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1. Introduction 
In machine learning paradigm, the unevenness in data, with respect to class labels, usually occurs hence most 

researched problem nowadays [1]. The relative importance is increased when the performance of classifiers is often 
impaired when dealing with the imbalanced nature of these datasets [2]. Imbalance data problem occurs when the 
numbers of samples present in the classes vary significantly. One class that can be named as majority class, having 
significantly large number of samples than the other class which presents quietly fewer samples can be named as 
minority class. In some cases, minority class is an essential class which should not be neglected by the classifiers. As 
the majority class contains a large number of samples and minority class contains negligible number of samples as 
compared to the majority class, the classifier becomes biased towards the majority class. Ignorance of the minority 
class results into the higher cost and health risks in the medical and other real-world applications [3][4].  

Many real-world applications encounter imbalanced data problem, such as unreliable telecommunication 
customers or telecommunication management [5], ozone level forecasting [6], face recognition [7], text classification 
[8], and most importantly bioinformatics [9][10][11][12]. The trivial classifiers present good accuracy but often fail to 
predict minority class accurately that means the determined accuracy attained by the classifier is biased towards the 
majority class; while, the minority class samples in reality may be important to analyze. Misclassification of the 
minority class can result into a higher loss of any practical field, fraudulent cases, bank transactions, industrial data 

Abstract: Today, the surge in data has also increased the complexity of class imbalance problem. Real-world 
scenarios in industry, medical, and banks usually generate imbalanced data which poorly affect prediction of the 
minority class by machine learning algorithms – resulting in high cost and also life risk factors. Most importantly, 
in bio-medical field, medical diagnosis of the cancerous patients suffers from uneven samples with respect to 
classes. In this study an oversampling method is proposed to eliminate between the class and within-class 
imbalances problem. The method eliminates noise from the datasets and takes significant concepts of the minority 
class for oversampling. We used sparsity factor in this method, which significantly improved the learnability of the 
classification model. This is achieved by generating appropriate and more number of synthetic samples in minority 
class. For the performance evaluation of this method, series of experiments are performed on the four imbalanced 
microarray datasets. Their classification results declared the proposed method better than the baseline existing 
techniques. 
Keywords: Class Imbalance, Minority Class, Machine Learning, Noise, Oversampling 
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analysis or medical diagnosis [13][14][15]. Importance of minority class can be understood from this example; medical 
diagnosis of any certain cancer patient, misclassification of any non-cancer patient as unhealthy can be covered by 
doing more test and diagnosis, but misclassifying any cancer patient as healthy can compromise life. Addressing this 
issue, the research community has made plenty of contributions and developed significant approaches [16]. These 
approaches can be divided into three categories [17]: (a) data level approach which is a preprocessing stage for 
rebalancing the distribution of samples in the classes [18], (b) algorithmic approach in which new algorithms are 
proposed or the existing algorithms are modified according to the requirements for the nature of imbalanced datasets to 
be classified [19][20], and (c) third approach is cost sensitivity which lies between the data level and algorithmic 
approaches, its purpose is to minimize the total error cost by minimizing the misclassification error rate [21][16][22]. 
This study prefers the data level approach as the preprocessing methods are independent of the classifiers and nature of 
the data set, hence manipulate the data externally [23]. 

The most commonly used preprocessing approaches for balancing the data distributions among the classes are 
resampling techniques by either using oversampling method, undersampling or hybrid methods [24]. In oversampling, 
artificial data is generated for the minority class so as to enhance the number of samples. For addressing 
undersampling, the samples from majority classes are randomly eliminated so as to balance the number of samples in 
all classes [25]. However, this approach risks losing potential data which may be useful for learning process [26]. On 
the other hand, the oversampling may cause overfitting the data, or incorrect selection of samples may occur in the 
invalid region resulting in overlapping of synthetic samples with majority class samples, hence deteriorating the 
classifier performance [27]. Despite the drawbacks, oversampling methods are mostly preferred upon the 
undersampling methods as they do not pose any risk of losing useful data [28]. Moreover, the limitations of the 
oversampling methods are dealt by using the informed methods. The informed methods consider the optimal area of the 
input space for generating the synthetic samples, like safe areas [29] to avoid overlapping of minority samples with the 
majority samples, sparse areas [30], which avoids generating noise among the data or generated new samples near the 
decision boundary [31]. The latest efficient approach for the imbalance data problem used clustering based 
oversampling, in which the whole input space is partitioned into clusters or the classes are partitioned as different 
clusters and sub-clusters. Then, oversampling techniques are applied for generating the synthetic samples [32]. 

This study proposes an oversampling technique by improving adaptive semi-unsupervised weighted oversampling 
(IA-SUWO-S) by using the sparsity factor for the class imbalance problem in DNA microarray data, in which the 
classifiers mostly misclassify the minority class. This oversampling technique first clusters the minority and majority 
classes then oversamples the minority class by generating synthetic samples. IA-SUWOS determines the hard-to-learn 
samples that are closer to the decision boundary and assigns them higher weights according to their Euclidean distance 
from the majority class. It takes into the account the small concepts of the minority class that are far from the majority 
class. The proposed technique clusters the minority samples by considering the majority class samples, avoids majority 
class clusters to come in between the minority sub-clusters for averting the overlapping of the generated samples. 
Secondly, it measures the density the of each minority sub-cluster and then assigns weights to those samples in the 
minority sub-clusters that are sparse apart and far from the majority samples, thus all the sub-clusters are oversampled 
accurately based on required extent. This technique increases the number of generated synthetic minority samples in 
each sub-cluster that presents reduced imbalances between the classes and with-in the classes. Additionally, this 
directly enhances the learnability of the classifier and produces good accuracy rate and lesser chance of 
misclassification of any minority class sample. 

This section presented the main introduction of whole study and rest of the paper is organized as: Section 2 
presented overview of the background study. In section 3, the proposed method is described in detail while section 4, 
present its whole experimental setup. At last section 5 conclude the whole study. 
 

2. Background Study 
As discussed earlier, the data level approach or preprocessing of the data can be categorized into two major 

resampling techniques, oversampling and undersampling. According to the interest of this research, oversampling 
techniques are focused and presented in brief, in this section. Random oversampling is the pioneer and the simplest 
technique for oversampling which generates new samples randomly by replicating the original minority samples [33]. 
However, this technique originates the overfitting problem by exact replication of the samples [25]. To address this, 
Nitesh Chawla proposed Synthetic Minority Oversampling Technique (SMOTE) in 2002, [25]. This technique 
generates the synthetic samples in the feature space by broadening the minority class regions. SMOTE generates 
synthetic minority samples by linear interpolation between the two minority samples present in a neighborhood. While, 
the SMOTE oversamples the minority samples with the same number of synthetic ones, those generated sample may 
fall into incorrect regions and overlapped with the majority class samples, hence causing over generalization [34]The 
SMOTE is the simplest technique hence widely used by the research community for the data imbalances problem [27]. 
Additionally, unlike the SMOTE which equally produces minority samples, various weighted minority oversampling 
techniques have been proposed, which assign different weights to minority samples for oversampling; meaning, the 
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higher weights assigned higher will be the rate of generating synthetic minority samples [35] [36]. The reason behind it, 
is to secure the minority class samples that are more prone to be misclassified, as well as, to improve the quantity of the 
synthetic samples [37].  
 As the SMOTE and other existing techniques usually suffer from the over-generalization problem due their 
limitations, some of the oversampling approaches use the clustering methods. Clustering based techniques at first 
separate the particular minority class into the naturally occurred sub-clusters, then generates the synthetic samples into 
those minority sub-clusters to avoid the risk of over generalization [38]. Noise is another negative factor found in the 
imbalanced data problem [31], latest techniques also employ an additional noise filtering step to remove the noise from 
the dataset or those generate synthetic samples that fall down in to the incorrect region and act as the noisy samples are 
removed from the dataset by using the filters [39][40].  
 Recent oversampling techniques, that follow the clustering methods and noisy filters, significantly reduce the 
imbalanced data problem and achieve efficient results. Majority weighted minority oversampling technique 
(MWMOTE) [37] uses clustering approach and partitions the majority and minority samples to generate synthetic 
samples according to the Euclidean distance of minority samples from the majority samples. It considers only those 
minority sub-clusters that are closer to the majority class. However, it neglects the small concepts or sub-clusters that 
are from the majority class, even they carry the potential information about the minority class. Evolutionary cluster-
based synthetic oversampling ensemble (ECO-Ensemble) for imbalance learning [38] is also clustering-based ensemble 
framework that creates an ensemble by combining a clustering-based resampling method with the evolutionary 
algorithm. This method identifies the regions for oversampling by using the clusters to ensure deviation from over 
generalization between the samples. Another clustering based approach, bi-directional sampling based on k-means 
method is proposed in [41], which uses the hybrid solution of both resampling techniques, oversampling and 
undersampling, with k-means for the imbalances text classification problem. This method eliminates the between-class 
imbalance problem and within-class imbalance problem, along with avoiding the generation of noise in the data. An 
another combination of oversampling method SMOTE with k-means clustering is presented in [28], it is simple and 
effectively avoids noise generation within the data and overcomes the imbalanced data, between the classes and within-
class problem. It clusters the data by using k-means algorithm and considers those areas of input space that are most 
critical for oversampling. It also determines the density of the samples and assigns more weights to the sparse minority 
samples in a particular sub-cluster. The value of k is important for the effectiveness of the algorithms, as it produces the 
number minority clusters accordingly. For the noisy imbalanced data classification problem, a radial-based 
oversampling (RBO) is also proposed in literature, which uses the radial based functions for data generation in the 
rightful regions of the minority class according to their imbalanced ratio. This method effectively removes noise from 
the data. The synthetic data is generated in the safe areas as the RBO calculates the joint potential in each area of the 
feature space, this also helps in avoiding the over generalization. This method also takes into the account the higher or 
lower dimensional spaces [40]. 

 
Fig. 1 - Oversampling of minority samples 

 
Recently, the imbalanced data learning becomes thought provoking domain in bio-medical science as well. As the 

distributions of samples in minority class are mostly under-represented in the standard algorithms, or the decision rules 
of trivial classifiers are significantly weak for accurate prediction of minority class than the majority class samples. The 
importance of minority class cannot be neglected in bio-medical sciences at any cost. The example of cancerous 
patients problem, mentioned earlier, clearly suggests that misclassification of minority class might be result into a life 
risk. When the number of “Healthy” data samples are 10,923 and “Cancerous” data samples present only 260 in 
number, this is the highly imbalance mammography dataset [42], what will happen to the classifier? It will bias towards 
the majority class. And if it classifies a cancerous patient as a healthy one, obviously it will impact a great loss. 
KernalADASYN [36], an oversampling method proposed for the medical perspective, and experimented on the real-
world medical datasets. This method uses the probability density estimation (PDE) for minority class and data 
generation scheme. It considers hard-to-learn minority samples more and assigns them higher weights that enhances the 
classifiers performance.  
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Most common and the first step in gene structure prediction is translational initiation site (TIS) recognition. 
However, TIS recognition from machine learning perspective is class imbalance problem. While various methods are 
applied to overcome the class imbalance problem, the resampling method proposed in [43] works effectively on these 
datasets. An undersampling method based on ant optimization ACOSampling is proposed for imbalanced DNA 
microarray data. This method removes the noisy genes initially from the data by using feature selection technique then 
it filters the majority class samples which have no potential information and makes the best training sample subset. At-
last this method creates a balanced training set by combining the minority samples with the majority samples having 
higher frequencies. The beneficial knowledge obtained in the data mining process can be used in healthcare 
management for improving the quality of their services and reducing the number of medical errors. Combination of 
effective algorithms output the best results in terms of efficiency for the imbalanced data classification, while the 
ensemble of algorithms used with subsampling method works more effectively. Therefore, the proposed [44], 
subsampling method with ensemble of clustering algorithms work in fast and efficient way for imbalanced datasets, 
which takes into consideration the minority class and helps the classifiers to predict minority class accurately. 
  

3. Improved Adaptive Semi-Unsupervised Weighted Oversampling with Sparsity Factor 
(IA-SUWO-S) 

3.1 Semi-unsupervised clustering 
Before the clustering process, IA-SUWOS distinguishes the noisy samples present in both classes and removes 

those noisy samples from the dataset. This is done by determining the selected samples and its four nearest neighbors. 
If this sample is not similar to its nearest neighbors, it suggests that this sample belongs to other class. While, 
considering it as a noise, it is removed from the data. After removing noise data, the second step is to cluster the input 
space separately into majority and minority clusters and further small concepts as sub-clusters. The proposed approach 
first clusters the majority class into m majority sub-clusters . Then it clusters the minority class 
according to the semi-unsupervised clustering approach to determine the presence of any majority sub-cluster between 
the two selected minority sub-clusters, say  and , with aim to be merged. If any majority sub-cluster is 
not present between them, these two candidate minority sub-cluster are allowed to be merged and result into a new sub-
cluster . The reason behind this approach is to avoid overlapping of the generated synthetic samples with the 
majority class samples. If any majority cluster found to be present between them, these sub-cluster are not allowed to 
be merged and their distance is set to be infinity so they cannot be selected as the candidate to merge again. These steps 
are repeated until all minority samples allocated into finalized minority sub-clusters  and the distance 
between the two closest sub-clusters is less than threshold T. This T can be found as the Euclidean distance  from 
all minority (majority) samples h and all other minority (majority) samples, it can be expressed as Eq. (1): 

       (1) 

where , is a user defined parameter and its best value depends upon the dataset. 

3.2 Adaptive sub-cluster sizing 
It is necessary to oversample all the minority sub-cluster even if they are far from the majority class, as they carry 

important information about minority class. In order to consider all the minority sub-clusters for oversampling, small 
concepts or the sub-cluster that are far from the majority class, this method measures the misclassification complexity 
of all the minority sub-clusters with the majority sub-clusters. This will result into the misclassification error of each 
minority sub-cluster and those sub-cluster that shows complexity for the classifier or gain more misclassification error 
rate are assigned a larger cluster size. For measuring the complexity of minority sub-cluster based on their 
misclassification error rate, linear discriminant analysis (LDA) is used as the classifier which runs k times. This 
classifier is the simple and requires no parameters to tune. For testing and training sets, all minority sub-clusters are 
split into same k sized partitions. All the majority samples from each majority sub-cluster and k-1 partition from each 
minority sub-clusters used for the training purpose, while rest of the 1 partition from each minority sub-cluster used for 
the testing purpose. In this way misclassification error  is calculated in each fold using Eq. (2), mentioned later. This 
error rate is then used to measure average rate as  from all folds. This method determines every minority sample 
which is misclassified as the majority sample. Considering this average error rate each minority sub-cluster is resized 
and these steps keep on repeating until all the sub-cluster get the final size . This average error rate  is then 
standardized as Eq. (2): 
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           (2) 

Final sizes of any two minority sub-clusters say L1 and L2 should have same average error rates *L1, *L2, see Eq. (3): 

    (3)   

 

3.3 Assigning weights for synthetic samples generation within each minority sub-cluster 
Probability distribution of the sample for the data generation is calculated on behalf of weights assigned to the 

minority samples. These weights are assigned first according to Euclidean distance of minority samples from the 
majority samples, and secondly according to the sparsity factor measure in each minority sub-cluster. For assigning the 
weights according to Euclidean distance of the majority samples, for each minority sample say , find the 
majority sample among its nearest neighbors and measure the Euclidean distance  from majority 
sample . This distance becomes normalized when it is divided by the total number of feature D to make it more 
robust, it is expressed as Eq. (4): 

     (4) 

Closeness factor of samples  can be defined as Γ  which is expressed as Eq. (5): 

      (5) 

where present the cutoff function which is used for sub-cluster  to prevent it from becoming too large. It happens 
when  and  are too close to each other. This is defined as Eq. (6): 

     (6) 

where  is the biggest value which  can reach. The threshold  is automatically calculated for each 
minority sample, by finding the Euclidean distance between the closest minority sample and its closest majority 
sample . It is defined as Eq. (7): 

     (7) 

where , is the number of samples in sub-cluster . Those particular minority samples that are closer to the majority 
samples acquire the higher weights  by estimating the threshold . The reason behind assigning higher 
weights to these sample according to their Euclidean distance from the majority sample is that those samples which are 
closer to the decision boundary and majority samples have more chances to be misclassified, hence they are more 
important for the classification process. The value for   is calculated as Eq. (8): 

     (8) 

 
Secondly, for assigning weights according to the sparsity factor, this method measures the density of each minority 

sub-cluster, see Eq. (9). Density of the sub-cluster is obtained by measuring the Euclidean distance among all the 
minority samples present in the particular that particular sub-cluster. This density measure is inverted in order to get the 
sparsity factor, as the sparsity measure is indirectly proportional to the density using Eq. (10).  Average sparsity factor 
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is measured from all the obtained sparsity measures for all minority sub-clusters as Eq. (11). Then this average sparsity 
factor is converted into the weights that are to be assigned to minority samples as Eq. (12).  

    (9) 

     (10) 

   (11) 

     (12) 

These both weights are used to derive the probability distributions of minority samples for the oversampling. 

     (13) 

3.4 Oversampling of Minority Instances 
Finally, for the oversampling of the weighted minority samples, select the candidate minority samples a, from one 

sub-cluster according to the probability distribution , then select another sample b from its nearest neighbors 
belong to the same sub-cluster and generate a new sample between them c (Eq. 14), which is added in the sub-cluster 
O. These steps are repeated until the sub-cluster size reached its extent . 

               (14) 

4. Experimental Setup 
For performing experiments related to this study, all the classification algorithms were implemented using 

MATLAB 2013b, on a computing machine with CPU power 3.80 GHz and 3.79GHz, 8.00 GB RAM, and Windows 10 
as 64-bit operating system. The datasets and performance matrix are discussed in the following subsections. 

4.1 Datasets 
For the performance evaluation of IA-SUWO, a complete experimental setup has been established, and it is 

experimented on four microarray benchmark imbalanced datasets. These datasets include, Glioma dataset, CNS 
(Central Neural System), Colon dataset and Lung cancer dataset. These are the bio-medical datasets and three data sets 
named, Colon, CNS and Lungs are binary class datasets and the Glioma dataset include subtypes: non-cancer 
glioblastomas (NG), cancer glioblastomas (CG), non-cancer oligodendrogliomas (NO), cancer oligo-dendrogliomas 
(CO). The CG is used as the minority class which contain 14 samples and rest of three are combined as majority class 
that contain 36 samples in it. The Colon, CNS and Lung cancer datasets sizes are 62, 60 and 39 respectively. The 
number of genes present in these four dataset range from 2000 to 10367. Their imbalance ratio and summarized 
datasets detail are given in Table 1.  

Table 1 - Datasets used for the experiments 
Dataset Total Sample Genes Majority 

samples 
Minority 
samples 

Imbalanced 
Ratio 

Glioma 50 10367 36 14 2.57 
CNS 60 7129 39 21 1.86 
Colon 62 2000 40 22 1.82 
Lungs 39 2880 24 15 1.60 

 

4.2 Performance Evaluation Metrics 
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In imbalance datasets classification results recognition are biased towards majority class. All commonly used 
metrics are not suitable when the distribution of samples in classes is not equal. In order to deal with imbalanced data 
evaluation some specific metrics are used, such as: F-measure and G-mean declare as the functions of confusion matrix 
and AUC (area under the receiver operation characteristic curve) is used to evaluate performance of classifier or 
learner. 

     (15) 

            (16) 

         (17) 

     (18) 

where TPR is defined as same as “Recall” and TNR is defined as: 

      (19) 

Table 2 - Experimental Results Four datasets using SVM 

Dataset Measure Random 
Oversampling SMOTE MWMOTE IA-SUWO-S 

Glioma 
F-measure 
G-mean 
AUC 

0.550 
0.652 
0.705 

0.683 
0.741 
0.770 

0.704 
0.842 
0.772 

0.782 
0.848 
0.892 

CNS 
F-measure 
G-mean 
AUC 

0.856 
0.873 
0.895 

0.903 
0.925 
0.948 

0.923 
0.942 
0.969 

0.932 
0.952 
0.974 

Colon 
F-measure 
G-mean 
AUC 

0.736 
0.724 
0.788 

0.936 
0.948 
0.963 

0.805 
0.825 
0.893 

0.923 
0.954 
0.973 

Lungs 
F-measure 
G-mean 
AUC 

0.752 
0.771 
0.795 

0.969 
0.863 
0.987 

0.841 
0.887 
0.899 

0.970 
0.982 
0.988 

 

4.3 Experimental Results 
The proposed IA-SUWOS technique was evaluated on four bio-medical datasets, and compared with other 

classification methods. The competitive methods include SMOTE, SVM, and KNN. Table 2 presents the results for 
comparison purpose. During training process, all the datasets were divided into training and testing sets with 70:30 
percent ratio. 70% samples were randomly used for the training purpose, while the rest 30% for testing the classifier. 
According to the statistics presented in Table 2 and Table 3, it can be suggested the proposed approach remained most 
suitable, as compared to Random Oversampling, SVM, and KNN as classifiers applied on the same datasets. The 
proposed IA-SUWO-S achieved best evaluation matrix, hence generated most accurate classification results in our 
experiments, even when the data is highly imbalanced.  
 

Table 3 - Experimental Results Four datasets using KNN 

 Dataset Measure Random 
Oversampling SMOTE MWMOTE IA-SUWO-S 
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Glioma 
F-measure 
G-mean 
AUC 

0.650 
0.622 
0.605 

0.783 
0.841 
0.820 

0.814 
0.849 
0.802 

0.882 
0.840 
0.822 

CNS 
F-measure 
G-mean 
AUC 

0.756 
0.823 
0.780 

0.947 
0.929 
0.959 

0.929 
0.947 
0.971 

0.932 
0.952 
0.974 

Colon 
F-measure 
G-mean 
AUC 

0.706 
0.756 
0.778 

0.925 
0.922 
0.926 

0.905 
0.895 
0.890 

0.923 
0.954 
0.973 

Lungs 
F-measure 
G-mean 
AUC 

0.652 
0.678 
0.720 

0.961 
0.835 
0.887 

0.901 
0.887 
0.909 

0.970 
0.982 
0.908 

5. Conclusion 
 Preprocessing of data by using the sampling methods are proven to be more effective to cope with imbalanced data 
problem. In sampling methods oversampling approach is more adopted by the researcher as the undersampling methods 
have risk of losing any potential information that can used in machine learning. As the imbalanced data impact 
negatively in machine learning algorithms in which the mostly the classifiers biased towards the majority class and 
predict minority class poorly or they failed to predict minority class accurately. Misclassification of minority class 
result into higher cost and most importantly in medical diagnosis this might be result into a life risk. The proposed 
oversampling technique in this study used to overcome the class imbalance problem in the DNA microarray data.  
Extensive experiments are performed and their results demonstrate that the proposed method work efficiently to 
overcome imbalanced data problem in microarray data. 
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