the objective weight. 
 

1

(1 )
j

j n
jj i

E

E
ω

=

−
=

−∑
                                                                                                                                                          (24) 

 
where 1j jDiv E= −  indicates the divergence of entropy value of the criterion j. jω  indicates the objective criteria 

weight value of the criterion j. 
 
3. Application 

This section explores the application of Fuzzy Combinative Multiple Criteria Decision Making Analysis (FC-
MCDM) as a Decision Support Model for the Commercial Aircraft Selection problem. The results and implications of 
the FC-MCDM model are presented and discussed, demonstrating its applicability and effectiveness in the context of 
Multiple Criteria Decision Making (MCDM) [33-46]. 
 
3.1 Multiple Criteria Decision-Making (MCDM) Analysis  

In the realm of decision-making theory, a multiple criteria decision-making (MCDM) analysis problem is 
characterized by a defined set of alternative options { }1,...,i iA A A= ( 2)i >  for which the optimal choice must be 

determined. This decision-making process is guided by a predefined set of evaluation criteria { }1,...,j jC C C= ( 1)j > , 
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each with its own associated score. The score assigned to each alternative is based on its performance in accordance 
with a specific criterion. Each of these criteria is assigned a normalized weight 

1
1J

jj
ω

=
=∑ , denoted as [ ]0,1jω ∈ , 

with values ranging between 0 and 1, signifying their respective importance [11].  
In an MCDM problem, all criteria jC  and all available alternatives iA , along with their corresponding quantitative 

score values ijX , are taken into consideration. The weighting factor (importance) assigned to each criterion jC , often 
referred to as jω , is an essential component of the decision-making process. These normalized weighting factors 

collectively constitute a set, denoted as { }1,...,j jω ω ω= [11]. 
Depending on the specific context of the MCDM problem at hand, the assigned scores can be interpreted either as 

costs to minimize or as benefits to maximize. The matrix that captures these scores and is often termed the "score 
matrix" can alternatively be referred to as the "benefit matrix" or "payoff matrix" in existing literature. In essence, the 
fundamental objective of a classical MCDM problem is to identify and select the most suitable alternative, given the set 
of alternatives ( iA ), the associated criteria ( jC ), and the corresponding weighting factors ( jω ) assigned to these 
criteria. 
 
3.2 Commercial Aircraft Selection Criteria 

The multiple criteria decision-making (MCDM) methods can be effectively applied to determine the most suitable 
commercial aircraft selection. Therefore, the suggested FC-MCDM approach is used to evaluate and select the best 
commercial aircraft among several alternatives. To evaluate the commercial aircraft alternatives, a set of criteria is 
determined based on a comprehensive literature review and expert opinions. In the realm of civil aviation applications 
for commercial aircraft, various performance criteria are considered: 

Payload capacity (C1): Refers to the weight of equipment, excluding avionics, fuel, and necessary systems for 
ensuring a safe takeoff, flight, and landing. The payload varies depending on the flight requirements. 

Maximum speed (C2): The velocity of a commercial aircraft depends on its engine power. Different operations 
may demand high, low, or average speeds. 

Maximum endurance (C3): Indicates the longest duration a commercial aircraft can operate safely in the air, 
considering the fuel capacity from the moment it takes off until landing. 

Maximum altitude (C4): The "service ceiling" defines the maximum altitude that commercial airplanes are 
permitted to reach during flight, universally capped at 42,000 feet. This altitude limit is adhered to by most commercial 
aircraft due to its recognized role in optimizing operational efficiency. 

Maximum range (C5): The farthest distance a commercial aircraft can be controlled by a pilot after taking off from 
its airport, considering the fuel capacity and payload, while ensuring a safe return.  

Price (C6): The cost associated with acquiring a commercial aircraft, including ground equipment, contributes to 
its overall evaluation. 

These defined criteria are essential in the meticulous evaluation and selection of commercial aircraft for various 
aviation applications. By considering these performance criteria, a comprehensive assessment can be conducted to 
evaluate commercial aircraft for their intended purposes in a rigorous manner. The initial decision matrix distinguishes 
between the optimization type (benefit or cost) for each attribute. The decision criteria used to evaluate alternative 
commercial aircraft options are categorized into two types: benefit criteria (C1-C5) and cost criteria (C6).  
3.3 Commercial Aircraft Selection Problem  

In this section, the applicability of decision-making approach FC-MCDM method has been demonstrated through a 
case involving an airline company operating in the aviation sector and its commercial aircraft selection problem. The 
objective of this company is to procure a commercial aircraft that aligns with the company's goals. In this regard, the 
responsibility for researching and analyzing commercial aircraft procurement falls on evaluation committee within the 
company. By following the steps within the fuzzy MCDM framework, a systematic approach is applied to effectively 
evaluate and compare the potential commercial aircraft options based on the identified decision criteria. 

 
Step 1. The decision matrix is established. 
 

The initial decision matrix [ ]ij mxnX x=  for the alternatives  ( iA ), the decision criteria ( jC ),  and the criteria 
weights ( jω ) is constructed. This matrix also specifies the type of optimization (benefit or cost) of each criterion. 
 
Step 2. The decision matrix is normalized. 
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{ ( ) ,
1 ( ),

A b
ij

A c

x
r

x
 µ Ω= 
−µ Ω

                                                                                                                                                        (25) 

 
where  bΩ  denotes benefit type criteria, and cΩ  denotes cost type criteria,   

 
Step 3. The criteria weights are calculated. The importance weights jω of decision criteria jC  are assessed by the 
decision makers.  
 
Step 4. Weighted normalized matrix is computed. 
 

ij j ijv rω=                                                                                                                                                              (26) 
 
Step 5. Negative ideal solution (NIS) is computed. 
 

1...minj i m ijv v==                                                                                                                                                                (27) 
 
Step 6. Euclidean distance ( iE ) between an alternative i and NIS ( jv ) is computed. 
 

( )2

1

n
i j ijj

E v v
=

= −∑                                                                                                                                                      (28) 

 
Step 7. Rectilinear distance ( iR ) between an alternative i and NIS ( jv ) is computed. 
 

1
| |n

i j ijj
R v v

=
= −∑                                                                                                                                                           (29) 

 
Step 8. FC-MCDM evaluation is conducted. 
 

(1 ) , 1, 2,...,i i iS E R i nλ λ= + − =                                                                                                                                      (30) 
 
Step 9. Weighted sum model (WSM) is conducted. 
 

1

n
i j ijj

rω
=

Φ =∑                                                                                                                                                                (31) 

Step 10. Weighted Product Model (WPM) 

1
jn

i ijj
r ω

=
Ψ =∏                                                                                                                                                                (32) 

 
Step 11. FC-MCDM evaluation is conducted. 

(1 ) , 1, 2,...,i i i i nλ λΘ = Φ + − Ψ =                                          (33) 
 
Step 12. The alternatives are ranked according to their score function ( iE , iR , iS , iΦ , iΨ , iΘ ) values in decreasing 
order.  The bigger score function value of alternatives iA  corresponds to the best MCDM solution *A , that is *

iA A= .      
 
Step 13. The Spearman's Rank Correlation Coefficient (ρ) between the two ranks of each observation is calculated as 
follows: 

2

2

6
1

( 1)
id

n n
σ = −

−
∑                                                                                                                                                               (34)                                                                                                                                                                    

 
whereσ is Spearman's rank correlation coefficient, id is difference between the two ranks of each observation, and 

n is number of observations.                                                   
  
 
3.4 Determining the Weights of Criteria 
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In the fuzzy Multiple Criteria Decision-Making (MCDM) approach, the determination of criteria weights is 
accomplished using the fuzzy weight method, which replaces the entropy method. 

Let n be the number of decision makers. m be the number of criteria. ijX  be the evaluation of decision maker i for 

criterion j, where  1, 2,...,i m= , and 1,2,...,j n= . jC  be the aggregated value for criterion j. jω be the normalized 
weight for criterion j. The algorithm consists of the following steps: 
 
Step 1. Convert linguistic variable values ( iL ) to fuzzy numbers ( ( )A xµ ) based on Table 1. 
 
Step 2. Calculate the aggregated value jC  for each criterion using the geometric mean: 

( )
1

1

nn
j iji

C X
=

= ∏                                                                                                                                                 (35) 

 
Step 3. Normalize the aggregated values jC  to obtain the weights of criteria jω using the formula: 

j
j n

jj i

C

C
ω

=

=
∑

                                         (36) 

 
where 

1
1n

jj
ω

=
=∑ . 

 
The weights of criteria calculated using the linguistic variable values ( iL ) given in Table 1 and the fuzzy numbers 

( ( )A xµ ) are provided in Table 2 for three decision makers (DMs). 
 

Table 2 – Weights of Criteria 

 C1 C2 C3 C4 C5 C6  
DM1 0.9 0.3 0.7 0.5 0.7 0.5  
DM2 0.7 0.7 0.3 0.7 0.9 0.3  
DM3 0.5 0.5 0.7 0.7 0.9 0.5  
                Sum 

jC  0.680 0.472 0.528 0.626 0.828 0.422 3.555 
jω  0.191 0.133 0.148 0.176 0.233 0.119 1 

The evaluation grades of the three decision makers for the aircraft alternatives are given in Table3. 
 

Table 3 - Decision makers’ evaluation grades of aircraft alternatives 

 C1 C2 C3 C4 C5 C6 

A1 0.9 0.3 0.7 0.3 0.1 0.5 
A2 0.7 0.5 0.3 0.7 0.9 0.3 
A3 0.3 0.5 0.7 0.7 0.9 0.1 
A4 0.9 0.3 0.5 0.3 0.7 0.5 
A5 0.1 0.7 0.5 0.7 0.3 0.7 
A6 0.9 0.7 0.3 0.9 0.1 0.5 
A7 0.3 0.5 0.5 0.3 0.7 0.3 
A8 0.7 0.3 0.7 0.5 0.5 0.1 
A9 0.3 0.7 0.7 0.3 0.7 0.5 
A10 0.1 0.9 0.9 0.7 0.3 0.7 
A11 0.5 0.3 0.1 0.5 0.7 0.9 
A12 0.9 0.1 0.7 0.5 0.3 0.7 
A13 0.3 0.9 0.7 0.3 0.1 0.3 
A14 0.1 0.3 0.7 0.9 0.3 0.9 
A15 0.5 0.3 0.5 0.1 0.7 0.1 
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A16 0.3 0.1 0.3 0.7 0,9 0.5 
A17 0.9 0.3 0.1 0.5 0,3 0.3 
A18 0.1 0.9 0.3 0.3 0.1 0.1 
A19 0.7 0.7 0.7 0.5 0.3 0.5 
A20 0.5 0.3 0.9 0.1 0.9 0.7 

 
The normalized decision matrix is given in Table 4. The cost criterion 6C  was converted to the benefit criterion. 

 
Table 4 – Normalized Decision Matrix 

 C1 C2 C3 C4 C5 C6 
A1 0.9 0.3 0.7 0.3 0.1 0.5 
A2 0.7 0.5 0.3 0.7 0.9 0.7 
A3 0.3 0.5 0.7 0.7 0.9 0.9 
A4 0.9 0.3 0.5 0.3 0.7 0.5 
A5 0.1 0.7 0.5 0.7 0.3 0.3 
A6 0.9 0.7 0.3 0.9 0.1 0.5 
A7 0.3 0.5 0.5 0.3 0.7 0.7 
A8 0.7 0.3 0.7 0.5 0.5 0.9 
A9 0.3 0.7 0.7 0.3 0.7 0.5 
A10 0.1 0.9 0.9 0.7 0.3 0.3 
A11 0.5 0.3 0.1 0.5 0.7 0.1 
A12 0.9 0.1 0.7 0.5 0.3 0.3 
A13 0.3 0.9 0.7 0.3 0.1 0.7 
A14 0.1 0.3 0.7 0.9 0.3 0.1 
A15 0.5 0.3 0.5 0.1 0.7 0.9 
A16 0.3 0.1 0.3 0.7 0.9 0.5 
A17 0.9 0.3 0.1 0.5 0.3 0.7 
A18 0.1 0.9 0.3 0.3 0.1 0.9 
A19 0.7 0.7 0.7 0.5 0.3 0.5 
A20 0.5 0.3 0.9 0.1 0.9 0.3 

 
The weighted normalized decision matrix is calculated as given in Table 5. 

 
Table 5 – Weighted Normalized Decision Matrix 

 C1 C2 C3 C4 C5 C6 
A1 0.172 0.040 0.104 0.053 0.023 0.060 
A2 0.134 0.067 0.044 0.123 0.210 0.083 
A3 0.057 0.067 0.104 0.123 0.210 0.107 
A4 0.172 0.040 0.074 0.053 0.163 0.060 
A5 0.019 0.093 0.074 0.123 0.070 0.036 
A6 0.172 0.093 0.044 0.158 0.023 0.060 
A7 0.057 0.067 0.074 0.053 0.163 0.083 
A8 0.134 0.040 0.104 0.088 0.117 0.107 
A9 0.057 0.093 0.104 0.053 0.163 0.060 
A10 0.019 0.120 0.133 0.123 0.070 0.036 
A11 0.096 0.040 0.015 0.088 0.163 0.012 
A12 0.172 0.013 0.104 0.088 0.070 0.036 
A13 0.057 0.120 0.104 0.053 0.023 0.083 
A14 0.019 0.040 0.104 0.158 0.070 0.012 
A15 0.096 0.040 0.074 0.018 0.163 0.107 
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A16 0.057 0.013 0.044 0.123 0.210 0.060 
A17 0.172 0.040 0.015 0.088 0.070 0.083 
A18 0.019 0.120 0.044 0.053 0.023 0.107 
A19 0.134 0.093 0.104 0.088 0.070 0.060 
A20 0.096 0.040 0.133 0.018 0.210 0.036 

 
The negative ideal solution (NIS) vector 1...minj i m ijv v==  is determined as given in Table 6. 

 
Table 6 – The negative ideal solution (NIS) vector 

 C1 C2 C3 C4 C5 C6 
NIS ( 1...minj i m ijv v== ) 0.019 0.013 0.015 0.018 0.023 0.012 

 
Table 7 - The Euclidean distance ( iE ) between an alternative i and NIS ( jv ) 

 iE  Rank ( iE ) iR  Rank ( iR ) 

A1 0.188 14 0.351 15 
A2 0.260 1 0.561 2 
A3 0.259 2 0.567 1 
A4 0.225 5 0.461 4 
A5 0.154 19 0.315 17 
A6 0.230 4 0.451 5 
A7 0.184 15 0.397 12 
A8 0.211 7 0.489 3 
A9 0.197 10 0.429 8 
A10 0.198 8 0.401 10 
A11 0.176 16 0.313 18 
A12 0.197 9 0.382 13 
A13 0.164 18 0.340 16 
A14 0.175 17 0.303 19 
A15 0.197 11 0.397 11 
A16 0.225 6 0.407 9 
A17 0.190 13 0.368 14 
A18 0.150 20 0.266 20 
A19 0.192 12 0.448 6 
A20 0.236 3 0.432 7 

 
The Euclidean distance ( iE ) and Rectilinear distance ( iR ) between an alternative i and the negative ideal solution 

(NIS) ( jv ) are computed and the ranking orders of alternatives are presented in Table 7. 
The Spearman's Rank Correlation Coefficient (ρ) between the Euclidean distance ( iE ) and Rectilinear distance 

( iR ) ranking orders is approximately 0.736181. 
The weighted sum model ( iΦ )  and weighted product model ( iΨ ) computations for each alternative i and the 

corresponding criterion weight ( jω ) are computed, and the resulting ranking orders of alternatives are presented in 
Table 8. 

The Spearman's Rank Correlation Coefficient (ρ) between the weighted sum model ( iΦ ) and weighted product 
model ( iΨ ) ranking orders is approximately 0.9653266.  
 

Table 8 - The weighted sum model ( iΦ ) , weighted product model ( iΨ ) , and the resulting ranking orders of 
alternatives 

 iΦ  Rank ( iΦ ) iΨ  Rank ( iΨ ) 

A1 0.451 15 0.345 15 
A2 0.661 2 0.626 1 
A3 0.667 1 0.622 2 
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A4 0.561 4 0.517 5 
A5 0.415 17 0.341 16 
A6 0.551 5 0.413 9 
A7 0.497 12 0.467 7 
A8 0.589 3 0.562 3 
A9 0.529 8 0.493 6 
A10 0.501 10 0.384 13 
A11 0.413 18 0.329 18 
A12 0.482 13 0.397 12 
A13 0.440 16 0.337 17 
A14 0.403 19 0.294 19 
A15 0.497 11 0.408 11 
A16 0.507 9 0.413 10 
A17 0.468 14 0.381 14 
A18 0.366 20 0.248 20 
A19 0.548 6 0.520 4 
A20 0.532 7 0.414 8 

 
The correlation analysis matrix in Table 9 shows the correlation coefficients between different methods and 

metrics used for ranking alternatives: 
 

Table 9 - The correlation analysis matrix between different methods and metrics used for ranking alternatives 

  WSM WPM EUC REC 

WSM 1    
WPM 0.95 1   
EUC 0.90 0.79 1  
REC 1 0.95 0.90 1 

 
Correlation between WSM and WPM: The correlation coefficient is 0.95, which indicates a very strong positive 

correlation between the Weighted Sum Model (WSM) and the Weighted Product Model (WPM). This suggests that 
these two methods produce highly similar rankings for the alternatives. 

Correlation between WSM and EUC: The correlation coefficient is 0.90, indicating a strong positive correlation 
between the Weighted Sum Model (WSM) and the ranking based on Euclidean distance (EUC). This suggests that 
there is a significant degree of similarity in the rankings produced by these two methods. 

Correlation between WSM and REC: The correlation coefficient is 1.0, indicating a perfect positive correlation 
between the Weighted Sum Model (WSM) and the ranking based on rectilinear distance (REC). This means that the 
rankings are identical for these two methods. 

Correlation between WPM and EUC: The correlation coefficient is 0.79, indicating a strong positive correlation 
between the Weighted Product Model (WPM) and the ranking based on Euclidean distance (EUC). While the 
correlation is strong, it is slightly lower than the correlation between WSM and EUC. 

Correlation between WPM and REC: The correlation coefficient is 0.95, indicating a very strong positive 
correlation between the Weighted Product Model (WPM) and the ranking based on rectilinear distance (REC). This 
suggests that these two methods produce highly similar rankings. 

Correlation between EUC and REC: The correlation coefficient is 0.90, indicating a strong positive correlation 
between the ranking based on Euclidean distance (EUC) and the ranking based on rectilinear distance (REC). This 
suggests that there is a significant degree of similarity in the rankings produced by these distance metrics. 

Overall Analysis: The correlation matrix shows that the rankings produced by WSM and WPM are highly similar, 
with a very strong positive correlation. Both WSM and WPM have strong positive correlations with the rankings based 
on EUC and REC, indicating consistency in the rankings among these methods and metrics. The perfect correlation 
between WSM and REC suggests that they produce identical rankings. This analysis indicates that the chosen methods 
and metrics are consistent in their ranking of alternatives, which can provide confidence in the decision-making 
process. 
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The FC-MCDM approach is conducted for both the Euclidean distance ( iE ) and Rectilinear distance ( iR ). The 
results of these analyses are presented in Table 10 and Fig. 1, respectively. 
 
Table 10 - The FC-MCDM for both the Euclidean distance ( iE ) and Rectilinear distance ( iR ) and the resulting 

ranking orders of alternatives 

iλ  0 0,1 0,3 0,5 0,7 0,9 1 

A1 15 15 15 15 15 15 14 
A2 2 2 2 2 2 1 1 
A3 1 1 1 1 1 2 2 
A4 4 4 4 4 4 5 5 
A5 17 18 18 19 19 19 19 
A6 5 5 5 5 3 4 4 
A7 12 12 12 12 13 14 15 
A8 3 3 3 3 6 7 7 
A9 8 8 8 9 9 8 10 

A10 10 10 10 10 10 9 8 
A11 18 17 17 17 16 16 16 
A12 13 13 13 13 12 12 9 
A13 16 16 16 16 17 18 18 
A14 19 19 19 18 18 17 17 
A15 11 11 11 11 11 11 11 
A16 9 9 9 8 7 6 6 
A17 14 14 14 14 14 13 13 
A18 20 20 20 20 20 20 20 
A19 6 6 7 7 8 10 12 
A20 7 7 6 6 5 3 3 

 

 
Fig. 1 - The FC-MCDM for both the Euclidean distance ( iE ) and Rectilinear distance ( iR ) and the resulting 

ranking orders of alternatives 
 

In Table 10, there are two sets of ranking orders based on different criteria: one set based on iλ  values and the 
other set based on iλ  values in the context of the FC-MCDM technique. Let's compare and analyze the ranking orders 
based on iλ Values in FC-MCDM approach (Euclidean and Rectilinear Distances): 
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In this set of rankings, the alternatives are ranked based on the Euclidean distance ( iE ) and Rectilinear distance 
( iR ) values, considering different iλ values. The rankings of alternatives are influenced by the iλ values and the 
specific aggregation FC-MCDM method used. 

In Table 10, we have the ranking orders of alternatives based on the FC-MCDM for different values of the 
parameter iλ , ranging from 0 to 1. The FC-MCDM method combines the Euclidean distance ( iE ) and Rectilinear 
distance ( iR ) calculations for each alternative and criterion, varying the parameter iλ  to control the weighting between 
( iE ) and ( iR ). Here are some observations and analysis based on the ranking orders in Table 10: 

Sensitivity to Parameter iλ : As iλ  changes from 0 to 1, the ranking orders of alternatives can vary significantly. 
This demonstrates the sensitivity of the FC-MCDM method to the choice of iλ . Different values of iλ  place different 
emphasis on either ( iE ) or ( iR ), affecting the final rankings.  

Trade-Off Between ( iE ) and ( iR ): When iλ  is close to 0 (e.g., iλ = 0.1), the rankings tend to be more influenced 
by ( iR ), resulting in some alternatives moving up or down in the rankings compared to when iλ  is closer to 1 (e.g., 

iλ = 0.9), where ( iE ) has more influence. 
Consistency Across iλ  Values: Despite the variations in rankings for different iλ  values, some alternatives 

consistently perform well or poorly across a range of iλ  values.  
Ranking Stability: Alternatives that have relatively stable rankings across different iλ values may be considered 

more robust or less sensitive to changes in the weighting between ( iE ) and ( iR ). 
Decision Sensitivity: The choice of the best alternative can vary depending on the iλ value used. Decision-makers 

should consider the implications of these variations when selecting the most suitable alternative. 
Contextual Considerations: The choice of iλ  should align with the decision context and the relative importance of 

( iE ) and ( iR ) in the decision-making process. A lower iλ  may be chosen when emphasizing RD, while a higher iλ  
may be selected to prioritize ( iE ).  

In summary, the FC-MCDM method provides a flexible approach for decision-makers to explore different trade-
offs between Euclidean distance ( iE ) and Rectilinear distance ( iR ) in multiple-criteria decision-making. The choice of 

iλ should align with the specific objectives and preferences of the decision problem at hand. 
The FC-MCDM approach is conducted for both the Weighted Sum Model ( iΦ ) and Weighted Product Model 

( iΨ ). The results of these analyses are presented in Table 11 and Fig. 2, respectively. 
 
Table 11 - The FC-MCDM for both the Weighted Sum Model ( iΦ ) and Weighted Product Model ( iΨ ) and the 

resulting ranking orders of alternatives 

iλ  0 0,1 0,3 0,5 0,7 0,9 1 

A1 15 15 15 15 15 15 15 
A2 1 1 1 2 2 2 2 
A3 2 2 2 1 1 1 1 
A4 5 5 4 4 4 4 4 
A5 16 16 17 17 17 17 17 
A6 9 8 8 5 7 6 5 
A7 7 7 7 12 9 10 12 
A8 3 3 3 3 3 3 3 
A9 6 6 6 8 6 7 8 

A10 13 13 13 10 12 11 10 
A11 18 18 18 18 18 18 18 
A12 12 12 12 13 13 13 13 
A13 17 17 16 16 16 16 16 
A14 19 19 19 19 19 19 19 
A15 11 11 11 11 11 12 11 
A16 10 10 10 9 10 9 9 
A17 14 14 14 14 14 14 14 



Ardil, Journal of Sustainable and Manufacturing in Transportation Vol. 3 No. 2 (2023) p. 38-55 

52 

A18 20 20 20 20 20 20 20 
A19 4 4 5 6 5 5 6 
A20 8 9 9 7 8 8 7 

 

 
Fig. 2 - The FC-MCDM for both the Weighted Sum Model ( iΦ ) and Weighted Product Model ( iΨ ) and the 

resulting ranking orders of alternatives 
 

In Table 11, there are two sets of ranking orders based on different criteria: one set based on iλ  values and the 
other set based on iλ  values in the context of the FC-MCDM. In this set of rankings, we have the FC-MCDM ranking 
orders of alternatives based on the Weighted Sum Model (WSM) and Weighted Product Model (WPM) for different 
values of the parameter iλ , ranging from 0 to 1. Here are the observations and analysis based on the ranking orders in 
Table 11: 

Consistency Across iλ  Values: Unlike Table 10, where the rankings were more sensitive to changes in iλ , Table 
11 shows a higher degree of consistency. For most alternatives, the rankings remain the same across different iλ  
values. 

Dominance of WPM Rankings: The WPM rankings ( iλ = 1) tend to dominate the rankings across all alternatives. 
This suggests that the WPM places a strong emphasis on certain criteria, leading to consistent rankings. 

Limited Sensitivity to iλ : While there is some variation in rankings for iλ  values between 0 and 0.7, the 
differences are relatively small, indicating that the choice of iλ  has less impact on the rankings in this case. 

Similar Top Performers: Alternatives such as A2, and A3 consistently rank at the top, regardless of the iλ  value. 
Similarly, A14 and A18 consistently rank at the bottom. 

Influence of Models: The choice between WSM and WPM has a significant impact on the rankings. WPM tends to 
reward alternatives that perform well in all criteria, while WSM is more flexible in accommodating different 
performance profiles. 

Decision Stability: The relatively stable rankings may provide decision-makers with more confidence in the 
selected alternatives, as they are less sensitive to changes in the parameter iλ . 

In summary, Table 11 demonstrates that the FC-MCDM method applied to the WSM and WPM models results in 
more consistent rankings across different iλ  values compared to Table 10. The choice between WSM and WPM 
should align with the decision context and the desired emphasis on criteria. Overall, Table 11 provides a more stable 
basis for decision-making when using the FC-MCDM method. The choice of ranking method and the specific 
parameter values iλ  can significantly impact the ranking orders of alternatives. Some alternatives show consistent 
rankings across different parameter values iλ , suggesting their stability in the decision process. Other alternatives 
exhibit sensitivity to parameter changes, resulting in varying rankings. It's important to consider the context and 
decision criteria when choosing the most appropriate ranking method and parameter values, as they can lead to 
different recommendations for alternative selection. 
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4. Conclusion 

In fuzzy decision analysis process, numerical investigations in the realm of Fuzzy Multiple Criteria Decision 
Making (MCDM) involved the utilization of the FC-MCDM method for commercial aircraft selection purposes. The 
weights assigned to criteria were determined through the introduction of an innovative fuzzy weight approach. The 
outcomes obtained from the analysis of Euclidean and Rectilinear distances were compared with the results of the 
Weighted Sum Model (WSM) and Weighted Product Model (WPM), revealing a significant agreement between 
rectilinear distance (REC) analysis and the WSM. Furthermore, the correlation analysis of alternative rankings 
indicated that REC analysis and the WSM were practically indistinguishable in these two methods. Notably, the 
correlation coefficient between WSM and WPM, as well as between WPM and REC, stood at a robust 0.95, signifying 
a very strong positive correlation. In conclusion, the novel FC-MCDM method was effectively applied to address the 
selection of the optimal commercial aircraft, demonstrating the applicability and efficiency of the proposed model. In 
the future, it is aimed to apply the proposed FC-MCDM method in the solution of complex engineering, technological, 
and industrial problems and compare it with other MCMD methods. 
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