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This paper presents QRDiaRec, an advanced diacritization system for 
Arabic Quranic texts. In Arabic, linguistic style refers to the variations 
in diacritic markings used to convey different pronunciations, dialects, 
meanings, and contextual understandings. QRDiaRec addresses the 
challenge of interpreting Arabic diacritics across multiple linguistic 
styles, which is crucial for accurate language processing.  Unlike 
traditional systems that generate only one correct form of diacritics, 
QRDiaRec can recognize and produce multiple valid diacritic forms.  
This capability is due to its training on a dataset that encompasses 
seven Quranic linguistic styles. The Qur'an is an ideal case study 
because it is one text with multiple linguistic patterns, allowing us to 
recognize different forms of correct diacritization.  QRDiaRec employs 
bidirectional LSTM, GRU, and transformer-based models to convert 
non-diacritic texts into annotated formats, achieving up to 94.2% 
accuracy.  The system enhances Arabic language processing, impacting 
NLP, machine translation, and Arabic linguistics. 
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1. Introduction 
In Arabic, diacritics are essential for determining pronunciation and meaning Shaalan at al. (2019). Without 
understanding diacritical letters, it is challenging to grasp word meanings, sentences, and context. We aim to 
develop an auto-diacritical solution for Arabic text called Automatic Diacritization and Dialect System for Arabic 
Quran Text Recognition (QRDiaRec). This solution serves as a fundamental component in enhancing the 
comprehension of the Arabic language, specifically in understanding diacritical letters and recognizing various 
Arabic dialects. Our QRDiaRec system is one of many development works related to the Qur'an featured on our 
website (Sabour and Ali, 2023). The website was constructed through the comprehensive efforts of Siddiqui et al. 
(2022).  There are various Arabic dialects (Benaissa , M, 2021), including those with linguistic errors and limited 
fluency in Arabic, as well as correct dialects with well-known origins Farghaly and Shaalan (2009). These correct 
dialects are known as linguistic styles. The Arabic linguistic style encompasses various aspects of grammar, 
rhetoric, and pronunciation. In this context, the Qur’an is an Arabic diacritic-annotated text with 20 authentic 
linguistic styles Najeeb at al. (2015) referred to as “Riwayah” or “Qira’ah”. There are 20 linguistic styles, but only 
7 of them have been digitized. We use the dataset from Sabour at al. (2024), which includes seven linguistic styles. 

Initially, Arabic writing consisted of 19 letters without dots or diacritics Sabour at al. (2023). The Arabic word 
can be written with the same letters more than once, and each word can have a different meaning or even 
antonym. What distinguishes between the different meanings of words that share the same letters are the 
diacritics (See figure 1). Diacritics are responsible for conveying subtle differences in meaning along with 
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grammatical rules Najeeb et al. (2015). Without understanding diacritics, resolving ambiguity, resolving 
ambiguity in Arabic text becomes extremely challenging, leading to misunderstandings and misinterpretations.  
For example, the word كتب written at the second level can have multiple meanings. With diacritic marks,  ََكَتب means 
'He wrote',  َكُتِب means 'A text has been written', and  ُْكُتب means 'books'. 
In Figure 1, it is evident that the Arabic text was misunderstood when processed by Google Translator and Bing 
Translator, highlighting the potential consequences. 

 

 

 

 

 

Fig. 1 Impact of diacritics on arabic text understanding: comparison between Bing translator and Google 
translator 

As a case study, the text of the Qur'an is chosen due to its representation of the highest level of the Arabic 
language Sabour at al. (2024) and its inclusion of various linguistic styles. The linguistic style encompasses any 
linguistically correct dialect, can be traced back to its origin, is associated with known proficient speakers, and can 
be represented in written form Sabour at al. (2024). The term “linguistic style” in Islamic studies is referred to as 
“Riwayah” or “Qira'ah”. In the provided table 1, the Arabic word ىٮھ  is examined across different linguistic styles. 
Illustrates the variation in the representation and pronunciation of the word across different Arabic linguistic 
styles.  The first column lists the names of the linguistic styles. The second column shows how the word is written 
in each style.  The third column details the pronunciation in each respective style. Although the basic shape of the 
word remains consistent, variations in dots and diacritics alter its pronunciation. This can either provide 
additional semantic information or reflect a regional dialect's pronunciation.  The system's input consists of words 
without diacritics. The expected output is the same words, but with diacritics added. The system learns to add 
diacritics based on the patterns it finds in the linguistic styles. This learning process enables the system to generate 
words with diacritics from input words without diacritics. The table illustrates that while some styles share the 
same form, others display notable differences. 

Table 1 Example of the orthographic and phonetic diversity for one word across different Arabic linguistic 
styles 

Linguistic Styles Word Pronunciation 
Nafie, AboJaafr, Ibn-Thakwan  َهِْ�ت hey-ta 

Ibn-Kathir  ُهَْ�ت hay-tu 

Hisham  َهِئْت h'-eta 

The other styles  َهَْ�ت hay-ta 
 

QRDiaRec encounters each sentence in various forms, representing different linguistic styles.  This exposure 
allows the system to grasp and apply a wider range of possible diacritics to Arabic sentences. A key difference 
from prior systems is their single "correct" output for each sentence.  QRDiaRec acknowledges the existence of 
multiple valid diacritic forms due to the diverse linguistic styles it has learned.  As a result, a single input sentence 
can have several correct outputs with diacritics. The automatic diacritization is challenging due to the presence of 
multiple valid diacritization forms for the same word. This paper investigates this challenge by employing three 
neural network models: a bidirectional LSTM, a bidirectional GRU, and a transformer-based model Gupta and 
Agrawal (2022). We compare the performance of these models to identify the most effective approach for Arabic 
text diacritization through the different linguistic styles. 
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This paper is organized as follows. We first review existing research in automatic diacritization (Section 2). Then, 
Section 3 explores the integration of linguistic styles and the diacritization dataset. Section 4 details the methods 
used for automated Arabic diacritization. In Section 5, we evaluate the performance of the diacritization 
algorithms. Section 6 compares various performance metrics and analyzes accuracy trends. Section 7 provides a 
discussion of the findings and outlines future research directions. Finally, Section 8 provides the conclusion. 

2. Related Work 
Starting with an in-depth survey of Arabic Natural Language Processing (ANLP) by Guellil et al. (2021), the authors 
delve into the research landscape in this field. They highlight the complexity of the Arabic language and the 
challenges it presents for NLP tasks. The authors’ analysis of 90 research papers reveals a predominant focus on 
Arabic dialects, particularly Modern Standard Arabic (MSA) and Dialectal Arabic (DA). 
One notable finding of the study is the need for further research on Classical Arabic (CA), which has received 
comparatively less attention. Building upon this insight, our research endeavors to make contributions to the 
advancement of CA. Recognizing the authors’ emphasis on the importance of resource development in ANLP, our 
work aims to address this need. We accomplish this by building various systems to support Arabic NLP. Their 
results emphasize the significance of resource construction in various tasks, including semantic analysis, speech 
recognition, and text processing. In alignment with their findings, our research is dedicated to advancing these 
aspects within the field of Arabic NLP. 

The research by Abandah and Abdel-Karim (2020) focuses on developing a fast and accurate machine-
learning solution for the automatic diacritization of Arabic text. They employ long short-term memory (LSTM) 
recurrent neural networks to predict diacritics in Arabic text. The research recommends a solution using four 
bidirectional LSTM layers, achieving diacritization error rates. Specifically, they report a diacritization error rate 
of 2.46% on the LDC ATB3 dataset and 1.97% on the larger Tashkeela dataset, showcasing a 47% improvement 
over the best-published previous result. 
 The research conducted by Fadel et al. (2019) addresses the task of diacritization in Arabic text and 
emphasizes the scarcity of open-source resources for this problem. They utilize a dataset comprising 55K lines, 
consisting of approximately 2.3M words, obtained from the Tashkeela Corpus and a simplified version of the Holy 
Quran. The experimental results demonstrate the superiority of the neural approach, specifically the Shakkala 
system, over other methods in terms of diacritic error rate (DER) and word error rate (WER). The neural Shakkala 
system achieves a DER of 2.88%, surpassing the best DER obtained by non-neural approaches, which stands at 
13.78%. 
 The research conducted by Belinkov and Glass (2015) focused on diacritization of Arabic text using long short-
term memory (LSTM) layers. They compared their models to simple feed-forward networks and found that LSTM 
models outperformed them, particularly when using bidirectional LSTM (B-LSTM) and deeper models. Their best 
model achieved a diacritic error rate (DER) of 5.39% on all diacritics and 8.74% on case endings on a separate test 
set. Importantly, their results surpassed previous models that relied on segmenters and part-of-speech taggers, 
demonstrating the effectiveness of their model in diacritizing Arabic text without relying on additional resources. 
It is worth noting that their study primarily focused on diacritization performance and the comparison to existing 
methods. The research did not explicitly report accuracy as a performance metric. However, the DER values 
provided can be considered analogous to accuracy, as they represent the percentage of correctly predicted 
diacritics. 
 Elshafei et al. (2006) addressed the diacritization of Arabic text using statistical methods based on language 
modeling. The researchers employed a hidden Markov Model framework, treating the un-diacritized word 
sequence as an observation sequence and the diacritized word expressions as hidden states. The Viterbi Algorithm 
was used to obtain the optimal sequence of diacritized words. The study achieved a 4.1% letter error rate using 
the basic hidden Markov Model approach. Incorporating a preprocessing stage and utilizing trigrams for selected 
short and frequent words reduced the letter error rate to around 2.5%. The algorithm assumed that all words in 
the un-diacritized sequence existed in the provided vocabulary list, emphasizing the need for statistical methods 
to generate fully diacritized words based on letter sequences. Additionally, the algorithm’s success rate for 
restoring diacritical marks based on letter statistics was less than 72%. 
 Comparative analysis with existing systems is challenging for the QRDiaRec system. This is due to the unique 
focus of our model on the linguistic styles. Traditional metrics like Diacritization Error Rate (DER) and Word Error 
Rate (WER) are not applicable. These metrics assume a single correct form for diacritics, which does not hold in 
our study. Our model acknowledges these variations and can produce multiple correct diacritic outputs for the 
same sentence. Therefore, applying DER and WER, which penalize these valid alternatives, wouldn’t be an 
accurate measure of QRDiaRec’s effectiveness. We have evaluated QRDiaRec’s performance using standard 
accuracy measures, which provide a clearer picture in this context. Despite the challenges of multiple valid forms, 
our models achieved accuracy ranging from 91.5% to 92.2%. Our approach employs character-level sequence-to- 
sequence models. These models include bidirectional LSTM, bidirectional GRU, and transformer-based neural 
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networks. Our research goes beyond just diacritization by delving into the different Quranic linguistic styles, an 
aspect not addressed in prior studies. 

3. Integrating Linguistic Styles and Diacritization Dataset 
This section explores data organization, focusing on two key aspects: modeling linguistic styles in the database 
and the training and evaluation dataset for automated Arabic diacritization. The database, created in our previous 
research Sabour at al. (2024), organizes Quran Arabic linguistic styles at multiple levels, including: chapters, 
verses, words, letters, and diacritics.  The dataset is derived from this database, prepared for various learning 
models, and divided into training and evaluation subsets to improve diacritization accuracy. 

3.1 Modeling Linguistic Styles in the Database 
We present a glimpse into part of our database that illustrates the relationship and organization of textual data 
of the Arabic Qur’an. The database includes information on linguistic styles and the Qur’an books known as 
Mushafs. These Mushafs are divided into chapters, verses, words, and more. The tables within the database provide 
both statistical data and basic information, enabling various text-level analyses. 

 

Fig. 2 Database schema for modeling linguistic styles in the Qur’an 

Figure 2 displays the tables utilized in this section, encompassing the following elements: 
• Linguistic styles are associated with multiple Mushafs. Each Mushaf represents a complete book of 

the Qur’an presented in a specific linguistic style. 
• Each Mushaf consists of a collection of chapters, referred to as Surahs. A complete Quran comprises 

114 chapters. The MushafSurah table records data for the processed Surahs in each Mushaf. 
• Each Surah is further divided into multiple verses, known as Ayahs. 
• Each Ayah is subdivided into words, and each word is composed of characters. 
• The Characters table contains information about each character used in the script, along with its position. 
• The classification of characters includes Letters, Diacritics, and OtherCharacters, representing special 

char- acters. The Characters include the corresponding Unicode representation used in each Mushaf, 
which may vary for the same character from Mushaf to another. 

This structure enables analysis of the Arabic Qur’an’s textual content, facilitating the creation of a dataset 
for training and evaluation capable of supporting the Automated Arabic Diacritization System 

3.2 Training and Evaluation Dataset for Automated Arabic Diacritization: Multistyle 
Dialects Approach 

The training and evaluation dataset we used for the diacritization task contains seven linguistic styles. Table 
2 provides an overview of the dataset used in the Arabic auto-diacritization system, including statistics on the 
number of linguistic styles, tokens/words, characters without diacritics, diacritics, and characters in diacritics. 

Table 3, represents statistical information about the training and evaluation dataset. Each style represents 
the same text but in different Arabic dialects specifically different linguistic styles. Each record in the dataset 
contains a verse without diacritics and the same verse with diacritical letters. A verse may contain more than one 
sentence. This pairing facilitates the training and evaluation of diacritization models. 

Table 2 Dataset statistics 
Linguistic Style Variations 7 
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Tokens/Words Count 542,020 
Undiacritized Character Count 2,283,177 
Diacritic Mark Count 2,203,148 
Total Character Count 4,486,325 

We divided the Quranic data into sections for training, testing, and evaluation purposes. Furthermore, we 
ensured that these same sections were distributed across various linguistic styles. This ensures that the model 
is thoroughly assessed on unseen data during evaluation, providing a realistic gauge of its generalization 
capabilities. Our division of the Quranic data into sections per a linguistic style then taking the same sections for 
each linguistic style serves as a safeguard against over-fitting enhances generalization, and ensures a 
comprehensive evaluation of the model’s performance.  

Table 3 Dataset statistics: multistyle dialects for automated arabic diacritization 
StyleID Style Count Percentage Training Validation Testing 

1 Shueba 6,236 14.32 4,488 1,248 500 
2 Hafs 6,236 14.32 4,488 1,248 500 
3 Qonbl 6,220 14.28 4,476 1,244 500 
4 Al-Bazi 6,220 14.28 4,476 1,244 500 
5 Warsh 6,214 14.27 4,471 1,243 500 
6 AlDawri 6,217 14.27 4,473 1,244 500 
7 Qalun 6,214 14.27 4,471 1,243 500 
Totals 7 43,557 100 31,343 8,714 3,500 

Table 3 represents the division of the Arabic multi-style dialects across our datasets. The column Style: 
The name of the Arabic dialect or linguistic style represented by the text in each book. The column Count: 
The total number of sentences in the dataset for each book or dialect. The column Percentage: The percentage 
of sentences represented by each book or dialect in the entire dataset. The percentages are calculated based on 
the total number of sentences (43,557 sentences). The column Training: The number of sentences from each book 
or dialect reserved for training purposes. The column Evaluation: The number of sentences from each book 
used for evaluating the diacritization model. The column Testing: The number of sentences from each book or 
dialect used for testing the diacritization model. These sentences are employed to assess the model’s performance. 
The column Totals: Represents the aggregate statistics for the entire dataset. The total number of sentences in 
the dataset is 43,557 for non-diacritic sentences and the same number for the diacritic sentences. The total 
count of sentences used for training is 31,343, while the total count of sentences used for validation is 8,714, and 
for testing is 3,500. These values demonstrate how the dataset is split into training, validation, and testing subsets 
for the diacritization task. This diversity in the dataset allows the models to handle the different dialectal styles, 
enhancing the overall performance and usability of the automated Arabic diacritization system. 

4. Automated Arabic Diacritization Module 
Automatic diacritization opens the door to a world of possibilities in Arabic language processing. We are 
interested in diacritics as a means to comprehend the Arabic language. Removing diacritic letters from diacritic-
annotated text is a straightforward task, where all Unicode diacritics are deleted from the text. However, the real 
challenge lies in automatically adding diacritics to text when they are absent. This process significantly enhances 
language understanding and clarification of meaning. Diacritics provide phonetic and grammatical information 
that is essential for disambiguating the text. By introducing diacritics automatically, we improve the processing of 
Arabic NLP, which yields benefits across various fields. This advancement positively impacts sentiment analysis, 
machine translation, information retrieval, text-to-speech (TTS) systems, consistency, and standardization in 
texts, and others. 

This module is essential for automating the conversion of non-diacritic Arabic text into diacritic-annotated 
text, enabling interpretation and understanding of Arabic, enhancing linguistic analysis, and facilitating various 
language processing applications. The character-level sequence-to-sequence model is chosen because it operates 
directly on the character level, allowing it to capture fine-grained linguistic features and patterns (Zhang et al., 
2016). It can learn the complex relationships between the input non-diacritic Arabic text and the corresponding 
diacritic-annotated text, which is the objective of the diacritization system. The model has the ability to generate 
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sequences of variable length (Ruzsics and Samardzic, 2017), making it suitable for handling the varying lengths of 
Arabic words and sentences. By utilizing bidirectional LSTM or GRU layers, the model can effectively capture both 
past and future context (Yang et al., 2020), enabling it to make informed decisions about appropriate diacritics 
based on the surrounding characters. 

LSTM and GRU are different types of recurrent neural network (RNN) architectures used for sequence 
modeling (Ruzsics and Samardzic, 2017). Both bidirectional LSTM and bidirectional GRU incorporate information 
from both past and future contexts by processing the input sequence in both forward and backward directions 
(Zhang et al., 2016). The main difference lies in their internal mechanisms. LSTM utilizes memory cells, input 
gates, forget gates, and output gates to control the flow of information, whereas GRU uses update gates and reset 
gates to regulate the flow of information (Dey and Salem, 2017). LSTM has a more complex structure than GRU, 
with more parameters, which allows it to capture longer-term dependencies in the input sequence (Yang et al., 
2020). GRU has a simpler structure with fewer parameters, making it computationally more efficient and easier 
to train (Zhang et al., 2016). 

Algorithm 1: Training a Character-Level Language Model 

Input: 
Training dataset Dtrain with input sequences X and target sequences y  
Testing dataset Dtest with input sequences Xtest and target sequences ytest  
Maximum sequence length Lmax 
Embedding dimension Edim  
Number of training epochs Nepochs  
Batch size Bsize 

Output: 
Trained character-level language model M 

1: function PreprocessData 
2: Convert sentences in Dtrain and Dtest into character lists 

               3: Convert character lists into integer representations 
4: Pad the sequences to ensure the uniform length 
5: function InitializeModel 
6: // The implementation of this function varies depending on the model used. 

7:  function CompileAndTrainModel 
8:  Compile the model M using the sparse categorical cross-entropy loss function and the Adam optimizer 
9:  Train the model M on the preprocessed training data,  
   iterating over Nepochs epochs with a batch size of Bsize 

10: Evaluate the model’s performance on the validation data 
11: Save the trained model M for future use 
 
12: PreprocessData 
13: InitializeModel 
14: CompileAndTrainModel 

The transformer-based model is employed for diacritizing Arabic text, offering a broader range of alternative 
approaches. This model leverages self-attention mechanisms to model long-range dependencies and capture 
contextual relationships within the text ( Ding et al., 2022). Inspired by the influential “Attention Is All You 
Need” architecture (Vaswani, et al., 2017), our model excels at handling large-scale datasets and effectively 
captures global dependencies across the entire sequence (Vaswani et al., 2017). The character-level sequence-to-
sequence model is effective in capturing sequential dependencies, while the transformer-based model excels at 
modeling long-range dependencies and capturing contextual relationships. 

Algorithm 1 is a general algorithm for the three models (GRU, LSTM, and Transformer). It consists of three 
functions: 

• PreprocessData: Preprocesses the training and testing data uniformly across all models. 
• InitializeModel: Initializes the model, with implementation varying for each model due to their unique 

architecture and initialization process. 
• CompileAndTrainModel: Compiles and trains the model, following the same process for all three 

models. 
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Our models, implemented using the Keras framework, are powerful deep-learning algorithms for capturing 
and predicting patterns in sequential data ( Moolayil, 2019). The algorithmic steps for training the models 
are summarized in Algorithm 1. To prepare the training and testing data during PreprocessData function, the 
sentences are initially converted into character lists. This conversion allows the models to operate at the 
character level, capturing the fine-grained details of the text. 

By representing the text as characters, the models can learn the relationships between different characters 
and their corresponding diacritics. The character lists are further transformed into integer representations 
because neural networks typically work with numerical data. Assigning unique integers to each character enables 
the models to process and learn from the input data effectively. In order to ensure uniformity in the input data, 
padding is applied (Dwarampudi and Reddy, 2019). This involves adding zeros padding tokens to the sequences 
so that they all have the same length. Creating equal-length input sequences is crucial as neural networks typically 
require fixed-size inputs (Dwarampudi and Reddy, 2019). By padding the sequences, we ensure that the models 
can handle inputs of varying lengths without encountering issues. 

During model compilation inside the CompileAndTrainModel function, the sparse categorical cross-entropy 
loss function is used (Cosentino et al., 2019). This loss function is suitable for multi-class classification tasks like 
diacritization, where each character can have multiple possible diacritics. The Adam optimizer is chosen for 
training the models, as it efficiently updates the model’s parameters based on the gradients computed during the 
training process (Zhang, 2018). 

Regarding the InitializeModel function, we can combine the idea of implementing LSTM and GRU into 
Algorithm 2. The model architecture for both the LSTM and GRU models is defined using the Sequential API, 
a straightforward way to build neural networks in a sequential manner (Manaswi, 2018). The architecture 
consists of multiple layers, including an embedding layer, which maps each character to a continuous vector 
representation. This allows the models to capture semantic relationships between characters based on their 
contextual usage. Next, a bidirectional layer (LSTM or GRU) is employed. The bidirectional nature of these 
layers enables the models to consider both past and future contexts when making predictions. This is beneficial 
for diacritization as it allows the models to take into account the surrounding characters when predicting the 
diacritics for a specific character. A dense layer with softmax activation (Luus et al., 2015) is utilized to produce 
the final output probabilities for each character’s diacritics. This layer interprets the outputs as a probability 
distribution over diacritic options for each character. 

Algorithm 3 provides a high-level overview of the InitializeModel function for the Transformer model. The 
Transformer model is constructed with an embedding layer followed by multiple TransformerEncoder layers 
(Wang et al., 2019). The embedding layer maps the integer representations to dense vectors of size Edim, allowing 
the model to learn meaningful representations of the characters.  

The TransformerEncoder layers leverage self-attention mechanisms to capture the dependencies between 
characters and generate contextualized representations (Ding et al., 2022). The output of the last 
TransformerEncoder layer is fed into a dense layer with softmax activation to obtain the predicted diacritics. We 
chose specific hyperparameters with the transformer: 
  

Algorithm 2: Initialize the GRU and LSTM Models 
Input: 
                  Number of LSTM/GRU units ULST M/GRU 

1:  function InitializeModel 
2:         Create an embedding layer with input dimension Lmax and output dimension Edim 
3: Create a bidirectional LSTM/GRU layer with ULST M/GRU units 
4: Create a dense layer with softmax activation 
• d_model=32: It determines the size of the model’s internal representation. A smaller value makes the 

model more efficient for processing Arabic text. 
• num_heads=4: It represents the number of attention spots in the model’s brain. More heads 

allow the model to capture different patterns in the text, essential for understanding diacritic 
placement. 

• dff=64: It controls the capacity for processing and transformations in the model. A moderate value 
balances efficiency and learning capability. 

• rate=0.1: It indicates the dropout rate, which helps in generalization and prevents the model from 
overfitting to specific examples. 

These hyperparameters were chosen to make the model computationally efficient and effective in handling 
the complexities of Arabic text with diacritics. 

References to algorithms 2 and 3 denote the instantiation of the “InitializeModel” function specific to GRU, 
LSTM, and Transformer models. These algorithms constitute essential components within the broader framework 
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of the comprehensive algorithm 1. By incorporating these algorithms, the implementation process for the 
Automated Arabic Diacritization Module is accomplished, encompassing all requisite steps. 

 
Algorithm 3: Initialize the Transformer Model 

Input: 
Number of Transformer heads Nheads Feed-forward dimension Fdim  
Dropout rate Drate 

           1: function InitializeModel 
             2: Create an embedding layer with input dimension Vsize and output dimension Edim 
            3: Create Nheads TransformerEncoder layers with Edim, Nheads, and Fdim 
             4: Create a dense layer with softmax activation 

 
These models have demonstrated high accuracy rates, as indicated by achieving accuracies of 91.5% with 

bidirectional LSTM, 92.1% with bidirectional GRU, and 94.2% with the transformer-based model, making them 
effective solutions for diacritizing Arabic letters. 

5. Performance Evaluation of Diacritization Algorithms 
In this section, we present the performance evaluation of diacritization algorithms, specifically on the LSTM, GRU, 
and Transformer models. These models are powerful deep-learning algorithms for capturing and predicting 
patterns in sequential data (Zhang et al., 2016). 

5.1 Experimental Results of the LSTM Algorithm 
This section presents an analysis of the LSTM algorithm’s performance for diacritization. It is structured into three 
segments, each focusing on different aspects of the algorithm’s performance evaluation. By delving into these 
analyses, we gain valuable insights into the LSTM algorithm’s proficiency in accurately predicting and capturing 
patterns while minimizing errors. 

5.1.1 Performance Analysis of LSTM Algorithm: Metrics and Results 
The LSTM algorithm achieved a training accuracy of 94.3%, a validation accuracy of 93.5%, and a testing accuracy 
of 92.1%. The training loss, which measures the error during training, is 0.179, and the validation loss is 0.214. 

Table 4 provides an evaluation of the performance of the LSTM model for diacritization. These results indicate 
that the LSTM algorithm performed well in capturing the patterns and relationships between characters and their 
corresponding diacritics, leading to accurate predictions. 

Table 4 Performance metrics of LSTM algorithm in diacritizing arabic text 
LSTM 
Metric 

Accuracy Precision Recall F1 
Score 

Training 
Loss 

Training 
Accuracy 

Val. 
Loss 

Val.  
Accuracy 

Value 92.14 90.55 92.14 91.29 0.179 94.3 0.214 93.5 

5.1.2 Assessment of LSTM Model Generalization: Training vs. Validation Accuracies 
Figure 3, illustrates the training and validation accuracies achieved during the evaluation of the LSTM model. The 
accuracies are computed over 75 epochs, with the following summarization: 

• The training accuracy gradually improves from 91.3% to 94.3%, indicating the model’s learning and 
performance enhancement on the training data. 

• The validation accuracy displays a similar increasing trend, rising from 91.8% to 93.5%. This suggests 
the model’s ability to generalize well to unseen data and make accurate predictions. 

• The proximity of the training and validation accuracies suggests a balanced model that avoids 
overfitting or underfitting (Jabbar and Khan, 2015). It demonstrates the model’s capability to 
generalize without merely memorizing the training examples. 

• The validation accuracy consistently tracks the increasing trend of the training accuracy, indicating the 
model’s improvement on both training and unseen data. 

• The final accuracies of 94.3% for training and 93.5% for validation highlight the model’s reasonably 
high accuracy in accomplishing the given task. 
These findings strongly support the hypothesis that the LSTM model effectively learns and 
generalizes for the specified task. 
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Fig. 3 Accuracy comparison: training and validation 

results for the LSTM model 
Fig. 4 Loss comparison: training and validation results 

for the LSTM model 

5.1.3 Analyzing Loss in LSTM Model: Training vs. Validation Results 
Figure 4, displays the training and validation losses obtained during the evaluation of the LSTM model. It is 
important to note that these loss values are not expressed as percentages but rather represent a measure of 
the model’s performance and error reduction. These losses were computed over multiple epochs and can be 
summarized as follows: 

• The training loss gradually decreases from 0.461 to 0.179. This decreasing trend indicates that the 
model improves its performance and reduces errors as it learns from the training data. 

• Similarly, the validation loss also exhibits a decreasing trend, ranging from 0.361 to 0.214. This suggests 
that the model effectively minimizes errors and generalizes well to unseen data, indicating its ability to 
make accurate predictions on new instances. 

• The close proximity of the training and validation losses indicates that the model achieves a balance 
between capturing patterns in the training data and generalizing to new instances. This suggests that 
the model neither overfits the training data nor under-fits the underlying patterns, resulting in reliable 
predictions. 

• The consistent decrease in both training and validation losses indicates the model’s ability to generalize 
learned patterns to unseen data. 

• The final losses of 0.179 for training and 0.214 for validation demonstrate the model’s effectiveness in 
achieving low loss levels, reflecting its capability to capture underlying patterns in the given task. 

These findings provide evidence supporting the LSTM model’s performance in minimizing loss and capturing 
patterns in both training and validation data. 

5.2 Experimental Results of the GRU Algorithm 
This section presents an analysis of the GRU algorithm’s performance for diacritization. It is structured into 
three subsections, each focusing on different aspects of the algorithm’s performance evaluation. These subsections 
employ various metrics to assess the algorithm’s effectiveness in capturing patterns, its ability to generalize to 
unseen data, and the analysis of loss values during training and validation. 

5.2.1 Performance Analysis of GRU Algorithm: Metrics and Results 
The GRU algorithm achieved an accuracy of 94.2% a precision of 93.26%, a recall of 94.20%, and an F1 score of 
93.46%. These metrics measure the algorithm’s accuracy in predicting the diacritics for Arabic text in the testing 
dataset. Additionally, the training loss of the GRU model is 0.150, indicating the error during the training process, 
while the training accuracy is 95.2%, showing the percentage of correctly predicted diacritics on the training data. 
For the validation phase, the GRU algorithm achieved a validation loss of 0.171, which measures the error on 
unseen data, and a validation accuracy of 94.7%, indicating the accuracy of diacritic predictions on the 
validation data. Table 5 provides an evaluation of the performance of the GRU model for diacritization. The GRU 
algorithm performed well in capturing the patterns and relationships between characters and their corresponding 
diacritics, leading to accurate diacritization of Arabic text. 
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Table 5 Performance metrics of GRU algorithm in diacritizing arabic text 
GRU 
Metric 

Accuracy Precision Recall F1 
Score 

Training 
Loss 

Training 
Accuracy 

Val. 
Loss 

Val. Accuracy 

Value 94.20 93.26 94.20 93.46 0.150 95.20 0.171 94.7 

5.2.2 Assessment of GRU Model Generalization: Training vs. Validation Accuracies 
Figure 5, illustrates the training and validation accuracies achieved during the evaluation of the GRU model. After 
epoch 47, the GRU model shows a significant decrease in accuracy. We applied an early stop until epoch 47 to 
overcome the overfitting (Rice et al., 2020). 

• The training accuracy gradually improves from 93.5% to 95.2%, indicating the model’s learning and 
performance enhancement on the training data. 

• The validation accuracy also shows an increasing trend, rising from 93.6% to 94.7%. This suggests the 
model’s ability to generalize well to unseen data and make accurate predictions. 

• The proximity of the training and validation accuracies indicates a balanced model that avoids 
overfitting or underfitting. It demonstrates the model’s capability to generalize without merely 
memorizing the training examples. 

• The validation accuracy consistently tracks the increasing trend of the training accuracy, indicating the 
model’s improvement on both training and unseen data. 

• The final accuracies of 95.2% for training and 94.7% for validation highlight the model’s high accuracy 
in accomplishing the given task. 

These findings provide evidence that the GRU model effectively learns and generalizes for the specified task, 
similar to the LSTM model. 

 

 
 

Fig. 5 Accuracy comparison: training and validation 
results for the GRU model 

Fig. 6 Loss comparison: training and validation results 
for the GRU model 

5.2.3 Analyzing Loss in GRU Model: Training vs. Validation Results 
Figure 6, presents the training and validation losses obtained during the evaluation of the GRU model. These 
losses are computed over 75 epochs, but we applied an early stop at epoch 47 and we can be summarized as 
follows: 

• The training loss gradually decreases from 0.321 to 0.150,  indicating improved performance and 
error reduction in the training data. 

• The validation loss also exhibits a decreasing trend, ranging from 0.260 to 0.171, suggesting effective 
error minimization and generalization to unseen data. 

• The close proximity of the training and validation losses suggests a balanced model that avoids 
overfitting or underfitting, effectively capturing patterns in the training data while generalizing to new 
instances. 

• The consistent decrease in both training and validation losses indicates the model’s ability to 
generalize learned patterns to unseen data. 
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• The final losses of 0.150 for training and 0.171 for validation demonstrate the model’s effectiveness 
in achieving low loss levels, reflecting its capability to capture underlying patterns in the given task. 

These findings provide evidence supporting the GRU model’s performance in minimizing loss and capturing 
patterns in both training and validation data. 

5.3 Experimental Results of the Transformer Algorithm 
The Transformer model is a state-of-the-art architecture that has revolutionized NLP tasks, including language 
modeling (Irie et al., 2019). This section presents the outcomes of the experiments conducted using the 
Transformer model and examines its effectiveness in capturing patterns and making accurate predictions. 

5.3.1 Performance Analysis of the Transformer Algorithm: Metrics and Results 

Table 6 Performance metrics of the transformer algorithm in diacritizing arabic text 
Transformer 
Metric 

Accuracy Precision Recall F1 
Score 

Training 
Loss 

Training 
Accuracy 

Val. Loss Val. Accuracy 

Value 92.10 89.17 92.10 89.84 0.447 91.9 0.448 91.9 

The experimental results of the Transformer algorithm for diacritizing Arabic text are summarized in Table 
6. The Transformer algorithm achieved an accuracy of 92.10% a precision of 89.17%, a recall value of 92.10%, 
and an F1 score, which is 89.84% during the testing phase. In terms of training performance, the algorithm 
achieved a training loss of 0.447. The training accuracy reached 91.9%. During the validation phase, the 
algorithm achieved a validation loss of 0.448, and the validation accuracy is 91.9%. 

5.3.2 Assessment of Transformer Model Generalization: Training vs. Validation 
Accuracies 

Figure 7, visualizes the training and validation accuracies achieved during the evaluation of the Transformer 
model. These accuracies are computed over multiple 75 epochs and can be summarized as follows: 

• The training accuracy gradually improves from 91.5% to 91.9%, indicating the model’s learning and 
performance enhancement on the training data. 

• The validation accuracy shows a relatively stable trend, 91.9%. This suggests that the model maintains 
a consistent level of accuracy on unseen data. 

• The proximity of the training and validation accuracies suggests a balanced model that avoids 
overfitting or underfitting. It indicates that the model generalizes well to unseen data without relying 
heavily on the training examples. 

• The validation accuracy remains relatively stable throughout the epochs, indicating that the model’s 
performance on unseen data remains consistent. 

• The final accuracies of 91.9% for training and validation highlight the model’s reasonably high 
accuracy in accomplishing the given task. 

•  

  
Fig. 7: Accuracy comparison: training and validation 

results for the transformer model 
Fig. 8 Loss comparison: training and validation results 

for the transformer model 
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5.3.3 Analyzing Loss in Transformer Model: Training vs. Validation Results 
Figure 8, showcases the training and validation losses obtained during the evaluation of the Transformer 
model. These losses are computed over 75 epochs and can be summarized as follows: 

• The training loss gradually decreases from 0.506 to 0.447, indicating improved performance and 
error reduction in the training data. 

• The validation loss also exhibits a decreasing trend, ranging from 0.465 to 0.448, suggesting effective 
error minimization and generalization to unseen data. 

• The close proximity of the training and validation losses suggests a balanced model that avoids overfitting 
or underfitting, effectively capturing patterns in the training data while generalizing to new instances. 

• The consistent decrease in both training and validation losses indicates the model’s ability to 
generalize learned patterns to unseen data. 

• The final losses of 0.447 for training and 0.448 for validation demonstrate the model’s effectiveness 
in achieving low loss levels, reflecting its capability to capture underlying patterns in the given task. 

6. Comparing Performance Metrics and Accuracy Trends 
The main focus of this section is to compare the performance metrics, accuracy trends, and loss analysis of 
the Transformer, GRU, and LSTM models. Through the analysis, we aim to provide an understanding of the 
performance of these models and their implications for Arabic diacritization tasks. 

6.1 Evaluating Performance Metrics 
The comparison of performance metrics among the Transformer, GRU, and LSTM models is visualized in Figure 
9. The GRU model achieved the highest accuracy of 94.2%, followed by the LSTM and the transformer model with 
an accuracy of 92.1%. 

The GRU model achieved the highest precision score of 93.26%, indicating that it has a strong ability to 
classify the diacritics in the Arabic text. The Transformer model achieved a precision score of 89.17%, while the 
LSTM model achieved a precision score of 90.55%. The GRU model achieved a recall score of 94.2%, indicating its 
capability to effectively capture the true positive instances. The LSTM and Transformer models also demonstrated 
a high recall score of 92.1%, closely following the performance of the GRU model. The F1 score combines precision 
and recall into a single metric, providing an overall assessment of a model’s performance. The GRU model achieved 
the highest F1 score of 93.46%, which indicates a good balance between precision and recall. The LSTM model 
closely followed with an F1 score of 91.3%, while the Transformer model obtained a slightly lower F1 score of 
89.8%. Overall, the comparison of precision, recall, and F1 score suggests that the GRU model exhibits the highest 
performance among the three models, closely followed by the LSTM model. The Transformer model, while 
achieving slightly lower scores, still demonstrates competitive performance. 

 

Fig. 9 Comparison of precision, recall, and F1 score among transformer, GRU, and LSTM models 

6.2 Analysis of Training Accuracy Trends 
Figure 10 compares the Training Accuracy of the Transformer, GRU, and LSTM models over 75 epochs. The key 
observations: 

• The GRU is stopped early during epoch 47. The reason is that this is the epoch in which the GRU achieves 
the highest accuracy. Based on that, we assumed the stability of the GRU at this epoch. The GRU model 
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consistently shows the highest Training Accuracy throughout 47 epochs, with values ranging from 
93.5% to 95.2%. It demonstrates strong learning capabilities and performance on the training data. 

• The LSTM model follows closely behind the GRU model, with Training Accuracy ranging from 91.3% to 
94.3%. It also exhibits consistent and steady improvement over the epochs. 

• The Transformer model has the lowest Training Accuracy among the three models, ranging from 91.5% 
to 91.9%. Although it starts with slightly lower accuracy, it shows improvement and reaches a similar 
level as the LSTM model towards the end of the epochs. 

The GRU model consistently achieves the highest Training Accuracy, indicating its superior performance in 
learning and capturing patterns in the training data. The LSTM model closely follows behind, demonstrating 
its effectiveness in learning and generalizing. The Transformer model shows improvement over the epochs but 
initially starts with a lower accuracy compared to the other two models. 

 

Fig. 10 Comparing training accuracy patterns: transformer, GRU, and LSTM models 

6.3 Analysis of Evaluation Accuracy Trends 
Figure 11 compares the Evaluation Accuracy of the models. The key observations are as follows: 

• The GRU model consistently achieves the highest Evaluation Accuracy among the three models. It 
shows a gradual increase in accuracy from 93.6% to 94.7% over the 47 epochs. This indicates the GRU 
model’s ability to generalize well to unseen data and make accurate predictions. 

• The LSTM model closely follows the GRU model in terms of Evaluation Accuracy. It starts with an 
accuracy of 91.8% and shows consistent improvement throughout the epochs, reaching a final accuracy 
of 93.5%. This demonstrates the LSTM model’s effectiveness in capturing patterns and generalizing for 
new instances. 

• The Transformer model starts with a slightly lower Evaluation Accuracy compared to the other two 
models, at 91.9%. 

The GRU model consistently outperforms the other models in terms of Evaluation Accuracy, indicating its 
superior performance in generalization. 

 

Fig. 11 Comparing evaluation accuracy patterns: transformer, GRU, and LSTM models 
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6.4 Analysis of Training Loss 
We analyzed the training loss of the GRU, Transformer, and LSTM models over 75 epochs. The training loss reflects 
the discrepancy between the predicted diacritics and the actual diacritics in the training data. Lower training loss 
values indicate a better fit of the models to the data. 

Figure 12 illustrates the training loss patterns of the three models: 
• The GRU model exhibits the lowest training loss values, starting at 0.321 and gradually 

decreasing to 0.150. This suggests that the GRU model effectively captures the diacritical patterns 
in the Arabic text and converges to a better fit with the training data. 

• The LSTM model follows a similar trend, starting with a training loss of 0.461 and reaching 0.179 by 
the end of the epochs. It demonstrates consistent improvement and convergence, albeit with slightly 
higher loss values compared to the GRU model. 

• The Transformer model shows the highest training loss among the three models, starting at 0.506 
and decreasing to 0.447. However, it still exhibits a notable improvement over the epochs and 
converges to a comparable level with the LSTM model. 

 

Fig. 12 Comparing training loss patterns: transformer, GRU, and LSTM models 

The three models demonstrate a decreasing training loss over the course of training, indicating their ability 
to learn and capture the diacritical patterns in the training data. The GRU model achieves the lowest training loss, 
followed by the LSTM model, while the Transformer model lags slightly behind. 

6.5 Analysis of Evaluation Loss 
We conducted an analysis of the evaluation loss for the GRU, Transformer, and LSTM models over 75 epochs. 
The evaluation loss represents the discrepancy between the predicted diacritics and the actual diacritics in the 
evaluation data. Lower evaluation loss values indicate better generalization and performance on unseen data. 

 

Fig. 12 Comparing evaluation loss patterns: transformer, GRU, and LSTM models 

Figure 12 displays the evaluation loss patterns of the three models: 
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• The GRU model exhibits the lowest evaluation loss values, starting at 0.260 and gradually 
decreasing to 0.171. This suggests that the GRU model effectively generalizes to unseen data and 
performs well in diacritizing Arabic text. 

• The LSTM model follows a similar decreasing trend, starting with an evaluation loss of 0.361 and 
reaching 0.214 by the end of the epochs. It demonstrates consistent improvement and showcases 
its ability to generalize to new instances. 

The Transformer model starts with a higher evaluation loss compared to the other two models, at 0.448. The 
analysis of evaluation loss indicates that the GRU model consistently outperforms the other models, exhibiting 
the lowest evaluation loss values. 

7. Discussion and Future Work 
This section discusses the key findings of our research on automatic diacritization for Arabic text. We employed 
three neural network models and evaluated their performance. Additionally, we highlight the contributions of this 
study and explore potential areas for future work. 

7.1 Results 
We evaluated three neural network models for Arabic text diacritization: Transformer, GRU, and LSTM. Here's a 
breakdown of their performance: 

• Accuracy and Generalizability: 
o The GRU model emerged as the champion, achieving the highest overall accuracy 94.2% and F1 

score 93.46%.  
o This indicates its strong ability to both learn and perform well on unseen data. 
o LSTM followed closely with an accuracy of 92.1% and F1 score of 91.3%. 
o The Transformer model also showed competitive performance, reaching an accuracy of 92.1% 

but with a slightly lower F1 score 89.8%. 
• Training Efficiency: 

o The GRU model impressed with the lowest training loss and the fastest convergence.  This 
suggests it excels at capturing patterns within the training data. 

o All models exhibited a decrease in both training and evaluation loss as training progressed, 
indicating successful learning and improvement. 

Based on our findings, the GRU model stands out as the most effective approach for Arabic text diacritization 
in this study.  It achieved superior performance in accuracy, generalization, and training efficiency compared to 
the other models. 

7.2 Future Work 
Our study lays the groundwork for further exploration in several areas: 

• Use of Standard Metrics: Research in auto diacritization typically uses metrics like Diacritization Error 
Rate (DER) and Word Error Rate (WER).  These metrics assume a single correct form for each text 
instance.  However, our research acknowledges multiple correct forms for diacritizing Arabic text due to 
various linguistic styles.  Consequently, DER and WER may not fully capture the effectiveness of our 
models.  Although we used standard metrics like accuracy, precision, and F1 score, future research should 
consider developing new metrics.  These new metrics would better accommodate the variability inherent 
in linguistic styles. 

• Fine-tuning and Customization: Implement techniques for fine-tuning and customizing the 
diacritization models to adapt to specific linguistic styles. 

• Linguistic Style Detection: Develop a linguistic style detection module within the system to 
automatically identify and categorize the linguistic style of Arabic text. 

• Integration with Other NLP Tasks: Integrate the diacritization system with other NLP tasks, such as 
sentiment analysis, named entity recognition, and part-of-speech tagging, to support more 
comprehensive Arabic language processing. 

• Cross-Linguistic Studies: Conduct cross-linguistic studies to compare the diacritization and stylistic 
realization challenges in Arabic with other languages, potentially leading to valuable insights and 
improvements. 

By addressing this future work, we can further refine diacritization systems for Arabic text. This refinement 
will enhance the effectiveness of these systems, particularly in handling diverse linguistic styles. 
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8. Conclusion 
This study advances the understanding of Arabic through the QRDiaRec system. This system is focused on the 
auto-diacritization and stylistic realization of Arabic texts. Unlike traditional systems, QRDiaRec can produce 
multiple correct diacritic outputs for the same sentence. This ability significantly enhances comprehension of 
diacritical letters and diverse linguistic styles. The incorporation of deep learning models, including bidirectional 
LSTM, GRU, and transformer-based models, has enabled the QRDiaRec system to achieve a 94.2% accuracy in 
diacritization. This high accuracy underlines the system's effectiveness in Arabic text analysis and interpretation. 
The key contributions of this study are the development of the QRDiaRec system and the application of 
sophisticated deep learning models for diacritization. These advancements are poised to significantly impact the 
field of Arabic language processing, opening avenues for further research and practical applications. 
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