
 JOURNAL OF QURANIC SCIENCES AND RESEARCH
e-ISSN: 2773-5532

JQSR
Vol. 5 No. 1 (2024) 12-29
https://publisher.uthm.edu.my/ojs/index.php/jqsr

This is an open access article under the CC BY-NC-SA 4.0 license.

Auto-Diacritization and Stylistic Realization of Arabic
Text using Deep Neural Networks
Adel Sabour1, Abdeltawab Hendawi2, and Mohamed Ali1

1 Computer Science and Systems,
University of Washington, Tacoma, USA

2 Computer Science and Statistics,
University of Rhode Island, Rhode Island, USA

*Corresponding Author: adelsabour@gmail.com
DOI: https://doi.org/10.30880/jqsr.2024.05.01.002

Article Info Abstract
Received: 25th May 2024
Accepted: 12th June 2024
Available online: 30th June 2024

This paper presents QRDiaRec, an advanced diacritization system for
Arabic Quranic texts. In Arabic, linguistic style refers to the variations
in diacritic markings used to convey different pronunciations, dialects,
meanings, and contextual understandings. QRDiaRec addresses the
challenge of interpreting Arabic diacritics across multiple linguistic
styles, which is crucial for accurate language processing. Unlike
traditional systems that generate only one correct form of diacritics,
QRDiaRec can recognize and produce multiple valid diacritic forms.
This capability is due to its training on a dataset that encompasses
seven Quranic linguistic styles. The Qur'an is an ideal case study
because it is one text with multiple linguistic patterns, allowing us to
recognize different forms of correct diacritization. QRDiaRec employs
bidirectional LSTM, GRU, and transformer-based models to convert
non-diacritic texts into annotated formats, achieving up to 94.2%
accuracy. The system enhances Arabic language processing, impacting
NLP, machine translation, and Arabic linguistics.

Keywords

Arabic diacritization, quranic
linguistic styles, NLP, LSTM, GRU,
transformer-based models, arabic
dialect, textual data processing,
Quran

1. Introduction
In Arabic, diacritics are essential for determining pronunciation and meaning Shaalan at al. (2019). Without
understanding diacritical letters, it is challenging to grasp word meanings, sentences, and context. We aim to
develop an auto-diacritical solution for Arabic text called Automatic Diacritization and Dialect System for Arabic
Quran Text Recognition (QRDiaRec). This solution serves as a fundamental component in enhancing the
comprehension of the Arabic language, specifically in understanding diacritical letters and recognizing various
Arabic dialects. Our QRDiaRec system is one of many development works related to the Qur'an featured on our
website (Sabour and Ali, 2023). The website was constructed through the comprehensive efforts of Siddiqui et al.
(2022). There are various Arabic dialects (Benaissa , M, 2021), including those with linguistic errors and limited
fluency in Arabic, as well as correct dialects with well-known origins Farghaly and Shaalan (2009). These correct
dialects are known as linguistic styles. The Arabic linguistic style encompasses various aspects of grammar,
rhetoric, and pronunciation. In this context, the Qur’an is an Arabic diacritic-annotated text with 20 authentic
linguistic styles Najeeb at al. (2015) referred to as “Riwayah” or “Qira’ah”. There are 20 linguistic styles, but only
7 of them have been digitized. We use the dataset from Sabour at al. (2024), which includes seven linguistic styles.

Initially, Arabic writing consisted of 19 letters without dots or diacritics Sabour at al. (2023). The Arabic word
can be written with the same letters more than once, and each word can have a different meaning or even
antonym. What distinguishes between the different meanings of words that share the same letters are the
diacritics (See figure 1). Diacritics are responsible for conveying subtle differences in meaning along with

J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29 13

grammatical rules Najeeb et al. (2015). Without understanding diacritics, resolving ambiguity, resolving
ambiguity in Arabic text becomes extremely challenging, leading to misunderstandings and misinterpretations.
For example, the word كتب written at the second level can have multiple meanings. With diacritic marks, ََكَتب means
'He wrote', َكُتِب means 'A text has been written', and ُْكُتب means 'books'.
In Figure 1, it is evident that the Arabic text was misunderstood when processed by Google Translator and Bing
Translator, highlighting the potential consequences.

Fig. 1 Impact of diacritics on arabic text understanding: comparison between Bing translator and Google
translator

As a case study, the text of the Qur'an is chosen due to its representation of the highest level of the Arabic
language Sabour at al. (2024) and its inclusion of various linguistic styles. The linguistic style encompasses any
linguistically correct dialect, can be traced back to its origin, is associated with known proficient speakers, and can
be represented in written form Sabour at al. (2024). The term “linguistic style” in Islamic studies is referred to as
“Riwayah” or “Qira'ah”. In the provided table 1, the Arabic word ىٮھ is examined across different linguistic styles.
Illustrates the variation in the representation and pronunciation of the word across different Arabic linguistic
styles. The first column lists the names of the linguistic styles. The second column shows how the word is written
in each style. The third column details the pronunciation in each respective style. Although the basic shape of the
word remains consistent, variations in dots and diacritics alter its pronunciation. This can either provide
additional semantic information or reflect a regional dialect's pronunciation. The system's input consists of words
without diacritics. The expected output is the same words, but with diacritics added. The system learns to add
diacritics based on the patterns it finds in the linguistic styles. This learning process enables the system to generate
words with diacritics from input words without diacritics. The table illustrates that while some styles share the
same form, others display notable differences.

Table 1 Example of the orthographic and phonetic diversity for one word across different Arabic linguistic
styles

Linguistic Styles Word Pronunciation
Nafie, AboJaafr, Ibn-Thakwan َهِْ�ت hey-ta

Ibn-Kathir ُهَْ�ت hay-tu

Hisham َهِئْت h'-eta

The other styles َهَْ�ت hay-ta

QRDiaRec encounters each sentence in various forms, representing different linguistic styles. This exposure
allows the system to grasp and apply a wider range of possible diacritics to Arabic sentences. A key difference
from prior systems is their single "correct" output for each sentence. QRDiaRec acknowledges the existence of
multiple valid diacritic forms due to the diverse linguistic styles it has learned. As a result, a single input sentence
can have several correct outputs with diacritics. The automatic diacritization is challenging due to the presence of
multiple valid diacritization forms for the same word. This paper investigates this challenge by employing three
neural network models: a bidirectional LSTM, a bidirectional GRU, and a transformer-based model Gupta and
Agrawal (2022). We compare the performance of these models to identify the most effective approach for Arabic
text diacritization through the different linguistic styles.

14 J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29

This paper is organized as follows. We first review existing research in automatic diacritization (Section 2). Then,
Section 3 explores the integration of linguistic styles and the diacritization dataset. Section 4 details the methods
used for automated Arabic diacritization. In Section 5, we evaluate the performance of the diacritization
algorithms. Section 6 compares various performance metrics and analyzes accuracy trends. Section 7 provides a
discussion of the findings and outlines future research directions. Finally, Section 8 provides the conclusion.

2. Related Work
Starting with an in-depth survey of Arabic Natural Language Processing (ANLP) by Guellil et al. (2021), the authors
delve into the research landscape in this field. They highlight the complexity of the Arabic language and the
challenges it presents for NLP tasks. The authors’ analysis of 90 research papers reveals a predominant focus on
Arabic dialects, particularly Modern Standard Arabic (MSA) and Dialectal Arabic (DA).
One notable finding of the study is the need for further research on Classical Arabic (CA), which has received
comparatively less attention. Building upon this insight, our research endeavors to make contributions to the
advancement of CA. Recognizing the authors’ emphasis on the importance of resource development in ANLP, our
work aims to address this need. We accomplish this by building various systems to support Arabic NLP. Their
results emphasize the significance of resource construction in various tasks, including semantic analysis, speech
recognition, and text processing. In alignment with their findings, our research is dedicated to advancing these
aspects within the field of Arabic NLP.

The research by Abandah and Abdel-Karim (2020) focuses on developing a fast and accurate machine-
learning solution for the automatic diacritization of Arabic text. They employ long short-term memory (LSTM)
recurrent neural networks to predict diacritics in Arabic text. The research recommends a solution using four
bidirectional LSTM layers, achieving diacritization error rates. Specifically, they report a diacritization error rate
of 2.46% on the LDC ATB3 dataset and 1.97% on the larger Tashkeela dataset, showcasing a 47% improvement
over the best-published previous result.
 The research conducted by Fadel et al. (2019) addresses the task of diacritization in Arabic text and
emphasizes the scarcity of open-source resources for this problem. They utilize a dataset comprising 55K lines,
consisting of approximately 2.3M words, obtained from the Tashkeela Corpus and a simplified version of the Holy
Quran. The experimental results demonstrate the superiority of the neural approach, specifically the Shakkala
system, over other methods in terms of diacritic error rate (DER) and word error rate (WER). The neural Shakkala
system achieves a DER of 2.88%, surpassing the best DER obtained by non-neural approaches, which stands at
13.78%.
 The research conducted by Belinkov and Glass (2015) focused on diacritization of Arabic text using long short-
term memory (LSTM) layers. They compared their models to simple feed-forward networks and found that LSTM
models outperformed them, particularly when using bidirectional LSTM (B-LSTM) and deeper models. Their best
model achieved a diacritic error rate (DER) of 5.39% on all diacritics and 8.74% on case endings on a separate test
set. Importantly, their results surpassed previous models that relied on segmenters and part-of-speech taggers,
demonstrating the effectiveness of their model in diacritizing Arabic text without relying on additional resources.
It is worth noting that their study primarily focused on diacritization performance and the comparison to existing
methods. The research did not explicitly report accuracy as a performance metric. However, the DER values
provided can be considered analogous to accuracy, as they represent the percentage of correctly predicted
diacritics.
 Elshafei et al. (2006) addressed the diacritization of Arabic text using statistical methods based on language
modeling. The researchers employed a hidden Markov Model framework, treating the un-diacritized word
sequence as an observation sequence and the diacritized word expressions as hidden states. The Viterbi Algorithm
was used to obtain the optimal sequence of diacritized words. The study achieved a 4.1% letter error rate using
the basic hidden Markov Model approach. Incorporating a preprocessing stage and utilizing trigrams for selected
short and frequent words reduced the letter error rate to around 2.5%. The algorithm assumed that all words in
the un-diacritized sequence existed in the provided vocabulary list, emphasizing the need for statistical methods
to generate fully diacritized words based on letter sequences. Additionally, the algorithm’s success rate for
restoring diacritical marks based on letter statistics was less than 72%.
 Comparative analysis with existing systems is challenging for the QRDiaRec system. This is due to the unique
focus of our model on the linguistic styles. Traditional metrics like Diacritization Error Rate (DER) and Word Error
Rate (WER) are not applicable. These metrics assume a single correct form for diacritics, which does not hold in
our study. Our model acknowledges these variations and can produce multiple correct diacritic outputs for the
same sentence. Therefore, applying DER and WER, which penalize these valid alternatives, wouldn’t be an
accurate measure of QRDiaRec’s effectiveness. We have evaluated QRDiaRec’s performance using standard
accuracy measures, which provide a clearer picture in this context. Despite the challenges of multiple valid forms,
our models achieved accuracy ranging from 91.5% to 92.2%. Our approach employs character-level sequence-to-
sequence models. These models include bidirectional LSTM, bidirectional GRU, and transformer-based neural

J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29 15

networks. Our research goes beyond just diacritization by delving into the different Quranic linguistic styles, an
aspect not addressed in prior studies.

3. Integrating Linguistic Styles and Diacritization Dataset
This section explores data organization, focusing on two key aspects: modeling linguistic styles in the database
and the training and evaluation dataset for automated Arabic diacritization. The database, created in our previous
research Sabour at al. (2024), organizes Quran Arabic linguistic styles at multiple levels, including: chapters,
verses, words, letters, and diacritics. The dataset is derived from this database, prepared for various learning
models, and divided into training and evaluation subsets to improve diacritization accuracy.

3.1 Modeling Linguistic Styles in the Database
We present a glimpse into part of our database that illustrates the relationship and organization of textual data
of the Arabic Qur’an. The database includes information on linguistic styles and the Qur’an books known as
Mushafs. These Mushafs are divided into chapters, verses, words, and more. The tables within the database provide
both statistical data and basic information, enabling various text-level analyses.

Fig. 2 Database schema for modeling linguistic styles in the Qur’an

Figure 2 displays the tables utilized in this section, encompassing the following elements:
• Linguistic styles are associated with multiple Mushafs. Each Mushaf represents a complete book of

the Qur’an presented in a specific linguistic style.
• Each Mushaf consists of a collection of chapters, referred to as Surahs. A complete Quran comprises

114 chapters. The MushafSurah table records data for the processed Surahs in each Mushaf.
• Each Surah is further divided into multiple verses, known as Ayahs.
• Each Ayah is subdivided into words, and each word is composed of characters.
• The Characters table contains information about each character used in the script, along with its position.
• The classification of characters includes Letters, Diacritics, and OtherCharacters, representing special

char- acters. The Characters include the corresponding Unicode representation used in each Mushaf,
which may vary for the same character from Mushaf to another.

This structure enables analysis of the Arabic Qur’an’s textual content, facilitating the creation of a dataset
for training and evaluation capable of supporting the Automated Arabic Diacritization System

3.2 Training and Evaluation Dataset for Automated Arabic Diacritization: Multistyle
Dialects Approach

The training and evaluation dataset we used for the diacritization task contains seven linguistic styles. Table
2 provides an overview of the dataset used in the Arabic auto-diacritization system, including statistics on the
number of linguistic styles, tokens/words, characters without diacritics, diacritics, and characters in diacritics.

Table 3, represents statistical information about the training and evaluation dataset. Each style represents
the same text but in different Arabic dialects specifically different linguistic styles. Each record in the dataset
contains a verse without diacritics and the same verse with diacritical letters. A verse may contain more than one
sentence. This pairing facilitates the training and evaluation of diacritization models.

Table 2 Dataset statistics
Linguistic Style Variations 7

16 J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29

Tokens/Words Count 542,020
Undiacritized Character Count 2,283,177
Diacritic Mark Count 2,203,148
Total Character Count 4,486,325

We divided the Quranic data into sections for training, testing, and evaluation purposes. Furthermore, we
ensured that these same sections were distributed across various linguistic styles. This ensures that the model
is thoroughly assessed on unseen data during evaluation, providing a realistic gauge of its generalization
capabilities. Our division of the Quranic data into sections per a linguistic style then taking the same sections for
each linguistic style serves as a safeguard against over-fitting enhances generalization, and ensures a
comprehensive evaluation of the model’s performance.

Table 3 Dataset statistics: multistyle dialects for automated arabic diacritization
StyleID Style Count Percentage Training Validation Testing

1 Shueba 6,236 14.32 4,488 1,248 500
2 Hafs 6,236 14.32 4,488 1,248 500
3 Qonbl 6,220 14.28 4,476 1,244 500
4 Al-Bazi 6,220 14.28 4,476 1,244 500
5 Warsh 6,214 14.27 4,471 1,243 500
6 AlDawri 6,217 14.27 4,473 1,244 500
7 Qalun 6,214 14.27 4,471 1,243 500
Totals 7 43,557 100 31,343 8,714 3,500

Table 3 represents the division of the Arabic multi-style dialects across our datasets. The column Style:
The name of the Arabic dialect or linguistic style represented by the text in each book. The column Count:
The total number of sentences in the dataset for each book or dialect. The column Percentage: The percentage
of sentences represented by each book or dialect in the entire dataset. The percentages are calculated based on
the total number of sentences (43,557 sentences). The column Training: The number of sentences from each book
or dialect reserved for training purposes. The column Evaluation: The number of sentences from each book
used for evaluating the diacritization model. The column Testing: The number of sentences from each book or
dialect used for testing the diacritization model. These sentences are employed to assess the model’s performance.
The column Totals: Represents the aggregate statistics for the entire dataset. The total number of sentences in
the dataset is 43,557 for non-diacritic sentences and the same number for the diacritic sentences. The total
count of sentences used for training is 31,343, while the total count of sentences used for validation is 8,714, and
for testing is 3,500. These values demonstrate how the dataset is split into training, validation, and testing subsets
for the diacritization task. This diversity in the dataset allows the models to handle the different dialectal styles,
enhancing the overall performance and usability of the automated Arabic diacritization system.

4. Automated Arabic Diacritization Module
Automatic diacritization opens the door to a world of possibilities in Arabic language processing. We are
interested in diacritics as a means to comprehend the Arabic language. Removing diacritic letters from diacritic-
annotated text is a straightforward task, where all Unicode diacritics are deleted from the text. However, the real
challenge lies in automatically adding diacritics to text when they are absent. This process significantly enhances
language understanding and clarification of meaning. Diacritics provide phonetic and grammatical information
that is essential for disambiguating the text. By introducing diacritics automatically, we improve the processing of
Arabic NLP, which yields benefits across various fields. This advancement positively impacts sentiment analysis,
machine translation, information retrieval, text-to-speech (TTS) systems, consistency, and standardization in
texts, and others.

This module is essential for automating the conversion of non-diacritic Arabic text into diacritic-annotated
text, enabling interpretation and understanding of Arabic, enhancing linguistic analysis, and facilitating various
language processing applications. The character-level sequence-to-sequence model is chosen because it operates
directly on the character level, allowing it to capture fine-grained linguistic features and patterns (Zhang et al.,
2016). It can learn the complex relationships between the input non-diacritic Arabic text and the corresponding
diacritic-annotated text, which is the objective of the diacritization system. The model has the ability to generate

J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29 17

sequences of variable length (Ruzsics and Samardzic, 2017), making it suitable for handling the varying lengths of
Arabic words and sentences. By utilizing bidirectional LSTM or GRU layers, the model can effectively capture both
past and future context (Yang et al., 2020), enabling it to make informed decisions about appropriate diacritics
based on the surrounding characters.

LSTM and GRU are different types of recurrent neural network (RNN) architectures used for sequence
modeling (Ruzsics and Samardzic, 2017). Both bidirectional LSTM and bidirectional GRU incorporate information
from both past and future contexts by processing the input sequence in both forward and backward directions
(Zhang et al., 2016). The main difference lies in their internal mechanisms. LSTM utilizes memory cells, input
gates, forget gates, and output gates to control the flow of information, whereas GRU uses update gates and reset
gates to regulate the flow of information (Dey and Salem, 2017). LSTM has a more complex structure than GRU,
with more parameters, which allows it to capture longer-term dependencies in the input sequence (Yang et al.,
2020). GRU has a simpler structure with fewer parameters, making it computationally more efficient and easier
to train (Zhang et al., 2016).

Algorithm 1: Training a Character-Level Language Model

Input:
Training dataset Dtrain with input sequences X and target sequences y
Testing dataset Dtest with input sequences Xtest and target sequences ytest
Maximum sequence length Lmax
Embedding dimension Edim
Number of training epochs Nepochs
Batch size Bsize

Output:
Trained character-level language model M

1: function PreprocessData
2: Convert sentences in Dtrain and Dtest into character lists

 3: Convert character lists into integer representations
4: Pad the sequences to ensure the uniform length
5: function InitializeModel
6: // The implementation of this function varies depending on the model used.

7: function CompileAndTrainModel
8: Compile the model M using the sparse categorical cross-entropy loss function and the Adam optimizer
9: Train the model M on the preprocessed training data,
 iterating over Nepochs epochs with a batch size of Bsize

10: Evaluate the model’s performance on the validation data
11: Save the trained model M for future use

12: PreprocessData
13: InitializeModel
14: CompileAndTrainModel

The transformer-based model is employed for diacritizing Arabic text, offering a broader range of alternative
approaches. This model leverages self-attention mechanisms to model long-range dependencies and capture
contextual relationships within the text (Ding et al., 2022). Inspired by the influential “Attention Is All You
Need” architecture (Vaswani, et al., 2017), our model excels at handling large-scale datasets and effectively
captures global dependencies across the entire sequence (Vaswani et al., 2017). The character-level sequence-to-
sequence model is effective in capturing sequential dependencies, while the transformer-based model excels at
modeling long-range dependencies and capturing contextual relationships.

Algorithm 1 is a general algorithm for the three models (GRU, LSTM, and Transformer). It consists of three
functions:

• PreprocessData: Preprocesses the training and testing data uniformly across all models.
• InitializeModel: Initializes the model, with implementation varying for each model due to their unique

architecture and initialization process.
• CompileAndTrainModel: Compiles and trains the model, following the same process for all three

models.

18 J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29

Our models, implemented using the Keras framework, are powerful deep-learning algorithms for capturing
and predicting patterns in sequential data (Moolayil, 2019). The algorithmic steps for training the models
are summarized in Algorithm 1. To prepare the training and testing data during PreprocessData function, the
sentences are initially converted into character lists. This conversion allows the models to operate at the
character level, capturing the fine-grained details of the text.

By representing the text as characters, the models can learn the relationships between different characters
and their corresponding diacritics. The character lists are further transformed into integer representations
because neural networks typically work with numerical data. Assigning unique integers to each character enables
the models to process and learn from the input data effectively. In order to ensure uniformity in the input data,
padding is applied (Dwarampudi and Reddy, 2019). This involves adding zeros padding tokens to the sequences
so that they all have the same length. Creating equal-length input sequences is crucial as neural networks typically
require fixed-size inputs (Dwarampudi and Reddy, 2019). By padding the sequences, we ensure that the models
can handle inputs of varying lengths without encountering issues.

During model compilation inside the CompileAndTrainModel function, the sparse categorical cross-entropy
loss function is used (Cosentino et al., 2019). This loss function is suitable for multi-class classification tasks like
diacritization, where each character can have multiple possible diacritics. The Adam optimizer is chosen for
training the models, as it efficiently updates the model’s parameters based on the gradients computed during the
training process (Zhang, 2018).

Regarding the InitializeModel function, we can combine the idea of implementing LSTM and GRU into
Algorithm 2. The model architecture for both the LSTM and GRU models is defined using the Sequential API,
a straightforward way to build neural networks in a sequential manner (Manaswi, 2018). The architecture
consists of multiple layers, including an embedding layer, which maps each character to a continuous vector
representation. This allows the models to capture semantic relationships between characters based on their
contextual usage. Next, a bidirectional layer (LSTM or GRU) is employed. The bidirectional nature of these
layers enables the models to consider both past and future contexts when making predictions. This is beneficial
for diacritization as it allows the models to take into account the surrounding characters when predicting the
diacritics for a specific character. A dense layer with softmax activation (Luus et al., 2015) is utilized to produce
the final output probabilities for each character’s diacritics. This layer interprets the outputs as a probability
distribution over diacritic options for each character.

Algorithm 3 provides a high-level overview of the InitializeModel function for the Transformer model. The
Transformer model is constructed with an embedding layer followed by multiple TransformerEncoder layers
(Wang et al., 2019). The embedding layer maps the integer representations to dense vectors of size Edim, allowing
the model to learn meaningful representations of the characters.

The TransformerEncoder layers leverage self-attention mechanisms to capture the dependencies between
characters and generate contextualized representations (Ding et al., 2022). The output of the last
TransformerEncoder layer is fed into a dense layer with softmax activation to obtain the predicted diacritics. We
chose specific hyperparameters with the transformer:

Algorithm 2: Initialize the GRU and LSTM Models
Input:
 Number of LSTM/GRU units ULST M/GRU

1: function InitializeModel
2: Create an embedding layer with input dimension Lmax and output dimension Edim
3: Create a bidirectional LSTM/GRU layer with ULST M/GRU units
4: Create a dense layer with softmax activation
• d_model=32: It determines the size of the model’s internal representation. A smaller value makes the

model more efficient for processing Arabic text.
• num_heads=4: It represents the number of attention spots in the model’s brain. More heads

allow the model to capture different patterns in the text, essential for understanding diacritic
placement.

• dff=64: It controls the capacity for processing and transformations in the model. A moderate value
balances efficiency and learning capability.

• rate=0.1: It indicates the dropout rate, which helps in generalization and prevents the model from
overfitting to specific examples.

These hyperparameters were chosen to make the model computationally efficient and effective in handling
the complexities of Arabic text with diacritics.

References to algorithms 2 and 3 denote the instantiation of the “InitializeModel” function specific to GRU,
LSTM, and Transformer models. These algorithms constitute essential components within the broader framework

J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29 19

of the comprehensive algorithm 1. By incorporating these algorithms, the implementation process for the
Automated Arabic Diacritization Module is accomplished, encompassing all requisite steps.

Algorithm 3: Initialize the Transformer Model

Input:
Number of Transformer heads Nheads Feed-forward dimension Fdim
Dropout rate Drate

 1: function InitializeModel
 2: Create an embedding layer with input dimension Vsize and output dimension Edim
 3: Create Nheads TransformerEncoder layers with Edim, Nheads, and Fdim
 4: Create a dense layer with softmax activation

These models have demonstrated high accuracy rates, as indicated by achieving accuracies of 91.5% with

bidirectional LSTM, 92.1% with bidirectional GRU, and 94.2% with the transformer-based model, making them
effective solutions for diacritizing Arabic letters.

5. Performance Evaluation of Diacritization Algorithms
In this section, we present the performance evaluation of diacritization algorithms, specifically on the LSTM, GRU,
and Transformer models. These models are powerful deep-learning algorithms for capturing and predicting
patterns in sequential data (Zhang et al., 2016).

5.1 Experimental Results of the LSTM Algorithm
This section presents an analysis of the LSTM algorithm’s performance for diacritization. It is structured into three
segments, each focusing on different aspects of the algorithm’s performance evaluation. By delving into these
analyses, we gain valuable insights into the LSTM algorithm’s proficiency in accurately predicting and capturing
patterns while minimizing errors.

5.1.1 Performance Analysis of LSTM Algorithm: Metrics and Results
The LSTM algorithm achieved a training accuracy of 94.3%, a validation accuracy of 93.5%, and a testing accuracy
of 92.1%. The training loss, which measures the error during training, is 0.179, and the validation loss is 0.214.

Table 4 provides an evaluation of the performance of the LSTM model for diacritization. These results indicate
that the LSTM algorithm performed well in capturing the patterns and relationships between characters and their
corresponding diacritics, leading to accurate predictions.

Table 4 Performance metrics of LSTM algorithm in diacritizing arabic text
LSTM
Metric

Accuracy Precision Recall F1
Score

Training
Loss

Training
Accuracy

Val.
Loss

Val.
Accuracy

Value 92.14 90.55 92.14 91.29 0.179 94.3 0.214 93.5

5.1.2 Assessment of LSTM Model Generalization: Training vs. Validation Accuracies
Figure 3, illustrates the training and validation accuracies achieved during the evaluation of the LSTM model. The
accuracies are computed over 75 epochs, with the following summarization:

• The training accuracy gradually improves from 91.3% to 94.3%, indicating the model’s learning and
performance enhancement on the training data.

• The validation accuracy displays a similar increasing trend, rising from 91.8% to 93.5%. This suggests
the model’s ability to generalize well to unseen data and make accurate predictions.

• The proximity of the training and validation accuracies suggests a balanced model that avoids
overfitting or underfitting (Jabbar and Khan, 2015). It demonstrates the model’s capability to
generalize without merely memorizing the training examples.

• The validation accuracy consistently tracks the increasing trend of the training accuracy, indicating the
model’s improvement on both training and unseen data.

• The final accuracies of 94.3% for training and 93.5% for validation highlight the model’s reasonably
high accuracy in accomplishing the given task.
These findings strongly support the hypothesis that the LSTM model effectively learns and
generalizes for the specified task.

20 J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29

Fig. 3 Accuracy comparison: training and validation

results for the LSTM model
Fig. 4 Loss comparison: training and validation results

for the LSTM model

5.1.3 Analyzing Loss in LSTM Model: Training vs. Validation Results
Figure 4, displays the training and validation losses obtained during the evaluation of the LSTM model. It is
important to note that these loss values are not expressed as percentages but rather represent a measure of
the model’s performance and error reduction. These losses were computed over multiple epochs and can be
summarized as follows:

• The training loss gradually decreases from 0.461 to 0.179. This decreasing trend indicates that the
model improves its performance and reduces errors as it learns from the training data.

• Similarly, the validation loss also exhibits a decreasing trend, ranging from 0.361 to 0.214. This suggests
that the model effectively minimizes errors and generalizes well to unseen data, indicating its ability to
make accurate predictions on new instances.

• The close proximity of the training and validation losses indicates that the model achieves a balance
between capturing patterns in the training data and generalizing to new instances. This suggests that
the model neither overfits the training data nor under-fits the underlying patterns, resulting in reliable
predictions.

• The consistent decrease in both training and validation losses indicates the model’s ability to generalize
learned patterns to unseen data.

• The final losses of 0.179 for training and 0.214 for validation demonstrate the model’s effectiveness in
achieving low loss levels, reflecting its capability to capture underlying patterns in the given task.

These findings provide evidence supporting the LSTM model’s performance in minimizing loss and capturing
patterns in both training and validation data.

5.2 Experimental Results of the GRU Algorithm
This section presents an analysis of the GRU algorithm’s performance for diacritization. It is structured into
three subsections, each focusing on different aspects of the algorithm’s performance evaluation. These subsections
employ various metrics to assess the algorithm’s effectiveness in capturing patterns, its ability to generalize to
unseen data, and the analysis of loss values during training and validation.

5.2.1 Performance Analysis of GRU Algorithm: Metrics and Results
The GRU algorithm achieved an accuracy of 94.2% a precision of 93.26%, a recall of 94.20%, and an F1 score of
93.46%. These metrics measure the algorithm’s accuracy in predicting the diacritics for Arabic text in the testing
dataset. Additionally, the training loss of the GRU model is 0.150, indicating the error during the training process,
while the training accuracy is 95.2%, showing the percentage of correctly predicted diacritics on the training data.
For the validation phase, the GRU algorithm achieved a validation loss of 0.171, which measures the error on
unseen data, and a validation accuracy of 94.7%, indicating the accuracy of diacritic predictions on the
validation data. Table 5 provides an evaluation of the performance of the GRU model for diacritization. The GRU
algorithm performed well in capturing the patterns and relationships between characters and their corresponding
diacritics, leading to accurate diacritization of Arabic text.

J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29 21

Table 5 Performance metrics of GRU algorithm in diacritizing arabic text
GRU
Metric

Accuracy Precision Recall F1
Score

Training
Loss

Training
Accuracy

Val.
Loss

Val. Accuracy

Value 94.20 93.26 94.20 93.46 0.150 95.20 0.171 94.7

5.2.2 Assessment of GRU Model Generalization: Training vs. Validation Accuracies
Figure 5, illustrates the training and validation accuracies achieved during the evaluation of the GRU model. After
epoch 47, the GRU model shows a significant decrease in accuracy. We applied an early stop until epoch 47 to
overcome the overfitting (Rice et al., 2020).

• The training accuracy gradually improves from 93.5% to 95.2%, indicating the model’s learning and
performance enhancement on the training data.

• The validation accuracy also shows an increasing trend, rising from 93.6% to 94.7%. This suggests the
model’s ability to generalize well to unseen data and make accurate predictions.

• The proximity of the training and validation accuracies indicates a balanced model that avoids
overfitting or underfitting. It demonstrates the model’s capability to generalize without merely
memorizing the training examples.

• The validation accuracy consistently tracks the increasing trend of the training accuracy, indicating the
model’s improvement on both training and unseen data.

• The final accuracies of 95.2% for training and 94.7% for validation highlight the model’s high accuracy
in accomplishing the given task.

These findings provide evidence that the GRU model effectively learns and generalizes for the specified task,
similar to the LSTM model.

Fig. 5 Accuracy comparison: training and validation
results for the GRU model

Fig. 6 Loss comparison: training and validation results
for the GRU model

5.2.3 Analyzing Loss in GRU Model: Training vs. Validation Results
Figure 6, presents the training and validation losses obtained during the evaluation of the GRU model. These
losses are computed over 75 epochs, but we applied an early stop at epoch 47 and we can be summarized as
follows:

• The training loss gradually decreases from 0.321 to 0.150, indicating improved performance and
error reduction in the training data.

• The validation loss also exhibits a decreasing trend, ranging from 0.260 to 0.171, suggesting effective
error minimization and generalization to unseen data.

• The close proximity of the training and validation losses suggests a balanced model that avoids
overfitting or underfitting, effectively capturing patterns in the training data while generalizing to new
instances.

• The consistent decrease in both training and validation losses indicates the model’s ability to
generalize learned patterns to unseen data.

22 J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29

• The final losses of 0.150 for training and 0.171 for validation demonstrate the model’s effectiveness
in achieving low loss levels, reflecting its capability to capture underlying patterns in the given task.

These findings provide evidence supporting the GRU model’s performance in minimizing loss and capturing
patterns in both training and validation data.

5.3 Experimental Results of the Transformer Algorithm
The Transformer model is a state-of-the-art architecture that has revolutionized NLP tasks, including language
modeling (Irie et al., 2019). This section presents the outcomes of the experiments conducted using the
Transformer model and examines its effectiveness in capturing patterns and making accurate predictions.

5.3.1 Performance Analysis of the Transformer Algorithm: Metrics and Results

Table 6 Performance metrics of the transformer algorithm in diacritizing arabic text
Transformer
Metric

Accuracy Precision Recall F1
Score

Training
Loss

Training
Accuracy

Val. Loss Val. Accuracy

Value 92.10 89.17 92.10 89.84 0.447 91.9 0.448 91.9

The experimental results of the Transformer algorithm for diacritizing Arabic text are summarized in Table
6. The Transformer algorithm achieved an accuracy of 92.10% a precision of 89.17%, a recall value of 92.10%,
and an F1 score, which is 89.84% during the testing phase. In terms of training performance, the algorithm
achieved a training loss of 0.447. The training accuracy reached 91.9%. During the validation phase, the
algorithm achieved a validation loss of 0.448, and the validation accuracy is 91.9%.

5.3.2 Assessment of Transformer Model Generalization: Training vs. Validation
Accuracies

Figure 7, visualizes the training and validation accuracies achieved during the evaluation of the Transformer
model. These accuracies are computed over multiple 75 epochs and can be summarized as follows:

• The training accuracy gradually improves from 91.5% to 91.9%, indicating the model’s learning and
performance enhancement on the training data.

• The validation accuracy shows a relatively stable trend, 91.9%. This suggests that the model maintains
a consistent level of accuracy on unseen data.

• The proximity of the training and validation accuracies suggests a balanced model that avoids
overfitting or underfitting. It indicates that the model generalizes well to unseen data without relying
heavily on the training examples.

• The validation accuracy remains relatively stable throughout the epochs, indicating that the model’s
performance on unseen data remains consistent.

• The final accuracies of 91.9% for training and validation highlight the model’s reasonably high
accuracy in accomplishing the given task.

•

Fig. 7: Accuracy comparison: training and validation

results for the transformer model
Fig. 8 Loss comparison: training and validation results

for the transformer model

J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29 23

5.3.3 Analyzing Loss in Transformer Model: Training vs. Validation Results
Figure 8, showcases the training and validation losses obtained during the evaluation of the Transformer
model. These losses are computed over 75 epochs and can be summarized as follows:

• The training loss gradually decreases from 0.506 to 0.447, indicating improved performance and
error reduction in the training data.

• The validation loss also exhibits a decreasing trend, ranging from 0.465 to 0.448, suggesting effective
error minimization and generalization to unseen data.

• The close proximity of the training and validation losses suggests a balanced model that avoids overfitting
or underfitting, effectively capturing patterns in the training data while generalizing to new instances.

• The consistent decrease in both training and validation losses indicates the model’s ability to
generalize learned patterns to unseen data.

• The final losses of 0.447 for training and 0.448 for validation demonstrate the model’s effectiveness
in achieving low loss levels, reflecting its capability to capture underlying patterns in the given task.

6. Comparing Performance Metrics and Accuracy Trends
The main focus of this section is to compare the performance metrics, accuracy trends, and loss analysis of
the Transformer, GRU, and LSTM models. Through the analysis, we aim to provide an understanding of the
performance of these models and their implications for Arabic diacritization tasks.

6.1 Evaluating Performance Metrics
The comparison of performance metrics among the Transformer, GRU, and LSTM models is visualized in Figure
9. The GRU model achieved the highest accuracy of 94.2%, followed by the LSTM and the transformer model with
an accuracy of 92.1%.

The GRU model achieved the highest precision score of 93.26%, indicating that it has a strong ability to
classify the diacritics in the Arabic text. The Transformer model achieved a precision score of 89.17%, while the
LSTM model achieved a precision score of 90.55%. The GRU model achieved a recall score of 94.2%, indicating its
capability to effectively capture the true positive instances. The LSTM and Transformer models also demonstrated
a high recall score of 92.1%, closely following the performance of the GRU model. The F1 score combines precision
and recall into a single metric, providing an overall assessment of a model’s performance. The GRU model achieved
the highest F1 score of 93.46%, which indicates a good balance between precision and recall. The LSTM model
closely followed with an F1 score of 91.3%, while the Transformer model obtained a slightly lower F1 score of
89.8%. Overall, the comparison of precision, recall, and F1 score suggests that the GRU model exhibits the highest
performance among the three models, closely followed by the LSTM model. The Transformer model, while
achieving slightly lower scores, still demonstrates competitive performance.

Fig. 9 Comparison of precision, recall, and F1 score among transformer, GRU, and LSTM models

6.2 Analysis of Training Accuracy Trends
Figure 10 compares the Training Accuracy of the Transformer, GRU, and LSTM models over 75 epochs. The key
observations:

• The GRU is stopped early during epoch 47. The reason is that this is the epoch in which the GRU achieves
the highest accuracy. Based on that, we assumed the stability of the GRU at this epoch. The GRU model

24 J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29

consistently shows the highest Training Accuracy throughout 47 epochs, with values ranging from
93.5% to 95.2%. It demonstrates strong learning capabilities and performance on the training data.

• The LSTM model follows closely behind the GRU model, with Training Accuracy ranging from 91.3% to
94.3%. It also exhibits consistent and steady improvement over the epochs.

• The Transformer model has the lowest Training Accuracy among the three models, ranging from 91.5%
to 91.9%. Although it starts with slightly lower accuracy, it shows improvement and reaches a similar
level as the LSTM model towards the end of the epochs.

The GRU model consistently achieves the highest Training Accuracy, indicating its superior performance in
learning and capturing patterns in the training data. The LSTM model closely follows behind, demonstrating
its effectiveness in learning and generalizing. The Transformer model shows improvement over the epochs but
initially starts with a lower accuracy compared to the other two models.

Fig. 10 Comparing training accuracy patterns: transformer, GRU, and LSTM models

6.3 Analysis of Evaluation Accuracy Trends
Figure 11 compares the Evaluation Accuracy of the models. The key observations are as follows:

• The GRU model consistently achieves the highest Evaluation Accuracy among the three models. It
shows a gradual increase in accuracy from 93.6% to 94.7% over the 47 epochs. This indicates the GRU
model’s ability to generalize well to unseen data and make accurate predictions.

• The LSTM model closely follows the GRU model in terms of Evaluation Accuracy. It starts with an
accuracy of 91.8% and shows consistent improvement throughout the epochs, reaching a final accuracy
of 93.5%. This demonstrates the LSTM model’s effectiveness in capturing patterns and generalizing for
new instances.

• The Transformer model starts with a slightly lower Evaluation Accuracy compared to the other two
models, at 91.9%.

The GRU model consistently outperforms the other models in terms of Evaluation Accuracy, indicating its
superior performance in generalization.

Fig. 11 Comparing evaluation accuracy patterns: transformer, GRU, and LSTM models

J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29 25

6.4 Analysis of Training Loss
We analyzed the training loss of the GRU, Transformer, and LSTM models over 75 epochs. The training loss reflects
the discrepancy between the predicted diacritics and the actual diacritics in the training data. Lower training loss
values indicate a better fit of the models to the data.

Figure 12 illustrates the training loss patterns of the three models:
• The GRU model exhibits the lowest training loss values, starting at 0.321 and gradually

decreasing to 0.150. This suggests that the GRU model effectively captures the diacritical patterns
in the Arabic text and converges to a better fit with the training data.

• The LSTM model follows a similar trend, starting with a training loss of 0.461 and reaching 0.179 by
the end of the epochs. It demonstrates consistent improvement and convergence, albeit with slightly
higher loss values compared to the GRU model.

• The Transformer model shows the highest training loss among the three models, starting at 0.506
and decreasing to 0.447. However, it still exhibits a notable improvement over the epochs and
converges to a comparable level with the LSTM model.

Fig. 12 Comparing training loss patterns: transformer, GRU, and LSTM models

The three models demonstrate a decreasing training loss over the course of training, indicating their ability
to learn and capture the diacritical patterns in the training data. The GRU model achieves the lowest training loss,
followed by the LSTM model, while the Transformer model lags slightly behind.

6.5 Analysis of Evaluation Loss
We conducted an analysis of the evaluation loss for the GRU, Transformer, and LSTM models over 75 epochs.
The evaluation loss represents the discrepancy between the predicted diacritics and the actual diacritics in the
evaluation data. Lower evaluation loss values indicate better generalization and performance on unseen data.

Fig. 12 Comparing evaluation loss patterns: transformer, GRU, and LSTM models

Figure 12 displays the evaluation loss patterns of the three models:

26 J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29

• The GRU model exhibits the lowest evaluation loss values, starting at 0.260 and gradually
decreasing to 0.171. This suggests that the GRU model effectively generalizes to unseen data and
performs well in diacritizing Arabic text.

• The LSTM model follows a similar decreasing trend, starting with an evaluation loss of 0.361 and
reaching 0.214 by the end of the epochs. It demonstrates consistent improvement and showcases
its ability to generalize to new instances.

The Transformer model starts with a higher evaluation loss compared to the other two models, at 0.448. The
analysis of evaluation loss indicates that the GRU model consistently outperforms the other models, exhibiting
the lowest evaluation loss values.

7. Discussion and Future Work
This section discusses the key findings of our research on automatic diacritization for Arabic text. We employed
three neural network models and evaluated their performance. Additionally, we highlight the contributions of this
study and explore potential areas for future work.

7.1 Results
We evaluated three neural network models for Arabic text diacritization: Transformer, GRU, and LSTM. Here's a
breakdown of their performance:

• Accuracy and Generalizability:
o The GRU model emerged as the champion, achieving the highest overall accuracy 94.2% and F1

score 93.46%.
o This indicates its strong ability to both learn and perform well on unseen data.
o LSTM followed closely with an accuracy of 92.1% and F1 score of 91.3%.
o The Transformer model also showed competitive performance, reaching an accuracy of 92.1%

but with a slightly lower F1 score 89.8%.
• Training Efficiency:

o The GRU model impressed with the lowest training loss and the fastest convergence. This
suggests it excels at capturing patterns within the training data.

o All models exhibited a decrease in both training and evaluation loss as training progressed,
indicating successful learning and improvement.

Based on our findings, the GRU model stands out as the most effective approach for Arabic text diacritization
in this study. It achieved superior performance in accuracy, generalization, and training efficiency compared to
the other models.

7.2 Future Work
Our study lays the groundwork for further exploration in several areas:

• Use of Standard Metrics: Research in auto diacritization typically uses metrics like Diacritization Error
Rate (DER) and Word Error Rate (WER). These metrics assume a single correct form for each text
instance. However, our research acknowledges multiple correct forms for diacritizing Arabic text due to
various linguistic styles. Consequently, DER and WER may not fully capture the effectiveness of our
models. Although we used standard metrics like accuracy, precision, and F1 score, future research should
consider developing new metrics. These new metrics would better accommodate the variability inherent
in linguistic styles.

• Fine-tuning and Customization: Implement techniques for fine-tuning and customizing the
diacritization models to adapt to specific linguistic styles.

• Linguistic Style Detection: Develop a linguistic style detection module within the system to
automatically identify and categorize the linguistic style of Arabic text.

• Integration with Other NLP Tasks: Integrate the diacritization system with other NLP tasks, such as
sentiment analysis, named entity recognition, and part-of-speech tagging, to support more
comprehensive Arabic language processing.

• Cross-Linguistic Studies: Conduct cross-linguistic studies to compare the diacritization and stylistic
realization challenges in Arabic with other languages, potentially leading to valuable insights and
improvements.

By addressing this future work, we can further refine diacritization systems for Arabic text. This refinement
will enhance the effectiveness of these systems, particularly in handling diverse linguistic styles.

J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29 27

8. Conclusion
This study advances the understanding of Arabic through the QRDiaRec system. This system is focused on the
auto-diacritization and stylistic realization of Arabic texts. Unlike traditional systems, QRDiaRec can produce
multiple correct diacritic outputs for the same sentence. This ability significantly enhances comprehension of
diacritical letters and diverse linguistic styles. The incorporation of deep learning models, including bidirectional
LSTM, GRU, and transformer-based models, has enabled the QRDiaRec system to achieve a 94.2% accuracy in
diacritization. This high accuracy underlines the system's effectiveness in Arabic text analysis and interpretation.
The key contributions of this study are the development of the QRDiaRec system and the application of
sophisticated deep learning models for diacritization. These advancements are poised to significantly impact the
field of Arabic language processing, opening avenues for further research and practical applications.

Acknowledgement
The authors would like to thank Computer Science and Systems, University of Washington, for their invaluable
assistance and support in this study.

Conflict of Interest
Authors declare that there is no conflict of interests regarding the publication of the paper.

Author Contribution
The authors confirm contribution to the paper as follows: study conception and design: Adel Sabour; data
collection: Adel Sabour; analysis and interpretation of results: Adel Sabour, Abdeltawab Hendawi , and Mohamed
Ali; draft manuscript preparation: Adel Sabour, Abdeltawab Hendawi, and Mohamed Ali. All authors reviewed the
results and approved the final version of the manuscript.

References

Adel Sabour and Mohamed Ali. Quran research, 2023. URL https://quranresearch.org/. Accessed: December 12,
2023.

Adel Sabour, Abdeltawab Hendawi, and Mohamed Ali. A Tapestry of Tongues: A Novel Provenance Approach for
Arabic Linguistic Styles and Lineage Tracing. JQSR(Journal of Quranic Sciences and Research), 1, 2024.

Adel Sabour, Abdeltawab Hendawi, and Mohamed Ali. Diacritic-aware alignment and classification in arabic
speech: A fusion of fuztpi and ml models. JISTech (Journal of Islamic Science and Technology), 8(2):169–191,
2023.

Ali Fadel, Ibraheem Tuffaha, Mahmoud Al-Ayyoub, et al. Arabic text diacritization using deep neural networks. In
2019 2nd international conference on computer applications & information security (ICCAIS), pages 1–7.
IEEE, 2019.

Ali Farghaly and Khaled Shaalan. Arabic natural language processing: Challenges and solutions. ACM Transactions
on Asian Language Information Processing (TALIP), 8(4):1–22, 2009.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

Benaissa , M. . . (2021). العربیة اللغة في الأضداد ألفاظ في دلالي وتحلیل دراسة / A semantic study and analysis of antonyms in
Arabic Language. والأدبیة اللغویة الدراسات مجلة (Journal of Linguistic and Literary Studies), 12(2), 98–111.
Retrieved from https://journals.iium.edu.my/arabiclang/index.php/jlls/article/view/898

Francois PS Luus, Brian P Salmon, Frans Van den Bergh, and Bodhaswar Tikanath Jugpershad Maharaj. Multiview
deep learning for land-use classification. IEEE Geoscience and Remote Sensing Letters, 12(12):2448–2452,
2015.

Gheith Abandah and Asma Abdel-Karim. Accurate and fast recurrent neural network solution for the automatic
diacritization of arabic text. Jordanian Journal of Computers and Information Technology, 6(2), 2020.

https://journals.iium.edu.my/arabiclang/index.php/jlls/article/view/898

28 J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29

H Jabbar and Rafiqul Zaman Khan. Methods to avoid over-fitting and under-fitting in supervised machine learning
(comparative study). Computer Science, Communication and Instrumentation Devices, 70 (10.3850):978–
981, 2015.

Haijun Zhang, Jingxuan Li, Yuzhu Ji, and Heng Yue. Understanding subtitles by character-level sequence-to-
sequence learning. IEEE Transactions on Industrial Informatics, 13(2):616–624, 2016.

Imane Guellil, Houda Saˆadane, Faical Azouaou, Billel Gueni, and Damien Nouvel. Arabic natural language
processing: An overview. Journal of King Saud University-Computer and Information Sciences, 33(5):497–
507, 2021.

Jojo Moolayil and Jojo Moolayil. An introduction to deep learning and keras. Learn Keras for Deep Neural
Networks: A Fast-Track Approach to Modern Deep Learning with Python, pages 1–16, 2019.

Justin Cosentino, Federico Zaiter, Dan Pei, and Jun Zhu. The search for sparse, robust neural networks. arXiv
preprint arXiv:1912.02386, 2019.

Kazuki Irie, Albert Zeyer, Ralf Schlu¨ter, and Hermann Ney. Language modeling with deep transformers. arXiv
preprint arXiv:1905.04226,2019.

Khaled Shaalan, Sanjeera Siddiqui, Manar Alkhatib, and Azza Abdel Monem. Challenges in arabic natural language
processing. In Computational linguistics, speech and image processing for arabic language, pages 59–83.
World Scientific, 2019.

Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In International
Conference on Machine Learning, pages 8093–8104. PMLR, 2020.

Mahidhar Dwarampudi and NV Reddy. Effects of padding on lstms and cnns. arXiv preprint arXiv:1903.07288,
2019.

Manish Gupta and Puneet Agrawal. Compression of deep learning models for text: A survey. ACM Transactions on
Knowledge Discovery from Data (TKDD), 16(4):1–55, 2022.

Moath Najeeb, Abdelkarim Abdelkader, Musab Al-Zghoul, and Abdelrahman Osman. A lexicon for hadith science
based on a corpus. International Journal of Computer Science and Information Technologies, 6(2):1336–
1340, 2015.

Moustafa Elshafei, Husni Al-Muhtaseb, and Mansour Alghamdi. Statistical methods for automatic diacritization of
arabic text. In The Saudi 18th National Computer Conference. Riyadh, volume 18, pages 301–306, 2006.

Navin Kumar Manaswi and Navin Kumar Manaswi. Understanding and working with keras. Deep learning with
applications using Python: Chatbots and face, object, and speech recognition with TensorFlow and Keras,
pages 31–43, 2018.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao. Learning deep
transformer models for machine translation. arXiv preprint arXiv:1906.01787, 2019.

Rahul Dey and Fathi M Salem. Gate-variants of gated recurrent unit (gru) neural networks. In 2017 IEEE 60th
international midwest symposium on circuits and systems (MWSCAS), pages 1597–1600. IEEE, 2017.

Shudong Yang, Xueying Yu, and Ying Zhou. Lstm and gru neural network performance comparison study: Taking
yelp review dataset as an example. In 2020 International workshop on electronic communication and
artificial intelligence (IWECAI), pages 98–101. IEEE, 2020.

Tatyana Ruzsics and Tanja Samardzic. Neural sequence-to-sequence learning of internal word structure. In
Proceedings of the 21st conference on computational natural language learning (CoNLL 2017), pages 184–
194, 2017.

J. of Quranic Sciences and Research Vol. 5 No. 1 (2024) p. 12-29 29

Umar Siddiqui, Habiba Youssef, Adel Sabour, and Mohamed Ali. Scalability, availability, reproducibility and
extensibility in islamic database systems. IJASAT (International Journal on Islamic Applications in Computer
Science and Technology), 10(1):12–21, 2022.

Yifei Ding, Minping Jia, Qiuhua Miao, and Yudong Cao. A novel time–frequency transformer based on self–attention
mechanism and its application in fault diagnosis of rolling bearings. Mechanical Systems and Signal
Processing, 168:108616, 2022.

Yonatan Belinkov and James Glass. Arabic diacritization with recurrent neural networks. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pages 2281–2285, 2015.

Zijun Zhang. Improved adam optimizer for deep neural networks. In 2018 IEEE/ACM 26th international
symposium on quality of service (IWQoS), pages 1–2. Ieee, 2018.

	Input:
	Training dataset Dtrain with input sequences X and target sequences y
	Testing dataset Dtest with input sequences Xtest and target sequences ytest
	Maximum sequence length Lmax

	Output:
	Trained character-level language model M
	3: Convert character lists into integer representations
	6: // The implementation of this function varies depending on the model used.

	14: CompileAndTrainModel

	Input:
	2: Create an embedding layer with input dimension Lmax and output dimension Edim
	4: Create a dense layer with softmax activation

	Input:
	2: Create an embedding layer with input dimension Vsize and output dimension Edim
	4: Create a dense layer with softmax activation

