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1. Introduction 

Globally, e-mails are considered a reliable and best communication channel but recently, this technology has been 

a major target for attacks. Spam e-mails or junk emails form a large chunk of this attack as they are delivered by different 

protocols such as simple mail transfer protocol [1], [2]. Being sent in high numbers, these emails occupy a large portion 

of bandwidth resources when using network resources. They can also deprive users of using network resources as they 

Abstract: The current challenges experienced in spam e-mail detection systems is directly associated with the low 

accuracy of spam e-mail classification and high dimensionality in feature selection processes. However, Feature 

selection (FS) as a worldwide optimization approach in machine learning (ML) decreases data redundancy and 

creates a set of accurate and acceptable results. In this paper, a Firefly algorithm-based FS algorithm is proposed for 

decreasing the dimensionality of features and enhance the accuracy of classifying spam e-mails. The features are 

represented in a binary form for each firefly; in other words, the features are converted to binary using a sigmoid 

function. The proposed Binary Firefly Algorithm (BFA) explores the space of the best feature subsets, and the 

selection of a feature is based on a fitness function which is dependent on the achieved accuracy using Naïve 

Bayesian Classifier (NBC). The performance of the classifier and the dimension of the selected feature vector as a 

classifier input are considered when evaluating the performance of the BFA using SpamBase dataset. However, 

based on the obtained results it is observed that the proposed approach achieved good results with accuracy of 

95.14%. 
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tend to block or leverage the available server storage space that is meant for legal users. Similarly, spam e-mails result 

in a waste of valuable communication time and effort. Consequently, spam e-mails can also be a source of threat to 

government establishments [3] [4]. Generally, spam e-mail detection is dependent on the appropriate classification of e-

mails into spam and non-spam categories.  
Most of the recent spam detection frameworks are based on ML techniques for spam e-mails classification [5] [6]. 

However, a major problem that threatens e-mail classification is the selection of the classifiers’ optimal input feature 

subsets which is to be done through an FS process. Meanwhile, the problem of high data dimensionality which is related 

to the FS process usually hampers the performance of most classifiers such as the Artificial Neural Network (ANN), 

Support Vector Machine (SVM), and NBC [7, 8, 9], [10]–[12]. It is assumed that high data dimensionality can be 

prevented by limiting the feature space and reducing a large number of features in the message. However, it is ideal to 

identify features concerning the concept of the document or concerning the problems encountered by the document. The 

accuracy of classification can be affected by irrelevant features. It can also affect the required time to train a classifier, 

the feature-related cost, and the number of instances required for learning [13], [14].  
In recent times, the swarm evolutionary methods such as Ant Colony [15]–[17], Genetic Algorithm [18]–[20], 

Artificial Bee Colony[21], [22] Particle Swarm Optimization [23], [24] and Harmony Search Algorithm have been 

employed to solve the FS problems [25], [26]. The Firefly Algorithm (FA) is a swarm-based metaheuristic developed 

by Yang [27], [28], and has attracted much research attention due to its potential for solving optimization problems [29]. 

It employs for handling several case studies and problems, such as FS [30]–[33], prediction problems [34], [35], 

forecasting [36]–[38], scheduling [39], [40], and image processing [41], [42].  
In this paper, a wrapper feature selection approach based on a binary firefly algorithm (BFA) is proposed. The BFA 

selects the best subset features in the Spam base dataset to enhance the filtering rate or classification accuracy of junk 

emails. The rest of this paper is structured as follows:  Section 2 describes the standard FA and NBC, while section 3 

explains the proposed algorithm. Section 4 illustrates the experimental results. Finally, the last section provides the 

conclusion of the study. 

 

2. Firefly Algorithm (FA) 

The FA mimics the mating system and data through flashing lights. In this section, the behavior of fireflies, binary 

fireflies, artificial FA, and FA in some prominent places was discussed. 

2.1 The Behavior of Fireflies  

There are more than 2,000 species of fireflies worldwide and the vast majority of fireflies send short and pattern 

flames [27]. The main source of this debt is the interest of accomplices in mating e.g. correspondence, potential, and a 

component of mechanism. Two factors improve the visibility of most fireflies only at a limited distance [27], only away 

from the bat, and the brightness of a source at a certain distance corresponds to the law of the opposite square, which 

suggests that the power of light with expansion decays somewhere𝐼 ∝
1

𝑟2. The next factor is the assimilation of light, 

which is recognized around it, which decreases its force as the separation increases. 

2.2 Artificial Fireflies  

Ordinarily, three idealized rules described the behavior of fireflies as formulated by Yang [27]. These rules are as 

follows:   

 Regardless of gender, all fireflies have only single-sex and can be contracted. 

  Firefly attractiveness compared to its brilliance; in this way, prouder fireflies usually attract smaller ones. 

Attractive quality falls somewhere in the middle of luminosity. Without a bright fire flight, different fire flights 

move randomly. 

 The luminosity of a firefly is determined by the objective function landscape. Then, Brightness/luminosity is 

directly related to the value of the objective function for the maximization problem. The attraction of a FA i towards 

extra one with more strength j as Eq. 1: 

 

0
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j i


 
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                                    (1) 

 

Where i = enchantment, and j is a random coincidence; α = randomization limit, Rand = any number selected for a 

single transmission in [0; 1]. The articulation range (rand- 0: 5) then starts at [-0,5,0,5] to make room for both positive 

and negative changes. Β is usually 1 and α [0; 1]. α is a disturbance that can affect light transmission. This edge can be 

selected in a fake fire flight so that the layout can be changed and it now offers an additional layout. The randomization 

limit can be drawn in the same way for a typical recipe with a mean of 0 and a variation of 1; N (0; 1) to calculate the 
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degree of climate confusion. γ is a seductive variety and its value is important to ensure fusion rate and FA behavior. In 

many applications, this has changed from 0.01 to 100. Separation of fi, fj; means as fij; and characterized by condition 2. 

 

f X X
ij i j
                                                                       (2) 

 

Where 𝑋𝑖 and 𝑋𝑗 are the positions of firefly i and j.  

 

Note: In the refreshing state 𝛽0𝑒𝑖𝑗
−𝛾𝑟2

, an attractive coefficient is used to assume an accident due to the separation 

of light due to separation according to administrative rules. Besides, the effects of residues and climate on brightness 

can be specified using an irregular expression of the condition. In this way, the behavior of the firefighter can be 

determined in the FA pseudocode (see Fig. 1). The characteristics of the FA may be indicated in the following points: 

 

 FA is a versatile skill that supports the benefits of population growth. 

 The FA can deal effectively with multi-model problems without many steps, as it allows the population to be 

divided, with a gradual vision of each leaflet being limited to give them subdivisions in the study area. 

 The collection rate of the calculation can be increased by setting random and enchantment limits for the FA 

throughout the stress cycle. 

 

 
 

Fig. 1 - The pseudo-code of standard FA 

 

3. The Proposed Binary Firefly Algorithm 

Focusing on calculations has evolved because there is a need to find better subgroups of projects that ensure better 

performance changes. In the proposed model, all fireflies are presented in parallel, categorized, unlike in the traditional 

risk-prevention model, where fireflies are set up arbitrarily selected highlights. The proposed BFA involves four (4) 

important advances - promotion, welfare work, inclusive quality counting, and status updates. These tools are explained 

in more detail in the accompanying subsections. 

 

3.1 BFA Initialization 

All fireflies in the search space start in this progression by an irregular number in the interval [0,1]. These irregular 

numbers tell us about the situation of research. The condition of each firefly is determined by Eq. 3, 

  

( )* (0,1)X UB LB Rand LB             (3) 
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Where UB is  upper bound [1.0], LB = lower bound [0.0], and Rand () =function represent a logistic chaotic map. 

However, it helps the firefly algorithm to start from positions better than the randomized by a uniform distribution which 

is given in Eq. 4: - 

 

1 (1 )i i iX X X                                                    (4) 

 

Where Xi=initial value, Xi+1=next value, and µ=control parameter ‘mutation’   
 

3.2 Calculation of the fitness function (FF)  

In the proposed algorithm, FF must limit the rate of error in the approval agreements for approval, as shown in 

condition 5, but increase the number of essential or unselected highlights. The FF algorithm was determined by a 

classifier. Here NBC was used to determine the accuracy of the group. 

 

100Error A                                                                 (5) 

 

where the rating = A = accuracy rate, in other words, 5 times the cross-validation error rate after training NBC. Eq. 

6 is used to calculate the intensity of each firefly based on the error value. 

  

2

1
( )
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iI F

Error



                                                       (6) 

 

3.3 FA Attractiveness Calculation 

The Attractive FA has been calculated by several formulas to calculate the level of attractiveness 𝛽 of each Firefly, 

Equ. 7 was deployed: 

 
2- r

0(r) = ×e                                                    (7) 

 

where r = the distance between 2 fireflies (calculated using Equ. 8), 𝛽0 = the attractiveness of a firefly at the initial 

case (r = 0). 

 

ij i j
r = x - x                                      (8) 

 

where X represents a real positional value. 

Furthermore, the distance between both fireflies can be calculated by using a method of hamming distance. In FA, 

the distance is exemplified by the change between the two Fireflies binary strings. Also, the employed of FA will develop 

the ability to work better with binary features and make it working with continuous values.  

3.4 Improving FA Position 

In the swarm, each firefly is attracted to a brighter Firefly. In the algorithm, the position of the brighter Firefly is 

updated using Equ. 9.  

 

1
( ) ( )

2
i i j iX X X X Rand                                                (9) 

 

Where xi in the first part of the relation = current position of the best firefly, while the second part of the relation 

expresses the attractiveness between position Fi and Fj. Gr represents the information gain ratio values for all properties 

previously calculated in the first step [43]. The third stage of the relative expresses the randomization through α, 

anywhere α ∈ (0,1). This chance is decreased by another constant rate δ, where δ ∈ (0.95, 0.97) such that at the final 

optimization stage, the value of α will increase, as in Eq. (10). 

 

α = α×δ                                     (10) 
 



Veysel Aslantaş et al., Journal of Soft Computing and Data Mining Vol. 1 No. 2 (2020) p. 44-52 

 

 

48 

4. Results And Discussions  

Some evaluation metrics were used to evaluate the performance of the proposed BFA based on the selected Spam 

Base dataset. The simplest evaluation measure is filtering accuracy, which is a measure of the percentage of messages 

that are correctly classified. The accuracy (determined using Eq. 11) is the percentage of emails that are correctly 

identified as spam and not spam.  

 

TP TN
Accuracy

TP TN FP FN




  
                         (11) 

 

Another evaluation measure is recall and precision. The recall is the percentage of spam emails that are blocked, 

while precision is the percentage of correct messages that are marked as spam. Both recall and precision are calculated 

using Eq.s 12 and 13  

 

e
TP

R call
TP FN




                                             (12) 

 

TP
Precision

TP FP



                                         (13) 

 

The SPAMBASE dataset was accessed from the UCI machine learning repository [44]. It was created by Mark 

Hopkins and Co. as a dataset containing 4601 email messages and 58 attributes. The non-spam emails in this dataset 

were collected from personal e-mails, field works, and single e-mail accounts. The set of emails contained in this dataset 

are suitable for testing spam filtering systems. In the SPAMBASE, each instance is made up of 58 attributes and most 

of these attributes are the frequency of a given character in the email which corresponds to the instance. 

There are two main parameters of the BFA; the first is the swarm size (SS) which indicates the number of fireflies 

in the swarm, and the second is the MaxITr which indicates the number of iterations. The dataset was divided into two 

parts, 70% for training and 30% for testing. The BFA was executed for 20 runtimes using different swarm sizes and 

several iterations to compare its performance in finding the best subset of features with higher accuracy with (XX) 

algorithms. All the experiments were carried out on a standalone PC with 4 GB of RAM and 2.2GHz core i5 of CPU. 

The algorithm was written and executed using C#.net 5.0 programming language. In this study, four swarm sizes (10, 

20, 30, 40, and 50) were used, and each swarm size was tested with different numbers of iterations (100, 250, 300, and 

500). Table (1) shows the results of these experiments. 

Table 1 shows that the accuracy of the BFA has continued to increase with the extension of the crowd, suggesting 

an impact on the size of the group of facts. Besides, the range of actions leads to a further impact on the measurement 

system. Therefore, it can be argued that the small size and number of circles have a positive effect on the reliability of 

the BFA. At the end of the day, the calculation will be moderate if it will be larger and more complex of cycles. The 

benefits of this restriction are shown in Fig. 2. 

 

 
Fig. 2 - The effect of swarm size and number of iteration on the accuracy of BFA 
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Table 1 - The results of the proposed BFA 

MaxItr Swarm Size Best Accuracy Worst Accuracy Average Accuracy 
Average 
Features 

100 

10 92.91 90.22 91.441 35 

20 93.06 90.99 92.548 33.6 

30 94.14 91.48 92.746 31 

40 94.15 91.95 92.922 29.8 

50 94.251 92.33 93.099 28 

200 

10 93.16 90.03 91.926 33.4 

20 93.39 92.063 92.053 31.9 

30 93.69 92.736 92.686 30.6 

40 94.15 93.185 93.185 28.4 

50 94.25 93.368 93.386 25.7 

250 

10 92.72 90.22 91.163 34.8 

20 93.77 90.8 92.285 33.4 

30 94.34 92.24 93 29.2 

40 94.7 92.74 93.578 27.5 

50 94.9 93.57 94.078 25 

300 

10 93.58 90.03 91.557 34.4 

20 93.39 90.9 92.25 29.2 

30 93.76 92.95 93.294 27.3 

40 94.2 93.19 93.6 26.5 

50 94.91 93.29 93.919 23.2 

500 

10 93.29 90.7 91.997 30.5 

20 93.29 91.76 92.547 29.7 

30 93.39 92.08 93.15 26.6 

40 94.81 93.33 93.789 23.5 

50 95.14 93.62 94.389 21.6 

 

Table 2 shows the comparison between the accuracy of the proposed BFA and three standard classification models, 

support vector machine (SVM), and K-nearest neighbor (KNN), naïve Bayesian classifier (NBC). The table below 

illustrates the impact of the proposed feature selection algorithm on the classification accuracy, meaning that, the stander 

classifiers used all features in the dataset (i.e. 57 features), while the proposed algorithm selected a subset of 21 features 

which enhances the classification accuracy to 95.14. 

 

However, based on the obtained results it is observed that the proposed system achieved the highest results during 

comparison with the related work. It is worth to mention that the standard NBC attained 79.6 with all features, while it 

attained 95.14 when the features selection algorithm or firefly algorithm is applied. Table 2 shows the comparison of 

the proposed system with the related work. 

Table 2 - The Comparison of the proposed FA and three standard models 

N Model Acc. Rate Err. Rate 
No. of 

Features 

1 SVM 90.42 9.58 57 

2 KNN 89.52 10.48 57 

3 NBC 79.6 20.4 57 

4 
Proposed 
System 

95.14 4.86 21 
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Moreover, the proposed model performance has been compared with the most related feature selection algorithm 

which are ACO-SVM, ABC-SVM, GA-NBC, and ACO-NBC as shown in the below table: 

 

Table 3 - The comparison of the proposed approach with the three standard models 

No Algorithm Acc. Rate Err. Rate Ref 

1 ACO-SVM 81.25 19.75 [45] 

2 ABC-SVM 67.9 32.1 [46] 

3 GA-NBC 77 23 [47] 

4 ACO-NBC 84 16 [47] 

5 
Proposed 

System 
95.14 4.86 - 

 

5. Conclusion  

In this study, the Firefly algorithm was selected for the most appropriate accents that would improve NBC’s 

accuracy and predictability. Firefly's algorithm was based on a cluttered strategic guide before doubling its position 

using sigmoidal power. NBC was used in the proposed algorithm as an assessment of order well-being. Overall, NBC 

achieved low accuracy (79.5%), in contrast to the usual KNN or SVM. The Firefly algorithm has greatly improved 

NBC's accuracy by at least more than 90%, indicating a better presentation of the proposed algorithm that does not meet 

the standard SVM and KNN. Tests have shown an amount that would affect the presentation of the Firefly algorithm. 

The accuracy of the classifier has been extended from set to set. Also, weight had a negligible effect on the display of 

the classification. This ratio showed that the proposed algorithm outperformed other comparable algorithms such as 

ACO, ABC, and GA. 
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