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1. Introduction 

The motivation for choosing GMM in the current study is to establish a predictive model for distinguishing damage 

feature (DF) from loading feature (LF) using a clustering technique based on the Gaussian distribution model. The basic idea 

is that generally, data points are assumed to adopt a normal distribution, and each of the density models is associated with 

different data labels or categories. Clustering using GMM-EM based on the normal data distribution is an appropriate tool 

for many real physical systems. It gives an advantage by incorporating ellipsoids enclosing the data points based on the mean 

and the covariance (the shape of the ellipsoid) naturally, depending on the data behavior produced by the system. This data 

distribution depends on the mean and covariance as well the mixing proportions in the probability framework (Figure 1). 

Abstract: Data groups generated by a system often inherit dynamics characteristics unique in data distribution 

parameters. A degradation in structural health can affect the dynamic behavior hence the probability distribution 

parameters.  Based on the probabilistic and Expectation-Maximization (EM) algorithm, Gaussian Mixture Model 

(GMM), one can cluster data groups that may overlap with different data groups based on different orientations and 

shapes. This article explores GMM probabilistic model applied on vibration data set generated by aircraft wing box 

structure for Structural Health Monitoring (SHM) application. In the data processing stage, the high dimensional 

data is transformed into lower dimensions using Kernel Principal Component Analysis (KPCA). KPCA transforms 

the continuous signal into discrete data, allowing the ellipsoids' fitting (clusters) on the data spread. Based on the 

baseline data set (undamaged structural condition) and several components (loading class and damage class), the 

fitting is performed using GMM driven by EM. This paper shows that GMM-EM based data clustering model is an 

effective clustering probability model in fitting the data density in the presence of operational variations. It highlights 

clustering of reduced vibration data using KPCA in the interest of SHM based on the baseline’s initial parameters. 
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The rationale is, when the system is excited by a random signal, the data generated is likely to inherit a Gaussian 

distribution. In addition to the assumption, the more data samples acquired or measured from the system, the behavior should 

resemble a normal distribution as stated by the theory of Central Limit [1], [2] and [3]. From an SHM perspective, the health 

state of a system can be compared with a reference data set given by an undamaged state using statistical pattern recognition. 

Any pattern that deviated from the reference set can be reckoned that it is likely to have a defect or anomalies in the structure 

with the exception that the operational and environmental variations have been countered [1], [2], [4] and [5].  

In a vibration-based damage detection (VBDD) approach, the effects of the damage or loading variations on the data 

produced in the vibration test can be significant and misled about the true health state of the structure. This is because both 

effects provide changes to the vibration data. The driving or fundamental frequencies can be altered when there is damage 

(due to a reduction in material stiffness) inflicted on the structure or when operational and environmental changes present 

[4], [7], [8] and [20].  

Through the GMM-EM algorithm, by incorporating clusters (ellipsoids), the severity of damage can be monitored by 

looking at how far the clusters translate or separate from the baseline set (undamaged condition). For vibration signals under 

the presence of damage and loading variations, the data from different categories/labels can overlap and intersect with each 

other. Concerning this requirement and properties of GMM calculated based on maximum likelihood make GMM a more 

flexible clustering technique compared to the linear k-means clustering [4], [10] and [13]. Due to the high dimensionality of 

the measured vibration data, a dimensional reduction technique is required. In this study, the KPCA is utilized to transform 

the data signal into a discrete group of data points, allowing GMM clustering to be incorporated to predict the likelihood of 

the data points generated by GMMs specified by the mean and covariance. Section 1 in the Introduction presents the overview 

of the work from the method applied using GMM and EM algorithms. A brief description of the experiment is provided here. 

Section 2 highlights the methodologies used in this work. The first part describes the experiment performed in this work, 

while the second part details the GMM, and EM algorithm applied to the data set. Section 3 presents a discussion about the 

results. Finally, a conclusion of this work is summarized in Section 4. 

 

 

Fig. 1 - Clusters are fitted into data points based on covariance of different orientations to describe the size and 

orientation of each cluster 

 

2. Methodology 

2.1 An Experiment of a Wing Box with Attached Liquid-Tanks 

The purpose of this section is to introduce the experimental configurations and loading variations that are accounted for 

in the work objectives. The unique of this work is by the operational load variables (by refilling and emptying) and the way 

the experimental work is carried out in cyclic and follow the systematic loading (increasing) and unloading (decreasing) of 

the liquid mass into/ from the added tank (as shown in Fig. 2 (a)). 

  

2.1.1 Test Structure 

The structure used is a stiffened aluminium panel to represent an aircraft wing box and it is a similar structure used in 

[1] as shown in Figure 4. The top sheet of the wing box is a 750 X 500 X 3 mm aluminium sheet. The structure is stiffened 

by two ribs of the length of C-channel riveted to the shorter edges and two stiffening stiffeners composed of angle sections, 

which are bolted along the length of the sheet. Free-free boundary conditions are approximated by suspending the wing box 

from a substantial frame using springs and nylon lines of heavy-duty type attached at the corners of the top sheet. The wing 

box structure is a weight of around 6.464 kg. 



Sharafiz et al., International Journal of Integrated Engineering Vol. 13 No. 6 (2021) p. 167-175 
 

169 

 

 

2.1.2 Damage Initiation 

A sequential increase of damage severity is introduced into an inboard stiffener of the wing box by 16%, 33%, 50%, and 

66%. These cuts correspond to the depth of 4 mm, 8 mm, 12 mm, and 16 mm respectively. The saw-cuts are introduced 

directly into one of the stiffeners by using a hacksaw without removing the stiffener from the structure to avoid any influence 

of boundary conditions on the vibration response as highlighted in the literature (as shown in Fig. 2 (b)) [20]. 

 

2.1.3 Data Acquisition 

The acquisition system used in the test is a DIFA SCADAS III of 16-channel and high-speed data acquisition system, 

controlled by LMS software running on a Dell desktop PC. The measurements are recorded using a frequency range of 0-

2048 HZ with a resolution of 0.25 Hz. The wing box is excited with a white Gaussian signal through an LDS shaker powered 

by an amplifier of a similar brand. The response is measured using PCB piezoelectric accelerometers mounted vertically on 

top of the wing box. The excitation signal is measured by a standard PCB force transducer. 

The base measurements used in the test are FRFs acquired using sensor 1 which is located near the horizontal edge of 

the plate (Figure 3). Before locating the best place to attach the sensors, an impact test is done to detect the location where 

significant energy amplitude present using a hover method. In this test, the structure is excited using a random signal. The 

signal is applied with the Hanning window to improve the signal continuity and the measurements are performed with 8-

averages. The measurements are taken from seven accelerometers mounted below the water tank and the wing plate and the 

signal that shows the highest sensitivity to DF and LF is considered (Fig. 4). 

 

a 

 

b 

 

 

Fig. 2 - (a) The aircraft wing box with a refillable and dischargeable liquid tank; (b) second picture 

 

2.2 Feature Selection 

Damage sensitive and loading sensitive features are selected based on the moving of the frequency peaks because of the 

loading and damage effects. In vibration based SHM, any changes to material stiffness (due to damage) or changes in 

structural mass will shift the frequency peaks. This indication is used in determining the DS and LS features on the data 

signal. The selected DS and LS feature comprised of the spectral lines from 350 to 450 is established as the data feature to 

apply with GMM algorithm. This selected feature of frequency spectral lines consists of five different mass loadings with 

each mass loading groups encompassed of four different damage severities and one undamaged (normal) condition as 

illustrated in Fig. 5.  

 

2.3 GMM-EM Algorithms 

GMM algorithm is formulated by choosing enough number of Gaussian components C, means µ, covariance Ʃ and 

mixing proportions πc to describe the Gaussian distributions for the data set. It uses an Expectation and Maximization 

algorithm (EM) to fit data points associated to the parameters of the GMM model, it consists of the means, covariance and 

mixing proportions of the Gaussians components as stated in equation (1). The EM is evaluated based on the log likelihood 

where it is checked for convergence as displayed in equation (1). Based on the same initial values and computed previously, 

the EM algorithm will then update the parameter values, evaluate the maximum log likelihood of the posterior probability, 

and repeat the steps until the criteria for convergence is met (follow equation 1). 
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where µ is the D-dimensional mean vector, Ʃ is the D X D covariance matrix and  denotes the determinant of Ʃ. 

Derive equation (2)) with respect to the means µc of the Gaussians components to zero, the maximum of the log likelihood 

function is: 
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Note that the posterior probabilities or the responsibilities appear on the right-hand side of the derivatives of the log 

likelihood function in equation (3).  

Multiplying by 
1

c

  and rearrange the equation (3) gives 
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The mean for the cth Gaussian component µc is computed by taking a weighted mean of all data points in the data set 

whose weighting factor for data point xn is given by the posterior probability r(znc) in which the component c is responsible 

for generating the data point xn. Defining Nc as total number of data points effectively assigned to cluster c. The sum of this 

soft membership or fractional weight assigned to cluster c is described as    
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The covariance matrix in the frame of maximum likelihood solution is given in terms of the weighted responsibility for 

the component c that generates the data point can be stated as 
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It is the equivalent form with the corresponding result for a single Gaussian with each data point weighted by the 

corresponding posterior probability r(znc) and multiplied by the inverse Nc. 

c  is the mixing coefficient for the cth component given by the average responsibility which the component takes for 

explaining the data points. In other words, it is the total responsibility allocated to cluster c normalized by the total number 

of data N, given as 

c
c

N

N
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                             (7) 
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The first step is the E-step that choose the parameter means   and covariance   and mixing coefficients as fixed values. 

The probability of x, p(x) assigned to component c with a weighted Gaussian πc is normalised by the total values of c. Here 

the responsibility of data point x belongs component c is reinstated as: 
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Practically, r(znc) is a number of data points by number of clusters that sums to one over the index c. If x is very likely 

to be under the Gaussian component c, it will get high responsibility value r(znc). The denominator just makes the sum of 

r(znc) equal to one. The second step in EM is the maximization step. It starts with the probability assignment r(znc) and update 

the clusters’ parameters  and . The parameters are weighted by r(znc) so that if xn is a strong member of cluster c, this 

weight will be nearly one, but if xn is not very well explained by cluster c then it will not influence the average very much. 

Using the same initial values of the GMM parameters belonging to the undamaged condition, EM algorithm will then update 

the parameter values, evaluate the maximum log likelihood of the posterior probability, and repeat the steps until the criteria 

for convergence is achieved (following equation 1). 

 

 
 

Fig. 3 - Beneath the wing box where piezoelectric sensors and input sensor are located (left). On top of the plate 

where the water tanks are attached to (right) 

 

3. Results and Discussion 

Incorporating the GMM-EM algorithm on data obtained from KPCA (Fig. 5), 25 new ellipsoids are established, 

comprised of 5 loading classes (empty, quarter-full, half-full, three-quarter full, and full load). Within those loading classes, 

another 5 different damage levels (UD, D1, D2, D3, and D4) are predicted using the clustering algorithm. The results from 

Fig. 6 show the fitting of ellipsoids on whole data using the GMM-EM algorithm based on the initial conditions specified by 

the UD (baseline) class consists of complete all five loading classes. The data signal obtained in Frequency Response 

Function (FRF) in Fig. 4 is first transformed into discrete variables using KPCA to allow the clustering process. The GMM 

algorithm fits the ellipsoidal on each Gaussian component produced from different structural health and loading conditions 

very well (Fig. 6). All clusters show consistent translation, moving away from the undamaged (UD) state as the damage level 

increases. It reveals accurate prediction of damage groups that use only the baseline data set as their initial conditions. The 

result is encouraging, considering that all the means and covariance of the initial values of the test data are based on the 

undamaged condition encompassing all loading conditions. The center point (0,0) lies right at the center of the projection 

space (Fig. 6) 

A zoom on the quarter-full load class shows the data belonged to UD, D1, and D2 lying close to each other (Fig. 7). 

Applying the GMM-EM algorithm can predict the data points that are most likely to belong to their actual label. However, 

for data points that fall apart from the high-density group of undamaged and small damage, they are most likely to be clustered 

within the probability distribution of higher damage group (Fig. 8). Results in Fig. 8 and Fig. 9 reveal clearer clusters fitting 

based on the parameters of the baseline set. On Half-full load (Fig. 9), the clusters are predicted accurately, especially for the 

data points UD and D1 class which the data points from both classes heavily overlap. This feature is the key advantage of the 

GMM that allows clustering of overlap data groups. Practically, this model can establish a predictive model by observing the 

degree of cluster separation from the baseline (UD) set. It implies that as the clusters of damage states move away from the 

baseline clusters, the damage is more severe and may require greater attention from the maintenance personnel. All the 

ellipsoids revealed an excellent correlation to damage severities that describe an increase in damage severity as the clusters 

separate more from the baseline data set. No other parameters are required except the total number of components (data 
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groups) including both damage and loading classes which need to be specified. The number of components of loading classes 

can be easily identified using KPCA as they are clearly separated after the transformation (Fig. 5).  

 

 
 

Fig. 4 - The data signal in the lower range obtained from the accelerometer 5, which is chosen as the input feature 

for the GMM 

 

 
 

Fig. 5 - Transforming the data into discrete variable using KPCA before applying GMM-EM algorithm 

 

4. Conclusion 

The GMM clustering takes the initial values (mean and covariance) from the baseline model. The advantage of such a 

model is that it only needs to establish the parameters from the undamaged state compared to a more costly damaged state. 

This study demonstrates that GMM based on the maximum likelihood and EM function can correctly predict data groups 

belonging to various damage groups. Based on the means and covariance of the baseline set, the algorithm forms clusters 

(ellipsoidal shapes) on each of the data groups that are likely to fall into each GMM distribution. KPCA based data 

transformation is useful before applying the GMM-EM method. KPCA transforms the data variables into discrete data groups 

that allow clustering to be performed on the discrete data groups. The challenging part is that when the data points of one 

group intercept with the other group. Defining the GMM parameters (mean, covariance, and mixing coefficients) based on 

the baseline data set can define a cluster that overlaps with the undamaged group (baseline). The study demonstrates the 

incorporation of KPCA with the GMM-EM algorithm to identify various damage severities groups within changing loading 

mass through clustering. This method has a potential application in identifying different data groups based on Gaussian 

distribution and EM for the interest of SHM. Based on healthy baseline data groups to specify the initial parameters, clustering 

on different damage groups can be effectively performed throughout the loading classes. 
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Fig. 6 - Data clustering based on the initial means and covariance of the baseline data group (undamaged condition) 

 

 
 

Fig. 7 - A zoom in on a quarter full load in Figure 7, highlights the data points on Quarter-full load (before 

clustering) 

 
 

Fig. 8 - Zooming on data clustering on a quarter full load in Figure 7, illustrates the clustering on Quarter-full load 

data points 

 

+ 
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Fig. 9 - Zooming on a half full load in Figure 7, shows the Gaussian density model nicely fitted into each ellipsoid 
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