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1. Introduction 

A quadcopter is a type of rotorcraft based Unmanned Aerial Vehicle (RUAV) that consists of four main fixed-pitch 

rotors. The quadcopter performs aerial maneuvers by changing the speed of each rotor to generate the desired total thrust 

and torque for turning and flying. Quadcopter does not require any complex control mechanism for its propellers and, 

thus is much easier to maintain compared to the conventional helicopter UAV. Multirotor aerial vehicles such as 

quadcopter have been widely used for numerous civil and military applications. The unique flying capabilities of the 

quadcopter to take off and land vertically (VSTOL), hovering and cruising at a slower speed makes it suitable for 

monitoring and surveillance over targets compare to the fixed wing UAV. Multi-rotor UAVs are rapidly conquering the 

market where various multi-rotor designs are produced for the military as well as the civil applications [1]. In the military 

application, RUAV is mainly used for real-time reconnaissance, surveillance, and search and rescue missions. On the 

other hand, the quadcopter is often used in aerial photography, delivery services [2], traffic monitoring [3], and structural 

inspection [4] in the civil application.  

Researchers have developed many different fields of studies using a quadcopter, such as flight dynamic modeling 

[5], flight control theory [2][6][7], navigation [8]–[11], and robotic [12]. Most of the applications mentioned require the 

quadrotor to have a highly robust control system to hover in steady and close proximity relative to the targets. Hence, 

Abstract: A quadcopter is a rotorcraft with a simple mechanical construction. It has the same hovering capability 

similar to the traditional helicopter, but it is easier to maintain. The quadcopter is hard to control due to its unstable 

system with highly coupled and non-linear dynamics. In order to design a robust control algorithm, it is crucial to 

obtain a precise quadrotor flight dynamics through system identification approach. System identification is a method 

of finding the mathematical model of the dynamics system using the input-output data measurement. Neural network 

(NN) based system identification is excellent alternative modeling because it reduces development costs and time by 

avoiding governing equations and large aerodynamic database. NN based system identification has successfully 

identified the quadcopter dynamics with good accuracy. This paper gives an overview of the characteristic of the 

quadcopter and presents a comprehensive survey of the modeling techniques used to determine the flight dynamics 

of a quadrotor with a particular focus on NN based system identification method. The presented research works have 

been classified into different categories such as the first principle modeling, system identification and implementation 

of NN based system identification in quadcopter platform. Finally, the paper highlights challenges that need to be 

addressed in developing efficient NN based system identification model for unmanned quadcopter system. 
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comprehensive modeling work needs to be conducted to obtain an accurate flight dynamics model if one intends to design 

a robust flight control system for a quadcopter.  

Aircraft flight dynamics modeling is a numerical representation that can either be linear or nonlinear in the steady-

state performance and dynamic responses, such as acceleration, angular rate, and position for actuator's input as precisely 

with flight motion in the real situation [13]. Any unmodeled dynamics from simplifying assumptions that are not 

assimilated in the mathematical model will reduce the performance of dynamic models [14]. Generally, there are two 

basic methods to determine the mathematical model: (1) the first principle of modeling based on Newton-Euler 

formulation law and Euler’s angles and (2) system identification. The first principle modeling is based on the physical 

understanding of forces and moments balance of the vehicle by direct use of the laws of mechanics and aerodynamics to 

derive the nonlinear model of a quadcopter. A quadcopter's dynamics model also requires some assumptions to simplify 

the difficulty of the model. High frequency and unmodeled dynamics are ignored to simplify dynamic model analysis. 

As a consequence, flight controller architecture based on simplistic and unmodeled dynamics may not perform 

appropriately in a real application, resulting in a crash or unpredictable control actions during flight [15]–[17]. The 

dynamics model from the first principle approach derives mainly from a quadcopter's experiments and physical 

calculations. Changes in quadcopter parameters will influence the current model of dynamics, so further tests and time 

are needed to establish a new model of dynamics. In order to simplify the labour-intensive and time-consuming first 

principal modelling equations, system identification method is suggested by several researchers [2], [18]–[21]. 

System identification method was introduced to determine the unmodelled parameters in the first principle of 

modeling from the experimental data collected during the flight test. The neural network (NN) method can be used as an 

alternative technique in quadcopter dynamic modeling. NN does not depend on a mathematical model that is unique [22]. 

It has a very flexible model structure which can increase the precision of prediction. However, due to multiple models 

available, the researcher would have trouble deciding the best model structure and initial NN parameter for the 

quadcopter. Therefore, any a priori information must be used in order to restrict the number of potential models. The 

modelling outcome from the NN method can be unreliable, takes longer training time, slow convergence rate, and is 

vulnerable to the over-fitting problem due to incorrect selection of model structure, an excessive number of neurons, and 

inadequate machine training data [23], [24].  

The work presented in this paper attempts to review the development of a system identification method based on the 

NN model for quadcopter dynamic modeling application. This paper is organized as follows. In Section 2, the basic 

structure and characteristic of the quadcopter are presented. In Section 3, first-principle modeling of a quadcopter is 

discussed briefly. System identification of quadcopter, such as time-domain system identification, frequency-domain 

domain system identification, and NN system identification are presented in Section 4. In Section 5, more details on the 

application of system identification based on NN in quadcopter are discussed. Finally, the conclusion of this paper is 

presented in Section 6. 

 

2. Quadcopter Characteristic 

The structure of a quadrotor is straightforward and usually has two basic types of configurations, i.e. the ‘cross’ 

configurations and the ‘plus’ configurations. A ‘cross’ configuration quadrotor is more stable and provides higher 

momentum than the ‘plus’ configurations, which increases maneuverability performance [25]. Basic quadcopter controls 

for ‘cross’ configuration in the body reference frame respect to inertia frame are shown in Fig. 1. Two diagonal rotors 

(M1 and M3) are rotating counter-clockwise whereas the other rotors (M2 and M4) rotate in the clockwise direction. The 

change in angular speed between the four rotors causes variances in thrust and consequently, creates tilting movements 

around the quadcopter axes. XB, YB, and ZB are the main axis in the body frame of the quadcopter, while X, Y, and Z 

are the axis on earth frame.  

 
Fig. 1 - Quadcopter free body diagram 

The position of the quadcopter can be addressed in the body frame coordinate (B) with reference to earth frame (E). 

Quadcopter needs to decrease the rotor speed at M1 and M4, and increase the rotor speed at M2 and M3 to move along 
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positive XB axis. Thus, the quadcopter will pitch forward with pitch angle (θ). Similarly, when the quadrotor flies in 

positive YB axis with roll angle (𝜙), the quadcopter needs to decrease rotor speed at M1 and M2 and increase the rotor 

speed at M3 and M4. In order to make the quadcopter turns in ZB axis with yaw angle (ψ), the quadcopter must increase 

the speed of M1 and M3 rotors and decrease rotor speed at M2 and M4. 

A quadrotor is a highly nonlinear, multivariable, strongly coupled, under-actuated, and an unstable system. It is 

under-actuated systems due to there are only four parallel force inputs to control its six output coordinates (position and 

orientation in space). The quadcopter also has a highly coupled system because any change in the speed of one propeller 

causes another motion of at least three degrees of freedom (DOF ) [26]. Due to the coupled nature of the quadrotor, 

reducing the speed of one rotor will cause the quadrotor to tilt toward rotor direction, but there are also changes in the 

total yaw moment and thrust. Hence, all rotor speeds should be controlled for creating any maneuver of quadcopter [4]. 

 

3. First Principle Modeling 

The first principle method of quadrotor modeling is based on a direct physical understanding of forces and moments' 

balance of the vehicle by using Newton’s law and Euler’s angles to describe the system behaviour. Generally, the first 

principle modeling is developed based on established aircraft theories with a certain number of assumptions and 

simplifications. Many unknown parameters in the mathematical model need to be measured or approximated to make the 

model work more sophisticatedly. Several assumptions made on a quadcopter to simplify developing mathematical model 

are as follows: (1) The quadrotor frame is supposedly symmetrical and rigid [2], [27]; (2) The propellers are assumed to 

be rigid [18]; (3) The center of gravity and center body frame origin is assumed to coincide [28]; and (4) The 

aerodynamics effects such as flapping and feathering on rotors are ignored [29].  

Figure 2 shows the basic flight dynamics model for a quadcopter that represents four main components, which are 

kinematics, 6 DOF rigid body dynamics, aerodynamic forces and moments and on-board stabilizer dynamics. The overall 

dynamics model equations for quadcopter are given by  

 

Ṗn = 𝐑n b⁄  𝐕b (1) 

  

�̇� =  𝑹𝑛 𝑏⁄ 𝜔𝑏 (2) 

  

�̇�𝑏 = −𝛚b × 𝐕b + 
𝐅b

𝑚
 +  

𝐅𝑔

m 
 (3) 

  

�̇�b  =  𝐉−1[𝐌b − 𝛚b × (𝐉𝛚b)] (4) 

  

𝐅b  =  ∑ F𝑖

j

i=1

 (5) 

  

𝐌b  = ∑ 𝑀𝑖

j 

𝑖=1

 (6) 

  

𝛅 =  [𝛅𝒕𝒉𝒓,𝒅,  𝛅𝒚𝒂𝒘,𝒅  𝛅𝒑𝒊𝒕𝒄𝒉,𝒅 𝛅𝒓𝒐𝒍𝒍,𝒅] (7) 

 

where P𝑛 =  [𝑝𝑥   𝑝𝑦   𝑝𝑧]′ is the quadcopter position in the inertial reference frame, 𝚽 = [𝜙   𝜃   𝜓 ]′  is the Euler angles 

in the body reference frame, Vb =  [𝑢  𝑣  𝑤]′ is the linear velocities in the body reference frame, and 𝛚b = [𝑝  𝑞  𝑟]′ is 

the angular rates of the quadcopter in the body reference frame. 𝐑n b⁄  is the rotational matrix of body reference to an 

inertial reference frame, m is mass of quadcopter, i is the number of the propeller, J is the moment of inertia matrix for 

the quadrotor platform, and  𝐅b, 𝐅𝑔 and 𝐌b are the total applied force to the quadrotor, the gravity force and the total 

applied moments respectively. 

The first principles model of the quadcopter (Equation (1)-(7)) is also known as the lumped parameter approach. By 

examining all equations involving the first principle modeling, we can conclude that Equation 1 to Equation 7 is a 

nonlinear model with strongly coupled variables. It can be shown that multiplication between system states and coupling 

among the variables will create problems in controller design [26], [30]. The first principle modeling for high order 

nonlinear model will have some unknown ambiguity parameters, although there has enough knowledge about the model 

itself [14]. The first principal modeling also requires in-depth mathematical and physical calculations about the system 

behaviour, and it can time-consuming to develop [2], [18], [19]. Hence, system identification was proposed by many 

researchers to simplify the first principal modeling method. 
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Fig. 2 - Basic dynamics architecture of quadcopter  

 

4. Time and frequency domain system identification 

System identification is an alternative method to derive dynamic models, which offers the advantages in accuracy 

and complexity. This technique involves the procedure of deriving a mathematical model based on experimental data 

from the quadcopter’s control inputs and measured outputs. As a result, the flight dynamics model based on the first 

principal modeling in Fig. 1 can be encapsulated and simplified into the black box dynamic model as in Fig. 3. Therefore, 

the quadcopter parameters such as the moment of inertia, force, mass, and engine constant are not required, and the 

complexity of Equations 1 to 6 can be avoided [31], [32].  

System identification based on time-domain analysis for a quadcopter was presented by Gremillion and Humbert 

[33], Miller [34], as well as Yoo and Hong [35]. It involves the use of the transfer function or state-space model of the 

quadcopter as the model structure, and the model parameters are determined using the linear least-squares method or 

maximum likelihood method. These methods minimize the cost function and enable the attainment of a dynamic model. 

It should be noted that the time domain method is preferable for the single input and single-output (SISO) system [30]. 

However, the quadcopter dynamics system is typically MIMO (multiple-input and multiple outputs). Hence, cross-

coupling features in quadcopter must be diminished before the implementation of time-domain system identification [30]. 

The time-domain system identification is not the best approach for unstable quadrotor because the equations of motion 

to be numerically integrated with time for each iterative update in the parameters. It also will need a large amount of 

historical data in the iteration and thus, generate a heavy computational burden to the microcontroller of quadcopter [36]. 

There is a large volume of published studies [13], [16], [37] on system identification based on the frequency domain. 

Most of the aforementioned researchers used Comprehensive Identification from Frequency Responses (CIFER) software 

as an identification tool to implement frequency domain identification. Cai et al. [25] agreed that frequency domain 

identification is time-consuming and laborious, especially the data collection and pre-processing process. The frequency-

domain method requires a longer development time to be implemented since many experiments and simulations are 

needed to determine the dynamic parameters. 

Frequency domain result could be inaccurate and inconsistent because of the insufficient data in very low bandwidth 

frequency and the removal effect of some dynamic components. Even with the satisfactory identification results from the 

frequency domain, G. Cai et al. [16] suggested that more focus is needed in data collection and model architecture 

reconstruction in order to improve the model accuracy further. A complete comparison between frequency and time-

domain system identification can be referred to in [20]. 

 

 
Fig. 3 - System identification based on the black-box model 
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5. Neural network system identification 

System identification based on the NN method can be used as an alternative technique in quadcopter dynamic 

modeling. Artificial NN is a computational model identical to the structure of biological NN inside the human brain as 

shown in Fig. 4. Biological neuron gain signals from another neuron through synapses located on the dendrites of the 

neuron. When the signals received are adequate, the neuron is activated and begins to process signals within its cell body. 

Then, the processed signals are transferred through the axon to another synapse or another cell body [38]. NN model 

replicates the similar connection mechanism of biological NN. The modeling capability is achieved through the process 

of learning as in Fig. 5. 

 

 
Fig. 4 - Comparison between biological and artificial neural network 

 

NN structure consists of inputs (similar to synapses), which are multiplied by weights (strength of the signals), and 

a function to computes the output (threshold). As illustrated in Figure 5, 𝑦 𝑖 is the output of neuron i, 𝑥𝑗 is the jth input, 

𝑤 𝑖𝑗 is the weight given to input j when it is going to neuron i and 𝑤 𝑖𝑜 is the bias of the neuron. The activation function 

of the neuron 𝑓(. ) can have several forms such as the sigmoid,  linear, step or a radial basis function [39]. NN in the real 

application can be implemented to model complex relationships between inputs and outputs. Prediction, pattern 

recognition, classification, forecasting, and function approximation are the various implementation of NN in real-life 

applications. 

 

 

Fig. 5 - Basic Artificial Neural Network model 

There are two types of NN structure widely used in system identification; they are feedforward neural (FNN) and 

recurrent neural network (RNN). In FNN, input information transfers in one direction (forward) only and there are no 

cycles or loops involved in the network. Contrary to feedforward networks, RNN is NN type models with bidirectional 

input flow (forward and fed back). The ability of RNN in prediction is limited because of the fixed number of neurons in 

the state-space formulation. Meanwhile, FNN is capable of estimating any nonlinear function with any level of accuracy 

[40]. FNN has been successfully implemented to predict the models and parameters of aircraft [14], [41], [42]. 
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Fig. 6 shows the general process flow of system identification based on the neural network model. The neural 

network model is placed in parallel with the actual quadcopter plant. NN model will be trained with inputs and outputs 

of the quadcopter to predict the output of the plant. Inputs and outputs will represent in time regression vector (past input 

and output) as training data pair for the neural network model. The output error data between the predicted NN model 

and actual quadcopter plant will be used to adjust the NN parameters to minimize output error for the next iteration. 

NN model approach capable to adapt with nonlinear mapping, robustness, noise resistance, and global approximator 

that make it a suitable candidate for dynamics modeling [43]–[45]. NN model is a highly flexible model structure with a 

various number of efficient NN training and structure optimization algorithms available and can be characterized by 

several parameters only [46]. System identification based NN model avoids the needs to build extensive aerodynamics 

database as required in the first principle modeling and time domain-based system identification, thus potentially reduces 

development costs and time during identification and the modeling process. However, NN modeling may require longer 

training time, prone to slow convergence rate, and is susceptible to the over-fitting problem if the training was done using 

a traditional method such as backpropagation method [14]. 

The training in NN modelling used to minimize the error cost function between the predicted output and the 

measurement data. The NN modelling can either be trained by using batch or recursive training method. For the batch 

training method, the NN model learns the relation between the measured inputs and outputs data by selecting the best 

NN weight over repetitive iteration. The network parameters such are weight and bias of NN offline training updated 

after the presentation of all training data. Meanwhile, for the recursive training method, the network parameters will 

continuously be updated based on a single data set to inject into the NN model at the current sample time. 

 

 
Fig. 6 - System Identification based on neural network  

 

6. Application of System Identification based on Neural Network for quadcopter 

Although many research works have been carried out on NN system identification, there is a lack of study in the 

application of NN based system identification for the multirotor platform. However, there are several examples of the 

successful study of NN based system identification application for multirotor as shown in Fig. 7 [47]–[50]. This factor 

further motivated us to find a comprehensive modeling method for a quadcopter, especially in NN based system 

identification. Two neural network system identification structures for quadcopter are considered in this paper; i.e. the 

multilayer perceptron (MLP) and radial basis function (RBF). 
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Fig. 7 - Quadcopter platform (a) Arducopter [51]; (b) Crazyflie2.0 [52];  

(c) LinkQuad [50]; (d) 3D printer quadrotor [53] 

6.1 Multilayer perceptron structure (MLP) 

MLP is the most common NN architecture used for nonlinear system identification. Fig. 8 depicts the basic 

architecture of MLP, which consists mainly of one input layer, one or more hidden layer, and one output layer. The output 

calculation from the MLP structure represents a single hidden layer MLP network as shown: 

 

�̂�(𝑡|𝜃) = 𝑔ℎ ( ∑ 𝑤2𝑖ℎ𝑓ℎ 

𝐻

ℎ=1

(∑ 𝑤1ℎ𝑗

𝑚

𝑗=1

𝜑𝑗 + 𝑏ℎ) + 𝐵𝑖) (8) 

 

with h = 1,2, 3..H and i = 1,2,3,..n where 𝑤1ℎ𝑗  are the weights between the input layer and the hidden layer and 𝑤2𝑖ℎ is 

the weights between the hidden layer and the output layer. The functions 𝑔 ℎand 𝑓ℎ  are nonlinear activation function for 

neurons in each hidden layers and output layer, respectively. Index H denotes the number of neurons in the hidden layer 

while 𝑏ℎ and 𝐵𝑖  are the bias elements for the input layer and the output layer. The number of inputs and outputs of the 

neural network is presented by m and n, respectively.  

  
Fig. 8- Basic MLP NN structure 

Recent research carried out by Dief and Yoshida [54] involves the use of MLP NN trained with the backpropagation 

algorithm to identify the system parameter of the quadrotor. The proposed MLP structure consists of three units of hidden 

neurons with the sigmoid function. This study [54] indicates that estimated results from MLP are close to the sensor 

outputs and produced more accurate data for any initial conditions compared with placket model as in Error! Reference 
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source not found.. However, a large number of iteration stores in MLP causes a heavy burden and heating problem for 

microcontroller if it has limited memory of processor [47]. 

Nonlinear autoregressive neural networks (NARX) MLP trained with Levenberg-Marquardt algorithm has been 

implemented by Ardeev [51] to identify the attitude dynamics of a quadrotor. The Arducopter was placed on a test stand 

with a spherical joint to eliminate translational motion in all the three axes during the experiment. The NARX MLP 

results were compared with distributed time-delay neural networks (DTDNN), adaptive neural fuzzy inference system 

(ANFIS), polynomial regression, and Continues Time Transfer Functions (CTTF). NARX MLP architecture consists of 

three hidden neurons with four input and output delays that have been determined using a trial and error method.  

Sigmoid and linear have been selected as the activation function in the hidden and output layer, respectively. The 

results showed that NARX MLP performance is better than CTTF and the training time required for NARX MLP is only 

69 second. Even though the performance of the polynomial regression method is better, the NARX MLP can identify 

dynamics model system accurately as in Error! Reference source not found.. It does not require any input selection 

and is easy to implement into the quadrotor system [51]. 

Sonntag [50] has implemented a black box MLP structure for identifying the dynamics model of Link Quad 

quadcopter. Proposed MLP architecture consists of 10 hidden neuron networks and is comparable to a linear grey box 

approach. Grey box method was implemented by deriving the equations from the first principle modeling and measures 

directly the parameter constants. This study indicates that the MLP NN can give good predictions for the roll and pitch 

with noise and the trends in the inputs. It proved that the black box model managed to learn the dynamics of the 

quadcopter, noise, and trends as in Error! Reference source not found..  

 

 
 

Fig. 9 - The estimated roll angle from the neural network model [54]  

The MLP structure with 100 units of hidden neuron had been used by Bansal et al. [52] to find Crazyflie 2.0 quadrotor 

dynamics model and to prove the ability of NN to learn a dynamic model as shown in Error! Reference source not 

found.. MLP has been trained with a resilient backpropagation learning algorithm. The model obtained from MLP system 

identification had been used to design a controller for stabilizing the quadcopter in rotational and translational motions. 

Bansal et al. [52] agreed that a simple two-layer FNN structure feed with the current state and input data identified 

successfully and learned quadrotor dynamics with high accuracy. Bansal et al. [52] suggested that with proper selection 

of the NN architecture and inputs, the NN model can identify dynamics model accurately and presents a good alternative 

for system identification of quadrotor. 
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Fig. 10 - Prediction pitch and roll rate for NARX MLP [51] (a) Pitch rate (b) Roll rate 

 

Dakrory and Tawfik [55] compared the MLP NN based model with backpropagation learning technique with the 

regression least square method. The NN structure used for quadcopter identification consists of two hidden layers. The 

first and second hidden layers consist of 190 unit and 90 unit neurons, respectively. The MISO NN model consists of 16 

inputs and a single output which is roll angle. The researchers selected a single time delay in NARX model to reduce 

computational time. All the estimation presented in this study is based on running MLP on PC with Intel I7 Processor 

and Raspberry Pi. The results showed that NN could predict the dynamic systems with good accuracy, much better than 

the regression method but with longer time for identification, that is, it takes 15.59 minutes with error 0.1916% to run in 

PC while 715.54 minutes is required to run on Raspberrypi. 

Recent research by Muliadi and Kusumoputro [56] implement the MLP network structure to model 6 DOF quadrotor 

dynamics. Authors [56] selected a total of 20 and 4 unit neurons in the hidden and output layer, respectively. Proposed 

MLP structure will be trained with the backpropagation method to obtain the quadcopter model using two inputs and two 

outputs as training data. The four minutes of flight test gathering have been conducted to obtain the quadrotor ANN 

model. The flight has been conducted for rolling and pitching motion while in hovering phase. The recorded flight data 

have been used to train the MLP to obtain the dynamics model. Dynamics model obtained from the proposed MLP will 

assess the Artificial Neural Network’s Direct Inverse Control (DIC-ANN) and PID controllers. The authors implement 

the simultaneous twin ANN in simulation for comparison both controller’s performance purpose. The simultaneous 

simulation used ramp and steady state response to excite the dynamics model of quadrotor. The results shown that the 

MLP NN model are effective to be implement on quadrotor altitude dynamics.  
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Fig. 11 - Estimation of quadcopter output [52] (a) Roll acceleration (b) y-axis acceleration 

 

Observation 1  

Various strategies can be used to select the numbers of hidden neurons in the MLP network [50], [52], [56]. Majority 

of past research work used a fixed number of neurons in the MLP network obtained through trial and error procedures 

while avoiding an excessive number of neurons used to avoid increasing the training time.  We believe that very few 

researches in quadcopter modeling consider the effect of the regression vector and the total number of neurons towards 

the generalization capability of the proposed NN model.  

The overfitting occurred due to the excessive numbers of neurons network matches the data closely and strictly 

follow the data. Hence, NN will respond very poorly for new patterns never used in training and lose its generalization 

ability [23], [38], [57]. The good NN model should have a small number of neurons as possible to obtain a reasonable 

training error and good generalization abilities [14][57]. Several methods can be used to identify the near-optimal or 

optimal network structure of the NN model that can be used to achieve good generalization of the prediction model such 

as K-cross validation [24][45][55] and Lipschitz coefficient [24][58].  

An optimized neural network structure criterion strongly related to the size of the regression vector and a total number 

of hidden neurons in the network. Shamsudin & Chen [24] implemented a Lipschitz criterion and k-fold cross-validation 

methods on helicopter UAV to achieve optimized NN structure with appropriated regression vector and hidden neurons 

size. Another proposed method to achieve near-optimal or optimal network structure is by using cascaded modelling to 

decrease the amount of weight to be estimated and increase speed [59] [56]. In summary, most of the studies 

mentioned above agreed that system identification based on the MLP structure has successfully identified the dynamics 

and system parameters of a quadcopter with acceptable accuracy.  

6.2 Radial Basis Function (RBF) 

RBF network is another type of feedforward NN consisting of a nonlinear hidden layer and a linear output layer that 

uses basis functions as activation functions in the hidden layer. Basis functions contain parameter vector, center, and 

calculation of the Euclidean distance between the center and the network input vector. The output of the RBF is a linear 

combination of the outputs from its hidden units function. RBF architecture shown in Error! Reference source not 

found. is consists of an input layer, one hidden layer, and an output layer.  

Numerous basis functions can be used as the activation function in the hidden neurons, such as thin-plate-spline 

function, multiquadric function, inverse multiquadric function, and Gaussian function. Theoretical results from Chen and 

Billings [60] have proved that the selection of the nonlinear activation function is not crucial for RBF. The Gaussian 

function is the typical choice used due to its suitability for generalizing a global mapping and refining local features 

without much alteration in the already learned mapping [61]. The output calculation from the RBF structure represents a 

single hidden layer for RBF network as exemplified in Error! Reference source not found.: 

 

�̂�(𝑡|𝜃) = 𝑏𝑖 + ∑ 𝑤1𝑖ℎ

𝐻

ℎ=1

(𝑒𝑥𝑝 (−
1

𝜎ℎ
2

‖𝑥 − 𝜇‖2)) (9) 

 

with h = 1, 2, 3, … H and i = 1, 2, 3, … n where 𝑤1𝑖ℎ is the weights between the hidden layer and the output layer. 

Symbol H denotes the number of neurons in the hidden layer, while bi is the bias elements for the output layer. µ is the 

center of the hidden layer, and σ is the width of the Gaussian function. The number of inputs and outputs of the neural 

network is presented by m and n, respectively.  
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Fig. 12- Basic RBF NN structure 

 

The RBF offers significant prediction qualities improvement compared to traditional MLP [60], [62]. RBF has the 

capabilities of the local specialization and the global generalization [24]. RBF also has the capability of acting as a 

universal approximator which is promising for identifying and controlling the dynamic systems [24].  

Recent research by Zhong et al. [63] uses RBF NN structure for system identification of quadrotor. The RBF structure 

proposed in this study consists of four input data, six output data, and seven hidden neurons. The RBF is trained with 

gradient descent method for updating weights of RBF combined with adaptive learning rate and Welsch function 

criterion. Adaptive learning rate and Welsch function introduced in RBF training could reduce the effects of the 

occurrence of large errors and has better performance than other error functions [63]. 

The result from the proposed trained algorithm is compared with RBF trained with gradient descent learning based 

on the least mean square (LMS) criterion in a simulation experiment. Both methods showed good predictions of the 

quadcopter dynamics model. However, RBF with LMS training was impudence by noise disturbance. Both simulation 

and experiment results from proposed RBF structure can identify with high accuracy and robustness the noise 

disturbances for quadcopter system as shown in Fig. 13. 

In Wu et al.’s study [49], RBF-ARX model trained with the least square method was proposed to represent the 

nonlinear dynamics of the quadcopter, and the results were compared with the physical model-based method. The 

quadrotor used in this study [49] has different configurations with the conventional quadcopter to reduce control 

complexity and avoid system damage. It has three propellers positioning horizontal to provide pitch and roll motion, and 

one propeller is mounted in vertical to control yaw motion. Although different configuration, identification result shows 

that RBF-ARX model is more accurate than the physical model and close to ARX model accuracy with less computation 

effort. The results revealed that the proposed models could model quadcopter accurately in all 16 working regions. 

 

 
Fig. 13 - Prediction of quadcopter output [63] (a) Pitch rate (b) Roll rate 
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Observation 2 

Several findings in the different area of flight dynamic modelling suggest that RBF networks produce improved 

prediction accuracy with faster training time compared to MLP network trained with backpropagation algorithm 

[64][65][66]. We believe that more comparative studies need to conducted in the future to validate the efficiency of the 

RBF network in the case of quadcopter modelling. The modelling studies need to include basic evaluation to select the 

proper number of neurons, center and centroid to avoid over-fitting error in modelling. The proposed method to achieve 

an optimized RBF structure can be done by implementing the fully tuned RBF network method to automatically selected 

the RBF parameters [67][68]. To implement the fully tuned RBF neural network, more sophisticated and high-

performance microcontroller was required. The high-performance microcontroller is needed so that RBF can operate 

within the sampling time required. Typically, batch training implementation in NN learning method should provide good 

prediction accuracy compared to online training. However, if training data is large, batch training method requires more 

training time. Several researchers have proposed mini-batch training approach to train the NN model with large data to 

minimize training time. The large training data would be split into a smaller number of data samples for the mini-batch 

offline training. However, these techniques can only be used on relatively small networks because of the finite amount 

of computing power available in the real-time processor and are limited to uncoupled dynamics models. 

 

7. Conclusion 

In conclusion, neural networks provided an excellent alternative for system identification of quadrotor, especially 

when it is difficult to derive a physical-based model of the system. NN based system identification is capable of obtaining 

the dynamics of a quadcopter with high accuracy while reducing the development time, costs and resources for modelling. 

If users make any modifications to the quadcopter, the NN will be able to learn and estimate the action of the quadcopter.  

Based on the review on NN based system identification, most researchers focus on the application of MLP structure for 

quadcopter dynamic modeling. Moreover, there is an opportunity for future research in the implementation of RBF 

network or any other advanced structure of NN such as the hybrid multilayer perceptron (HMLP) and direct-link radial 

basis function (DRBF) for system identification of quadcopter dynamics. 
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