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A novel approach is presented to address the prediction challenge   in 
domestic solid waste generation through the application of machine 
learning techniques. To overcome the limitations inherent in capturing 
intricate temporal patterns faced by conventional Long Short-Term 
Memory (LSTM) models de- signed for time series forecasting, an 
enhanced variant, termed e-LSTM, is introduced. This model 
incorporates crucial enhancements to rectify standard LSTM 
shortcomings. Introducing a hybrid activation function, SigmoRelu, 
bolsters the model’s capacity to grasp complex time series patterns. 
Furthermore, the RAdam optimizer is employed to optimize the 
learning process and improve convergence. Dropout layers are 
seamlessly integrated within the LSTM architecture to counter 
overfitting, ensuring robust generalization to novel data. A series of 
comprehensive experiments is conducted to compare the performance 
of the e-LSTM model against standard LSTM and GRU models, 
showcasing its noteworthy advancements. Notably, the e-LSTM model 
demonstrates superior predictive accuracy in forecasting waste 
generation compared to standard long short-term memory (LSTM) and 
gated recurrent unit (GRU) models. In essence, the proposed e-
LSTM model represents a significant stride in domestic solid waste 
prediction, effectively mitigating the limitations of traditional LSTM 
models. The synergistic integration of SigmoRelu activation, RAdam 
optimization, and dropout mechanisms results in a resilient and 
accurate predictive framework. Empirical results affirm the model’s 
superiority, establishing it as a valuable tool for waste management 
applications and decision-making processes. 
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1. Introduction 
As the urban population grows significantly over time, cities have numerous issues, particularly in terms of waste 
management. According to the world-bank, around 2.01 billion tons of waste were generated in 2016 as a result 
of urban population and economic expansion, and this number is expected to rise to 3.40 billion tons by 2050 [1]. 
Municipal the surge in municipal solid waste (MSW) has been a consequential outcome of rapid urbanization, 
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economic progress, and population expansion, with projections estimating a global annual volume of 2.2 billion 
tons by 2025. This exponential growth poses a substantial threat to urban areas and their surrounding ecological 
landscapes, manifesting in issues such as illicit dumping and environmental contamination. Particularly 
pronounced in economically disadvantaged nations, MSW emerges as a formidable global environmental concern 
[2]. 

The imperative to institute effective municipal solid waste management (MSWM) strategies is paramount, not 
only for the preservation of resources but also for safeguarding the environment and public health. However, the 
intricate and diverse nature of MSW poses inherent challenges, rendering environmental issues associated with 
waste management notably intricate and demanding in their resolution[3]. 

Effective waste management and regulatory decision-making hinge on accurate waste forecasting. However, 
predicting domestic solid waste encounters challenges due to limited methods and historical data, impeding 
volume estimates and policy creation. Solid waste prediction play crucial roles in environmental planning, 
considering factors like population growth, historical trends, and socioeconomic aspects [4]. The current methods 
for predicting domestic solid waste encounter obstacles stemming from complex patterns, limited data 
availability, and evolving technologies. These challenges underscore the need to enhance prediction accuracy 
through advanced models and    improved data quality [5].  Although intelligent techniques such as machine 
learning algorithms, data mining, GIS, and predictive analytics with IoT devices contribute to accurate waste 
prediction and resource allocation, there is still room for improvement. Recent advancements in deep learning 
research, particularly methods like Convolution Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), 
offer promising avenues for revolutionizing waste prediction [6]. In this context, Long Short-Term Memory 
(LSTM), a type of RNN, holds particular potential[7]. To address common challenges in waste forecasting, this 
paper introduces an enhanced version of LSTM known as e-LSTM. The e-LSTM model incorporates innovative 
solutions such as dropout layers to combat overfitting, the RAdam optimizer for optimization, and the SigmoReLU 
activation function to mitigate vanishing gradients [8]. These techniques empower e-LSTM for analyzing time-
series data, and experimentation is essential for achieving optimal results. 

2. Literature Review 

2.1 Overview of Malaysian Domestic Solid Waste 
An Overview of Scheduled Wastes Management in Malaysia discusses the challenges of solid waste management 
in the country. Malaysia faces solid waste issues due to urbanization, industrialization, and population growth. 
The nation has taken steps like 3R principles (Reduce, Reuse, and Recycle), waste segregation, and waste 
management facilities. Still, concerns persist, including infrastructure gaps and non-recyclable waste. 
Collaboration between government, industries, and the public is crucial for sustainable waste management and a 
greener future [4]. Malaysia aimed to predict solid waste generation accurately. Researchers used machine 
learning techniques and historical data to create models considering factors like population growth, urbanization, 
and policies. Results showed machine learning’s effectiveness in predicting waste generation [2]. Models 
forecasted waste quantities with high accuracy, aiding municipal authorities and waste management agencies to 
allocate resources efficiently [9]. Machine learning is used to examine the influence of seasonal variation on 
municipal solid waste composition. Large datasets from different regions and times of the year are analyzed using 
advanced algorithms. The goal is to create a predictive model that forecasts waste composition accurately across 
changing climates. This research aids waste management strategies, guiding informed decisions for optimized 
waste handling and resource recovery [10]. 

2.2 Long Short-Term Memory (LSTM) 
Various machine learning and deep learning methods have been used recently to predict the rates at which solid 
waste is generated, offering vital information for sustainable waste management. In order to attain high accuracy 
in waste generation prediction, researchers have utilized models including Random Forests (RF), Long Short-
Term Memory (LSTM) networks, and Artificial Neural Networks (ANN) [11]. ANNs have been employed 
extensively because of their capacity to capture intricate nonlinear interactions, because of their memory capacity, 
these models are very good at processing time-series data, which makes them perfect for long-term trend 
prediction. 

By averaging several decision trees, Random Forests, an ensemble learning technique, minimize overfitting 
and enhance generalization while producing reliable predictions [12]. Historical data on waste production, 
socioeconomic conditions, population increase, and other pertinent variables are used to train these models. 
Better planning and resource allocation for urban waste management systems have been made possible by the 
combination of these methodologies, which has greatly increased the precision of waste generation projections. 
Studies have demonstrated how well these models work in a variety of metropolitan environments and how well 
they adjust to changing regional features and data availability[5], [11]. 
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LSTM, a type of recurrent neural network (RNN) architecture, is well-suited for modeling sequential data and 
effectively addresses the vanishing gradient problem. No- table components of LSTM include memory cells, forget 
gate, input gate, output gate, and a well-maintained gradient flow Fig. 1. Widely applicable across various domains 
such as Natural Language Processing (NLP), speech recognition, and time series forecasting, LSTM networks 
involve forward propagation through three essential thresholds forget , input and output gate [13]. LSTM stands 
out in predicting both the generation and composition of solid waste, successfully capturing intricate temporal 
patterns in waste data. Leveraging memory cells and gating mechanisms, LSTM excels in handling short-term 
fluctuations and long-term dependencies inherent in time-series waste data. Its predictive capabilities extend to 
estimating waste generation rates, assessing composition variations, and facilitating tasks like collection 
scheduling, recycling strategy formulation, and planning treatment facilities. This makes LSTM a valuable tool for 
fostering sustainable waste management practices [14]. 

 

 

Fig. 1 Long short-term memory network cell architecture 

3. Methodology 

3.1 The Proposed Architecture of e-LSTM 
In traditional LSTM networks, information processing relies on three critical components within the hidden-layer 
and the cell structure forget, input, and output gates. While effective in many applications, standard LSTM models 
face challenges, particularly in handling vanishing gradients [14]. To address these shortcomings, the e-LSTM 
model introduces innovative solutions. One key enhancement is the integration of a hybrid activation function 
called SigmoReLU, which combines features from both the Sigmoid (x) and ReLU functions. Where ReLU (Max (0, 
x)) function returns (𝑥𝑥) if (𝑥𝑥) is positive, otherwise return 0 as defined in Equation (1). Furthermore, the 
Sigmoid(x) maps (x) to a value between (0 and 1) this provide a smooth gradient for both positive and negative 
(x), which helps with learning during backpropagation. 

SigmoReLU (x) = max (0, x) + sigmoid(x)                                                              (1) 

Unlike the standard sigmoid activation function, which can lead to vanishing gradients, SigmoReLU offers 
improved performance [15]. Additionally, the e-LSTM architecture includes multiple layers, each utilizing the 
SigmoReLU activation function. Dropout layers are also incorporated to prevent overfitting, enhancing the model’s 
robustness and ability to generalize to new data (refer to Fig. 2) [14]. Overall, these enhancements aim to address 
the limitations of standard LSTM models and improve the performance of e-LSTM in handling complex sequential 
patterns. 
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Fig. 2 e-LSTM architecture 

3.2 Rectified Adam Optimizer (RADAM) and Dropout Mechanism 
The e-LSTM model’s efficiency and performance are significantly boosted by the implementation of the rectified 
Adam optimizer (RAdam) and dropout mechanism. RAdam contributes to adaptive learning rate adjustments, 
enhancing the model’s convergence by dynamically adapting the learning rate for each parameter during training 
based on gradient history [16]. This adaptability proves valuable in handling noisy waste data patterns with 
irregular trends and variations commonly found in real-world waste generation data. The adaptive approach of 
RAdam is particularly beneficial for time series forecasting, such as domestic solid waste generation, resulting in 
improved e-LSTM model performance and more precise predictions [8]. The enhanced e-LSTM model architecture 
comprises an input layer integrating LSTM, activation, and dropout layers, three hidden layers each featuring 
activation and dropout layers, and an output layer consisting of dense and activation layers. The LSTM and 
activation layers facilitate the flow of information, ensuring the model’s robust generalization. Dropout layers are 
strategically employed during training to exclude neural units and mitigate overfitting[14]. 

3.3 Hybrid Activation Function (SigmoReLU) 
The hybrid activation function (SigmoReLU), a fusion of Rectified Linear Unit (ReLU) and sigmoid functions, was 
incorporated to enhance the e-LSTM model’s predictive performance for domestic solid waste. SigmoReLU 
combines ReLU for non-negative values and sigmoid for values between (0 and 1) [15]. Introducing non-linearity 
to neural networks, enriching their capacity to learn complex input-output relationships. SigmoReLU mitigates 
the vanishing gradient problem through ReLU, stabilizing learning during back-propagation therefore combining 
ReLU and Sigmoid ensures numerical stability during training Equation (1), guarding against computational issues 
arising from extreme values [5]. This hybrid activation bolsters model representational power, activating neurons 
for specific input features while smoothly transforming inputs into probabilistic outputs [15]. The SigmoReLU 
hybrid activation boosts the e-LSTM in predicting domestic solid waste and improves the non-linearity, gradient 
handling, numerical stability and enhancing time series pattern capture. SigmoReLU incorporation further aids 
domestic solid waste rate prediction 

3.4 Summary of the Dataset 
The study’s dataset was gathered from the Labis and Segamat landfill sites in the Johor region of Southern Peninsular 
Malaysia, covering a period of three years (2020–2023). It consists of daily measurements of domestic solid waste 
generation, represented as (Net WT). The dataset details are summarized in Table 1. 

Table 1 Summary of datasets 

Summary Segamat 
Landfill 

Labis Landfill 

Total Rows 1069 1069 
Missing Values 198 rows 169 rows 
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Mean (NET WT) 328,813.47 309,433.43 
Standard Dev. 160,203.58 155,566.85 
Minimum (NET WT) 9,070 613 
25th Percentile 193,870 191,400 
Median (50th %) 347,550 362,410 
75th Percentile 467,205 415,952.5 
Maximum (NET WT) 680,520 773,850 

3.5 Model Training and Optimization Strategies 
The study employed a train-test holdout validation scheme for conducting experiments. The dataset was divided 
using a 75–25 train-test split, meaning that it was split into two portions, with 75% of the data allocated for training 
and 25% for testing. As a result, the model was trained using 825 samples, and then its performance was evaluated 
on the remaining 270 samples. This approach ensured unbiased assessment on unseen data, emphasizing the 
model’s generalization capabilities. To normalize data and facilitate effective pattern learning, Min-Max Scaling with 
MinMaxScaler was applied. 

 For time series forecasting of daily domestic solid waste income rates, the Time Series Generator method was 
employed, this technique allowed the e-LSTM model to capture temporal dependencies and historical context, 
improving predictive accuracy by considering historical trends Fig. 3. To prevent overfitting, a dropout layer was 
introduced between e-LSTM layers. Various dropout values, selected between (0.1 to 0.5) through a trial- and-
error approach, were assessed Table 2. The dropout layer effectively reduced overfitting, minimizing the gap 
between training and test errors from (3.94% to 0.0019%). However, optimal dropout values should be carefully 
selected, as excessively large values may harm model performance and prediction accuracy [17]. 

Table 2 Evaluate dropout value added to propose e-LSTM 

Value RMSE Training 
Error 

Testing 
Error 

0.1 0.0689 0.0090 0.0070 
0.2 0.0228 0.0021 0.0019 
0.3 0.129 0.0087 0.0045 
0.5 0.341 0.0129 0.0220 

 
Fig. 3 e-LSTM training procedure 
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3.6 Evaluation Measures 
In our study, we comprehensively evaluated the e-LSTM model against two common baseline models, standard 
LSTM and gated recurrent unit (GRU), for domestic solid waste income rate forecasting. We used various 
evaluation metrics, including MSE, MAE, RMSE, R-squared, and accuracy, to assess predictive performance and 
generalization capabilities. These measures facilitated a fair comparison, with lower MSE, MAE, RMSE and higher R-
squared, and better accuracy indicating e-LSTM’s superiority in forecasting. These findings have practical 
implications for waste management and related fields. 

3.7 Performance Evaluation Measures 
In this study we conducted a comprehensive assessment of the e-LSTM model by comparing it with standard LSTM 
and gated recurrent unit (GRU) models for predicting domestic solid waste generation rates. Various metrics, 
including mean score error (MSE), mean absolute error (MAE), RMSE, R2, and accuracy, were employed to ensure a 
fair comparison. Lower MSE, MAE, and RMSE, along with higher R2 and improved accuracy, collectively indicated 
the superior forecasting capabilities of the e-LSTM model, which holds practical applications in waste management 
and related fields. Additionally, the evaluation included specific performance measures such as training and testing 
loss, maximum residual error Equation (2), this equation computes the maximum absolute error between the actual 
(test) and predicted values (prediction), providing the worst-case error in the predictions. Variance score this score 
measures the proportion of the variance (var) in the actual data (test) that is predictable from the model 
(prediction). A score of 1 indicates perfect prediction, while a score of 0 indicates that the model does not explain 
any of the variability in the data Equation (3). 

The R², or the coefficient of determination, measures how well the predicted values approximate the actual 
data. It is the proportion of the variance in the dependent variable that is predictable from the independent 
variables where sum is summation function, summing over all (n) data points, test[i] represent the (i-th) actual 
observed value, prediction[i] represent the (i-th) predicted value and mean [test] represent the mean (average) 
of the actual observed values. An R² of 1 indicates perfect prediction, while an R² of 0 indicates that the model 
does not predict the data any better than the mean of the test data Equation (4). Therefore, model accuracy formal 
used to measure how close the predicted values are to the actual values, with 100% indicating perfect accuracy, 
which provided insights into the model’s predictive precision, where (abs) is absolute value function, test is actual 
observed values and prediction is the predicted value by the model Equation (5). These evaluation metrics 
collectively validated the precision and reliability of the proposed e-LSTM predictive model. 

𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =   𝑀𝑀𝑀𝑀𝑀𝑀 (𝑀𝑀𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 − 𝑝𝑝𝐸𝐸𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝐸𝐸𝑝𝑝 ))                                               (2) 

𝐸𝐸𝑀𝑀𝑝𝑝𝐸𝐸𝑀𝑀𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝 𝑉𝑉𝑀𝑀𝐸𝐸𝑝𝑝𝑀𝑀𝑝𝑝𝑝𝑝𝑡𝑡 𝑆𝑆𝑝𝑝𝐸𝐸𝐸𝐸𝑡𝑡 =   1 − 𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑝𝑝𝑣𝑣𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 

                                          (3) 

𝑅𝑅2 =  ∫  (𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 [𝑝𝑝] − 𝑝𝑝𝐸𝐸𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝𝐸𝐸𝑝𝑝 [𝑝𝑝])2/∫ (𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 [𝑝𝑝] −𝑚𝑚𝑡𝑡𝑀𝑀𝑝𝑝[𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡])2𝑝𝑝
𝑝𝑝

𝑝𝑝
1                            (4) 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 =   [𝟏𝟏 − 𝑨𝑨𝒂𝒂𝒂𝒂(𝒕𝒕𝒕𝒕𝒂𝒂𝒕𝒕 − 𝒑𝒑𝑨𝑨𝒕𝒕𝒑𝒑𝒑𝒑𝑨𝑨𝒕𝒕𝒑𝒑𝒑𝒑𝒑𝒑) / (prediction)] * 100                               (5) 

3.8 Modifying the e-LSTM for Future Prediction 
The e-LSTM model is designed to forecast future domestic solid waste generation by analyzing recent data. It 
follows a loop mechanism to process input data and generate predictions for the upcoming days. During this 
process, the input data is reshaped, and the predictions are stored in arrays and lists. Each time step is iterated 
through, predicting the waste generation for the next day, and these forecasts are stored in a list. Additionally, 
arrays are used to represent both the original and predicted days. In essence, this model facilitates the forecasting 
and storage of future waste generation values based on historical data. 

3.9 Estimation of Landfills Disposal Area 
In this study, the implemented e-LSTM model is utilized to forecast the rate of domestic solid waste generation at 
landfill sites. This prediction holds significance in determining the required land area for waste disposal and 
assessing the potential capacity of proposed landfills. For the purpose of estimating landfill area size, a general 
formula is employed, which can be expressed in Equation (6). Where the (Wr) represents the domestic solid 
waste generation rate, measured in kilograms per capita per year, (L) denotes the lifespan of the landfill, measured 
in years, (P) represents the population, indicating the number of people. Additionally, the (Pdensity) represents 
the total waste volume or waste bulk density, measured in kilograms per cubic meter. Lastly, (H) denotes the 
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desired height of waste disposal at the landfill, measured in meters. The capacity of a landfill is significantly 
influenced by the landfill height. Reported waste heights at sanitary landfills can vary from 15 to 30 meters, with 
some instances reaching a maximum height of 50 meters. However, for waste heights surpassing 25 meters, special 
requirements are necessary to prevent waste slippage. In this specific study, the existing landfill height of 10 
meters is taken into consideration[18]. 

𝐿𝐿𝑀𝑀𝑝𝑝𝑝𝑝𝐿𝐿𝑝𝑝𝐸𝐸𝐸𝐸 𝐷𝐷𝑝𝑝𝑎𝑎𝑝𝑝𝐸𝐸𝑎𝑎𝑀𝑀𝐸𝐸 𝐴𝐴𝐸𝐸𝑡𝑡𝑀𝑀 = 𝑊𝑊𝐸𝐸 ∗ 𝐿𝐿 ∗ 𝑃𝑃 ∗ 1.5 /(𝑃𝑃𝑝𝑝𝑡𝑡𝑝𝑝𝑎𝑎𝑝𝑝𝑡𝑡𝑃𝑃 ∗ 𝐻𝐻)                                       (6) 

The forecasted domestic solid waste collection rates at the landfill sites and the waste disposal options 
specified in the Johor waste management plan for 2025 are employed to calculate the required landfill area in the 
research. By utilizing the waste generation predictions generated by the e-LSTM model and incorporating the 
relevant parameters into the formula, researchers can estimate the land area needed for waste disposal and make 
informed decisions regarding landfill capacity requirements. 

4. Results and Discussions 

4.1 The e-LSTM Model Prediction 
The e-LSTM predictions for both the Segamat and Labis landfill sites showcased impressive and precise forecast 
capabilities. Utilizing the e-LSTM model, the predictions effectively showcased the model’s competence in 
capturing temporal patterns and variations in the daily generation of domestic solid waste. For the Segamat and 
Labis landfills site, the e-LSTM model exhibited remarkable predictive capabilities by generating forecasts that 
closely matched the real waste generation data, as depicted in (Fig. 5 and Fig. 6). The model’s precision in its 
predictions was evident through its lower Mean Squared Error (MSE) and Mean Absolute Error (MAE) when 
compared to alternative models. Additionally, the Root Mean Squared Error (RMSE) values were minimized, 
indicating consistent proximity between the e-LSTM predictions and the observed values refer to Fig. 4. This high 
degree of accuracy was further supported by the model’s impressive R2 score, highlighting a strong correlation 
between the predicted and actual waste generation. The e-LSTM model demonstrated precise waste generation 
forecasts, reflected in lower MSE and MAE values. Reduced RMSE and increased R2 scores indicated accurate 
predictions. Compared to other models (refer to Table 3 ), the e-LSTM displayed superior accuracy highlighting 
its potential in waste management for precise trend. The e-LSTM model consistently aligns predicted values with 
actual ones, demonstrating strong correspondence. These predictions extend number of months ahead 
showcasing its accuracy in capturing waste generation trends (refer to Fig. 7 and Fig. 8). 
 

 

Fig. 4 e-LSTM Performance evaluation: MSE and MAE comparison for Segamat and Labis landfills 
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Fig. 4 Domestic solid waste generation: testing vs. prediction for Segamat landfill sites 

 

 

 

 

 

 

 

 

 

Fig. 5 Domestic solid waste generation: testing vs. prediction for Labis forecasting at Segamat 
and Labis landfill sites 

 



178 J. of Soft Computing and Data Mining Vol. 5 No. 1 (2024) p. 170-182 

 

 

 

Fig. 6 e-LSTM Predictions for the next 3 months (Jan 2023 - Mar 2023) for Segamat landfill 

 

Fig. 7 Forecasting the future: e-LSTM predictions for Segamat landfill in 2023 

4.2 Comparing e-LSTM with Alternative Machine Learning Models 
The performance evaluation of the Enhanced Long Short-Term Memory (e-LSTM) model involved a comprehend- 
comparison with the standard LSTM and Gated Recurrent Unit (GRU) models, employing various metrics 
including Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), accuracy, 
and R-squared (R2) score. The outcomes underscore the significant advantages offered by the e-LSTM model in 
terms of predictive precision and generalization capabilities. Upon examining the performance of the three 
models, several key observations emerge from the results. 

 The e-LSTM model outperformed the standard LSTM and gated recurrent unit (GRU) models in a 
comprehensive performance evaluation using metrics like (MSE, MAE, RMSE, R2 score and accuracy). The results 
consistently showed significantly lower MSE and MAE values, indicating superior pattern and trend capturing 
Fig.9. The e- LSTM model exhibited higher accuracy, making a higher percentage of correct predictions, and lower 
RMSE values, depicting closer predictions to actual values and precise data variability representation. The higher 
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R2 score for e-LSTM suggests adeptness in capturing data variability and reliable representation of variable 
relationships Table 3. 

Table 3 Summary of comparison models performance 

  Models  MSE MAE RMSE MAX  Error Variance 
Score 

R2 Accuracy 

GRU 0.0187 O.O802    0.089 0.424 0.85 0.8
3 

0.87 

LSTM 0.0054 0.0587      0.074 0.263 0.87 0.8
5 

0.88 

e-LSTM 0.0028 0.0409      0.065 0.231 0.90 0.9
2 

0.93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Comparative analysis of GRU, LSTM and e-LSTM models: MSE and MAE performance evaluation 
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4.3 Landfill Disposal Area Estimation 
This study estimates waste disposal area in southern Malaysia, focusing on Segamat and Moakil landfill sites. Waste 
density, crucial for accurate calculations, ranges from 655 kg/m3 (uncompact) to around 761 kg/m3 (compacted), in 
line with typical landfill densities (800 kg/m3) [10]. Total waste volume is 34.1 million m3, and landfill height is 
assumed at 15 meters, based on literature recommendations. Furthermore, it is imperative to consider the potential 
increase in waste height over time, as the required disposal area diminishes. In order to allow for the practical 
utilization of both daily and final domestic solid waste, an expansion of approximately 15–30% in the final landfill 
area is recommended to accommodate future waste input. We analyze a 31.60 hectare landfill area, using predictive 
modeling to forecast capacity usage up to 2030. These insights aid authorities in landfill management strategies. 

 This study uses a predictive model, considering historical waste rates, population growth, and relevant 
factors to estimate the landfill area’s future utilization. The study goal is to predict when it will reach capacity. 
Currently, 26.21 hectares of the Segamat landfill area are used, with 5.39 hectares remaining, as shown in Fig. 10. 
For the Labis landfill, 22.92 hectares are used, and 8.68 hectares remain, as shown in Fig. 11 . From the figures 
below where brown column represents the entire area allocated for landfilling, the green column indicates the 
portion of the total area already utilized for landfilling and the blue column represents the available space 
remaining for future landfilling. The results of this analysis serve as a crucial wake- up call for the waste 
management agencies responsible for the management of the landfill disposal area. The imminent filling of the 
landfill site by 2025 demands immediate attention and necessitates the development of robust strategies to handle 
the rising waste disposal demands beyond this point. 

 
 

 

Fig. 9 Estimation the landfills disposal area size for Segamat landfill 

 

 

Fig. 10 Estimation the landfills disposal area size for Labis landfill 
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5. Conclusion 
In conclusion, this model is a major step forward in overcoming the shortcomings of conventional LSTMs and 
improving the accuracy of waste prediction. The integration of innovative features, such as the dropout layers and 
the SigmoReLU activation function as well as the RAdam optimization, shows remarkable proficiency in predicting 
the generation of domestic solid waste. The ability to capture complex temporal patterns and solve problems such 
as overfitting or vanishing gradients is a major development in waste prediction technologies. With its high 
accuracy and precision, e-LSTM has great potential to optimize waste management strategies as well as to support 
sustainability initiatives. 
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