
 
INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING VOL. 15 NO. 1 (2023) 131-144 

 

   

 

© Universiti Tun Hussein Onn Malaysia Publisher’s Office 

 

IJIE 

 

 http://penerbit.uthm.edu.my/ojs/index.php/ijie 

The International 

Journal of 

Integrated 

Engineering 

 ISSN : 2229-838X     e-ISSN : 2600-7916  

 
 

*Corresponding author: edwinsudhagar.p@vit.ac.in 
2023 UTHM Publisher. All rights reserved. 

penerbit.uthm.edu.my/ojs/index.php/ijie 

131 

Free Vibrational Behavior of Bi-Directional Functionally 

Graded Composite Panel with and Without Porosities Using 

3D Finite Element Approximations 
 

Pankaj S. Ghatage1,2, P. Edwin Sudhagar1*  
 
1School of Mechanical Engineering, 

 Vellore Institute of Technology, Vellore - 632014, Tamilnadu, INDIA 

  
2Department of Automobile Engineering, Rajarambapu Institute of Technology, Rajaramnagar, 

 Affiliated to Shivaji University, Kolhapur, Islampur - 415414, Maharashtra, INDIA 

 

*Corresponding Author 

 

DOI: https://doi.org/10.30880/ijie.2023.15.01.012 

Received 14 August 2021; Accepted 11 October 2021; Available online 28 February 2023 

 

1. Introduction 

 Recently, multidirectional functionally graded composite materials show significant improvement in their 

characteristics, which results in attracting considerable attention in aerospace as well as other engineering application 

because of their enormous advantages over laminated composites and unidirectional functionally graded materials 

(FGMs). Koizumi [1] had proposed the idea of FGM in Japan for producing thermal barrier materials, in the 19th century 

many researchers had contributed to the development of unidirectional FGMs but some modern structures like advanced 

space crafts, shuttles, etc. demand advanced FGMs, whose micromechanical properties should vary not only in one 

direction but also vary in two or more than two directions and hence the concept of multidirectional FGMs was introduced 

in plate structure in which the micromechanical properties graded in two or more than two directions from one surface 

to another. FGM structures are typically composed of a grouping of metal and ceramic, metals exhibit good strength and 

toughness while ceramic materials are having good anti-oxidant as well as thermal resistance behavior. Free vibrational 

behavior of plate structure is one of the important concerns for structural designers; hence various researches have been 

conducted to evaluate the free vibrational behavior of FGM structures [27-29], whereas in recent decades, a group of 

researchers has worked to model and analyze multi-directional FGM structures [2-10].  

Abstract: The frequency characteristics of bi-directional functionally graded (FG) rectangular panels with and without 

porosities are examined in this work using 3D finite element approximations. The properties of graded panel consist metal 

and ceramic material varied smoothly in bi-direction. The material properties of this highly heterogeneous material are 

obtained using the Voigt material model and Power-law. The present model is developed using a customized computer 

code and discretized using three-dimensional solid 20-noded quadrilateral elements. The mesh refinement is conducted to 

present the convergence test. The validation test is presented by showing comparison of the obtained findings with the 

results reported in the previous literature. At a later stage, comprehensive parametric research is presented through 

numerical illustrations which reveal that the geometrical and material parameters of bi-directional functionally graded 

panel affect its frequency characteristics, significantly. Finally, the developed 3D FEM model to predict the free vibrational 

characteristics of multidirectional FG rectangular plates with and without porosities will be the reference for the 

continuation of research in this area.  
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The free vibrational behavior of multidirectional FG annular plates using the differential quadrature method (DQM) 

presented by Nie and Zhong [3]. The micromechanical material properties are graded in two directions. It was observed 

that the free vibrational behavior of the multi-directional FG plate was different than the unidirectional FG plate. Kermani 

et al. [4] carry forwarded the same study by changing geometry and boundary conditions to predict free vibrational 

behavior. The findings revealed that multi-directional FGMs influence natural frequencies as well as mode shapes of the 

plate. Nejati et al. [5] analyzed the free vibrational behavior of bi-directional FG annular plates with the DQM. The multi-

directional FG piezoelectric annular plates were analyzed and presented vibrational behavior using DQM by Yas and 

Moloudi [9]. The buckling as well as vibrational responses of 2D-FG circular plate considering uniform plane load resting 

on the elastic foundation was presented by Ahlawat and Lal [11]. Further, Lal and Ahlawat [12] investigated the buckling 

and vibrational response of circular plates of 2D-FG materials by considering a hydrostatic in-plane force. Mahinzare et 

al. [13] developed a model to analyze the free vibrational behavior of 2D FG micro circular plate using the FSDT. Van 

Do et al. [14] presented buckling and bending responses of 2D-FG plates using the finite element approximation. Lieu et 

al. [15] have studied the bending and vibration behavior of in-plane 2D-FG plates considering the variable thickness. 

Ahlawat [16] presented the buckling and vibrational responses of 2D-FG circular plates. Ghatage et al. [17] have 

presented the first time, a review on multidirectional FG composite structures including its modeling and analysis. 

Esmaeilzadeh and Kadkhodayan [18] studied a dynamic response of porous 2D-FG plates using a dynamic relaxation 

method. Wu and Yu [19] analyzed the free vibrational responses of 2D-FGM annular plates with the help of a finite 

annular prism method in which they presented the impact of different boundary conditions on the free vibrational behavior 

of plates. Liu and Cheng [20] proposed a systematic approach of voxel modeling and analysis for FGM structures in the 

Ansys environment. Kandasamy et al. [21] simulated the FGMs structures using APDL codes and compared the buckling 

and vibrational responses of the FG structure with findings of existing methods. Ersoy et al. [22] proposed the 

approximate numerical solution to predict free vibrational characteristics of FG annular plates and shells structures using 

two different approaches and the findings are compared with results generated by using ANSYS packed program. Huang 

et al. [23] analyzed the buckling behavior of FGM rings using FSDT and the findings are compared to the results obtained 

by the ABAQUS commercial software. Higher-order finite element models developed by researchers to forecast the 

vibrational, flexural, and buckling responses of FG structures [39-44]. Thai and Kim [25] presented a review on different 

methods of modeling and analysis of FGM panels.  

During the production of FG structures, the porosities usually form in the structure. Wattanasakulpong et al. [31] 

experimentally proved that the static and dynamic analysis of FGM panels by considering porosities claims more accurate 

results, hence structural behavior of FGM structure need be analyzed by considering porosities. Many authors contributed 

to analyzing FG structure considering porosities [31-37]. Sobhy and Zenkour [32] presented the influence of porosities 

on the vibrational and buckling behavior of FG nanoplate using quasi three-dimensional refined theory. Wang and Zu 

[33] carried out the vibrational responses of unidirectional FGM plates considering porosities with the thermal 

environments. Wattanasakulpong and Ungbhakorn [34] presented nonlinear and linear vibrational responses of 

unidirectional FGM elastically restrained ends beams with porosities. Barati and Shahverdi [35] considered even and 

uneven porosity pattern to analyze the stability of supersonic FGM panels in different fields. Even and uneven porosity 

distribution was also considered to analyze vibrations of longitudinal traveling unidirectional FG plates by Wang et al. 

[36]. In the open literature, only Karamanli and Aydogdu [37] considered two-directional even porosity distributions to 

carry out structural dynamics and stability behavior of 2D-FGM micro-sized beams using modified coupled stress theory. 

From available multi-directional FG plate literature, one can notice that most of the researchers have worked on 

multi-directional FG circular as well as annular plates; however, the rectangular plates are widely used in different 

engineering applications. Swaminathan et al. [45] stated that additional focus is needed to develop numerical techniques 

for 3D analysis of FG structures in order to reduce computing time and cost. Also based on open literature, this is the 

first attempt, in which free vibrational analysis of bi-directional FG rectangular plates (BFGRP) with various porosity 

pattern using the 3D elasticity theory was studied. So, in this present work, the frequency characteristics of the BFGRP 

with and without porosities are examined using the finite element approximation in combination with the 3D elasticity 

theory. The material properties of this highly heterogeneous material are obtained using the Voigt model via extended 

Power-law. The proposed model is developed using a customized computer code and discretized using three-dimensional 

solid 20-noded quadrilateral elements. The mesh refinement is confirmed with convergence test and validation test also 

confirmed by comparing the current work with previously reported work. The effects different parameters like as 

thickness ratio (a/h), boundary conditions, aspect ratio (a/b) and an impact of even as well as uneven porosities of multi-

directional FG plate on natural frequency are presented in this work. 

 

2. Effective Material Properties (EMP) of FGM  

In this research work, FG rectangular plates with length ‘a’, width ‘b’ and thickness ‘h’ are taken in to account in 

the system of cartesian coordinates i.e., x, y, and z, which is depicted in Fig. 1(a). The EMP of 2D-FGM are graded in x 

and y direction with Power-law material distribution. The EMP can be represented as; 
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where, 
j

P is the material properties and 
jf

V  represents the volume fractions 

 

 
Fig. 1 (a) - Representation of 2D-FG rectangular plate 

 

Fig. 1 (b) - Representation of porosity distribution 

 

Fig. 2 - Distribution of volume fraction profile of BFGRP with nx =1, ny =5 

 

The volume fraction based on Power-law function can be obtained as per equation (2) [18]. The volume fraction 

distribution profiles of bidirectional FG plate are depicted in Fig. 2 and Fig. 3. 
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where, nx and ny are the indices of Power-law in x and y directions, respectively.  

 

Fig. 3 - Distribution volume fraction profile of BFGRP with nx =1, ny =0.5 

 

The EPM like Young’s modulus (E), mass density ( ) and Poisson’s ratio (ν) of bi-directional FGM are calculated 

by equations (3-5) [38]. 

                                                         c m f m
E E E V E                                                                                      (3) 

                                                     
 c m f m

V     
                                                                          (4) 

                                                      
 c m f m

v v v V v  
                                                                                (5) 

 

Fig. 1(b) represents the even and uneven porosity pattern in the FG rectangular plate. The EPM of 2D-FGM plate 

with even porosity pattern can be calculated using equation (6-8) and the EPM of 2D-FGM plate with uneven porosity 

pattern in bi-direction expressed as in equations (9-11) [36].   
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Where, ( 1)  is the porosity volume fraction. 

 

3. Mathematical Formulation 

To obtain the free vibrational responses of BFGRP, the problem is formulated using 3D elasticity theory and finite 

element approximation.  
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3.1 Governing Equations  

The governing equations of motion for the BFGRP in Cartesian coordinate system are depicted in equations (12-14) 

[26, 30]. The displacements u, v, and w along x, y and z direction respectively.  represents the mass density which 

depends on x and y coordinates. 

 

                                              

2

( , )
xyxx zx u

x y
x y z t

 


  
  
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                                                 (12) 
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2
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 

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  
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                                                   (14) 

 

3.2 Stress Strain Relations  

The generalised stress-strain relationship can be expressed in terms of its reference plane using Hook’s law as in 

equation (15) [30] 

 

                                                                                                 [  { } ]{ }Q                                                             (15)                      

where,    
T

xx yy zz xy yz xz
       and    

T

xx yy zz xy yz xz
        are the stress 

and strain vector respectively and    Q is the rigidity matrix as shown in equation (16).  
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3.3 Relations of Strain-Displacement 

 The strain-displacement relations for rectangular Cartesian coordinates in a three-dimensional elasticity theory 

can be stated as follows [30]; 
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      

             

                  (17) 

Three-dimensional strain-displacement correlation can be expressed as; 

                                                      B                                                                         (18) 

 

Where the differential operator B and displacement   is defined as in equation (19) and (20) respectively, the differential 

operator B and displacement  contribute to develop the three-dimensional strain. Also, the displacement   indicates 

the degree of freedom. 
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3.4 Finite Element Formulation 

A three-dimensional 20-noded solid higher-order element with three degrees of freedom for each node in rectangular 

cartesian coordinates is considered for discretization in this investigation. As indicated in equation (21), displacements 

can be represented in terms of shape functions.  

                                                          

20

1

i i

i

N 


                                                          (21)           

Equations (22) and (23) express the nodal displacement vector of the element
i

  and the shape function matrix
i

N

respectively.  
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,  and  are the natural coordinates in x, y and z directions respectively. The shape function terms are depicted in an 

appendix. The components of shape function can be represented in the form of natural coordinates as per equation (24).  

 

                                
1

, , 1 1 1
8

i i i i
N                                (24) 

 

Hamilton principle is used to compute governing equations as shown in equation (25)  

                                                                                  0

( ) 0

T

U T dT                                                                         (25) 

 

Where, U represents virtual strain energy per unit volume and T represents kinetic energy per unit volume which are 

expressed in equation (26-28). 
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Where, 
..

[ ] is the second derivative of nodal displacement and [ ] is the nodal displacement. 

The variational method was used to derive the elemental stiffness matrix   K  and the mass matrix  M , which are stated 

as; 

      
1 1 1
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T
K B Q B J d d d  

  

  
                                                                          (30) 

 

      
1 1 1

1 1 1

T
M N m N J d d d  

  

  
                                                                    (31) 

 

where, J  is the determinant of the Jacobian matrix used for the mapping,  N  is the shape function matrix and  m  is 

the elemental inertia matrix.  

The free vibration behaviour is obtained by equation (32). 

 

                                                2
0K M                                                                                                                  (32) 

 

Where,   K global stiffness matrix and   M global mass matrix.  represents natural frequency and   is the 

respective eigen-vectors.  

 

4. Convergence and Validation Study 

To obtain the free vibrational behavior of a BFGRP using the proposed model, it is essential to confirm the precision 

and effectiveness of the developed model. This is ensured by studying convergence and validation test, which is discussed 

below with two different examples; 

Example I: 

To study the convergence, free vibration analysis of BFGRP is presented with 0.5, 0.5
x y

n n  , aspect ratio 

/ 1.5a b   and thickness ratio / 10a h  . BFGRP is assumed to be constituted with Stainless Steel and Silicon 

Nitride; FGM constituent’s properties are depicted in Table 1. The non-dimensional frequency (NDF) responses are 

obtained by using equation  2
( / ) /

c c
a h E    , which is exhibited in Fig. 4, the five modes of vibration presented 

in the figure. Based on convergence study, the non-dimensional frequency parameters of 18 × 18 × 18 mesh size have 

been found good convergence and the average percentage difference between results of 18 × 18 × 18 and 20 × 20 × 20 

mesh size is less than 0.2%, hence it is suitable for the free vibrational analysis of BFGRP.  

 

Table 1 - FGM component’s properties [24] 

Materials 

 Properties 

 Density    

 
Poisson’s Ratio 

 
Young’s Modulus               

 

Stainless steel (SUS304)  8166 0.3177 207.78 

Silicon nitride (Si3N4)  2370 0.24 322.27 

 

 3
 /kg m v ( )E GPa
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Fig. 4 - Convergence test of non-dimensional linear frequency for clamped (CCCC) BFGRP  (SUS304/ Si3N4) for 

,  and . 

 
Example II: In this illustration, the free vibrational analysis of simply supported (SSSS) square FG plate with Power-

law indices ( 0, 0.5, 1,5,10, )
z

n    and thickness ratio / 10a h  is discussed, the NDF parameters using equation 

 2
( / ) /

c c
a h E    are presented. The plate is comprised with Stainless Steel and Silicon Nitride material; Table 1 

lists the properties of the same. To verify the precision of the current model,  the findings of the present model are 

compared with the findings of Talha and Singh [24] as shown in Fig. 5. It is observed that the percentage difference 

between computed results and the results of Talha and Singh [24] is within 5%. The results obtained using the current 

model match well with the findings of Talha and Singh [24]. 

 

 

Fig. 5 - NDF responses of SSSS square FG (SUS304/ Si3N4) plates 

 

5. Result and Discussions 

Free vibration analysis of BFGRP using customized computer codes is presented and discussed in this section.  To 

explore the effectiveness of the developed model, the influence of thickness ratio, aspect ratio, boundary conditions and 

the influence of porosities of BFGRP on natural frequency are discussed with some new examples.   

 

5.1 Effect of Thickness Ratio 

Table 2 shows that the effect of thickness ratio (a/h) on NDF parameter  2
( / ) /

c c
a h E   of fully clamped 

(CCCC) rectangular plate with four different materials (Ceramic, FGM-I, FGM-II, and Metal) and aspect ratio (a/b) is 

1.5. The plate is comprised with Stainless Steel and Silicon Nitride material; Table 1 lists the properties of the same. The 

natural frequency should rise as the thickness ratio of the plate increases; nevertheless, the opposite tendency is found in 

the current investigation due to the representation of NDF characteristics. The ceramic plates are having more non-

dimensional frequency compare to other material plates moreover, the bi-directional FGM-II plates are having less non-

dimensional frequency than bidirectional FGM-I, so it noticed that increase in volume fraction index in certain direction 

0.5, 0.5
x y

n n  / 1.5a b  / 10a h 
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reduces the NDF parameter, hence FGM -II is having less stiffness compare to FGM-I. It is anticipated that approximately 

4% fall in NDF parameter for FGM-II compare to FGM-I. 

 

Table 2 - Effect of thickness ratio on the NDF parameter of BFGRP 

Material nx ny a/h 
Modes 

1 2 3 4 5 6 7 8 9 10 

Ceramic 0 0 

10 15.7433 23.1472 33.9435 34.5562 39.7612 43.1520 48.6081 49.1092 51.8658 56.6246 

20 17.5849 26.6511 41.2058 41.4601 49.0100 60.9762 62.0053 73.9844 79.5224 80.9125 

50 18.2552 28.0779 44.3638 44.5631 53.3621 67.1748 68.6269 83.1804 90.0692 91.7692 

100 18.3582 28.3172 44.8784 45.1154 54.1191 68.3063 69.8527 84.8211 92.0898 93.7925 

FGM-I 1 5 

10 7.1006 10.8174 15.1441 16.4065 18.4077 19.8615 23.1736 23.1903 23.2630 25.0859 

20 7.9280 12.4349 18.3889 19.6325 22.6790 29.0974 29.2353 32.7980 37.1592 37.9524 

50 8.2291 13.0904 19.8038 21.0752 24.6874 32.0032 32.3265 36.9038 42.1762 42.8228 

100 8.2752 13.2000 20.0344 21.3314 25.0347 32.5345 32.8955 37.6371 43.1132 43.7695 

FGM-II 10 5 

10 6.9001 10.3168 14.7825 15.5536 17.5537 19.1400 21.9402 22.0081 22.6278 24.6166 

20 7.7038 11.8605 17.9395 18.6098 21.6110 27.5068 27.6415 32.1568 35.5481 35.8046 

50 7.9953 12.4837 19.3111 19.9676 23.5122 30.2278 30.5484 36.1495 40.2984 40.3630 

100 8.0397 12.5863 19.5339 20.2052 23.8390 30.7187 31.0759 36.8618 41.1777 41.2359 

Metal ∞ ∞ 

10 6.8592 10.1772 14.7157 15.2486 17.3274 18.8808 21.4774 21.5043 22.5006 24.5196 

20 7.6608 11.7172 17.8630 18.2886 21.3491 26.9055 27.1339 32.0329 34.9867 35.1311 

50 7.9516 12.3401 19.2300 19.6457 23.2374 29.6055 30.0096 36.0121 39.4767 39.8323 

100 7.9961 12.4435 19.4520 19.8841 23.5626 30.0958 30.5339 36.7212 40.3410 40.7030 

 

5.2 Effect of Aspect Ratio 

Fig. 6 shows the effect of aspect ratio (a/b) on NDF parameters  2
( / ) /

c c
a h E   of fully clamped (CCCC) 

rectangular plate with four different materials (Ceramic, FGM-I, FGM-II, and Metal) and thickness ratio (a/b) is 10. The 

plate is comprised with Stainless Steel and Silicon Nitride material; Table 1 lists the properties of the same. The NDF 

parameters are computed for ten different modes. It is noticed that the NDF parameter is increased with an increase in 

aspect ratio and mode number as anticipated. It is observed that, average approximately 50% rise in frequency parameter 

when aspect ratio changes from 1 to 2.5. Also, the NDF parameter of the bidirectional FGM plate decreases by 

approximately 3% when the material of the plate changes from FGM-I to FGM-II. 

 

 
(a) Ceramic Rectangular Plates 

 
(b) FGM-I Rectangular Plates 
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(c) FGM-II Rectangular Plates 

 
(b) Metallic Rectangular Plates 

Fig. 6 - Effect of aspect ratio on the NDF parameter of BFGRP 

 

5.3 Effect of Boundary Condition 

Table 3 shows that the effect of different boundary conditions on the NDF parameter  2
( / ) /

c c
a h E   of 

fully simply supported (SSSS), fully clamped (CCCC), simply supported clamped (SCSC) and cantilever (CFFF) 

rectangular plate with four different materials (Ceramic, FGM-I, FGM-II, and Metal). The aspect ratio (a/b) and thickness 

ratio (a/h) of the plates are considered as 1.5 and 10 respectively. The plate is comprised with Stainless Steel and Silicon 

Nitride material; Table 1 lists the properties of the same. For all materials, the lowest frequency is recorded for plates 

with CFFF boundary condition and the highest frequency is recorded for plates with CCCC boundary condition, and the 

frequency ranges of SSSS and SCSC boundary conditions are in between the frequencies of CCCC and CFFF. The NDF 

responses increase with the increase in constraint on the boundaries of the BFGRP. The average difference between the 

non-dimensional frequency of CCCC and CFFF is approximately 70%.  

 

Table 3 - Effect of different boundary condition on the NDF parameter of BFGRP 

Material nx ny B.C. 
Modes 

1 2 3 4 5 6 7 8 9 10 

Ceramic 0 0 

SSSS 13.6047 20.7516 24.7933 27.0935 30.2311 31.5382 32.6471 35.3256 38.8511 43.5324 

CCCC 15.7481 23.1671 33.9430 34.5907 39.7763 43.1628 48.6474 49.1302 51.8674 56.6193 

SCSC 11.6536 19.6750 20.6864 27.4120 28.7229 31.0021 32.8309 33.3406 42.3998 43.5690 

CFFF 1.0339 3.2621 5.3077 6.1523 10.6304 14.6877 15.8192 16.5887 17.4610 20.5657 

FGM-I 1 5 

SSSS 6.1496 9.7209 11.9721 12.8110 13.4899 15.0153 15.1915 16.3898 19.7871 20.6465 

CCCC 7.0957 10.8071 15.1328 16.3871 18.3829 19.8394 23.1520 23.1574 23.2264 25.0697 

SCSC 5.2929 9.2014 9.2289 12.2609 13.5540 14.7594 15.4922 15.4949 20.0958 20.7074 

CFFF 0.5513 1.6605 2.7481 3.0764 5.4868 7.4977 7.7908 8.1421 8.4255 10.4590 

FGM-II 10 5 

SSSS 5.9744 9.2666 11.5442 12.4899 13.1790 14.2453 14.5988 15.6398 18.7289 19.5640 

CCCC 6.9001 10.3168 14.7825 15.5536 17.5537 19.1400 21.9402 22.0081 22.6278 24.6166 

SCSC 5.1374 8.8027 9.0662 11.9602 12.9990 14.0088 14.7788 14.9323 19.0619 20.1066 

CFFF 0.5073 1.5431 2.5494 2.9384 5.1503 7.0305 7.3339 7.7795 8.0672 9.9191 

Metal ∞ ∞ 

SSSS 5.9367 9.1346 11.3357 12.2813 13.1144 13.9431 14.4027 15.4216 18.0823 19.1448 

CCCC 6.8592 10.1772 14.7157 15.2486 17.3274 18.8808 21.4774 21.5043 22.5006 24.5196 

SCSC 5.0998 8.6750 9.0220 11.8972 12.7781 13.7130 14.5670 14.7017 18.6550 19.5980 

CFFF 0.4838 1.4880 2.4482 2.8568 4.9529 6.7945 7.1254 7.6173 7.8835 9.6120 

 

5.4 Effect of Porosities 

The effect of even and uneven porosities on the NDF parameter  2
( / ) /

c c
a h E   of fully clamped (CCCC) 

BFGRP with four different FGM (FGM, FGM-I, FGM-II, and FGM-III) is presented in tabular form as shown in Table 

4 and 5 respectively. The aspect ratio (a/b) and thickness ratio (a/h) of the plates are considered as 1.5 and 10 respectively. 

The plate is comprised with Stainless Steel and Silicon Nitride material; Table 1 lists the properties of the same. It is clear 
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from the obtained results that the fundamental NDF parameter shows a decreasing trend with an increase in porosity 

volume fraction in even type of porosity, however it shows an increasing trend in uneven distribution of porosity. The 

value of the NDF parameter of BFGRP with uneven porosity pattern is higher than the even porosity pattern, hence the 

uneven distribution of porosities increases the stiffness of the plate.  It is noticed that approximately 4% rise in NDF in a 

plate with uneven porosities compare to plate with even porosities when porosity volume fraction is 0.1 and that rise in 

NDF parameter increases up to 15% when porosity volume fraction is 0.3.   

 

Table 4 - Effect of even porosities on the NDF parameter of BFGRP 

Material nx ny α 
Modes 

1 2 3 4 5 6 7 8 9 10 

FGM 1 0.5 

0 8.6147 13.2016 17.8619 19.8550 22.5809 23.7399 27.0844 27.9901 28.3592 28.7606 

0.1 8.4897 13.0912 17.5036 19.7149 22.3325 23.4037 26.5154 27.7940 28.0930 28.1647 

0.2 8.3312 12.9462 17.0569 19.5339 22.0017 22.9753 25.8095 27.2244 27.5919 27.8996 

0.3 8.1249 12.7506 16.4879 19.2892 21.5480 22.4128 24.9129 26.1888 27.2638 27.5197 

FGM-I 1 5 

0 7.1006 10.8174 15.1441 16.4065 18.4077 19.8615 23.1736 23.1903 23.2630 25.0859 

0.1 6.8775 10.5070 14.6457 15.9518 17.8457 19.2666 22.4149 22.5178 22.6218 24.2437 

0.2 6.6156 10.1444 14.0621 15.4232 17.1970 18.5775 21.5243 21.7484 21.8869 23.2539 

0.3 6.2950 9.6966 13.3466 14.7675 16.3958 17.7299 20.4332 20.7931 20.9709 22.0437 

FGM-II 10 5 

0 6.9001 10.3168 14.7825 15.5536 17.5537 19.1400 21.9402 22.0081 22.6278 24.6166 

0.1 6.6728 9.9919 14.2841 15.0740 16.9815 18.5295 21.2452 21.3362 21.8686 23.7814 

0.2 6.4006 9.6029 13.6887 14.4986 16.2966 17.7989 20.4111 20.5285 20.9607 22.7835 

0.3 6.0693 9.1271 12.9629 13.7933 15.4593 16.9060 19.3895 19.5371 19.8528 21.5668 

FGM-III 100 100 

0 6.8592 10.1772 14.7157 15.2486 17.3274 18.8808 21.4774 21.5043 22.5006 24.5196 

0.1 6.6286 9.8437 14.2146 14.7540 16.7449 18.2520 20.7818 20.7931 21.7349 23.6817 

0.2 6.3532 9.4450 13.6155 14.1618 16.0493 17.4993 19.9391 19.9488 20.8200 22.6811 

0.3 6.0170 8.9579 12.8859 13.4382 15.2001 16.5800 18.8964 18.9304 19.7047 21.4612 

 

Table 5 - Effect of uneven porosities on the NDF parameter of BFGRP 

Material nx ny α 
Modes 

1 2 3 4 5 6 7 8 9 10 

FGM 1 0.5 

0 8.6147 13.2016 17.8619 19.8550 22.5809 23.7399 27.0844 27.9901 28.3592 28.7606 

0.1 8.6244 13.2060 17.8608 19.8243 22.5760 23.8336 27.0924 27.9114 28.3069 28.7488 

0.2 8.6341 13.2092 17.8597 19.7957 22.5712 23.9236 27.1005 27.8392 28.2568 28.7369 

0.3 8.6432 13.2119 17.8587 19.7682 22.5663 24.0098 27.1081 27.7730 28.2094 28.7245 

FGM-I 1 5 

0 7.1006 10.8174 15.1441 16.4065 18.4077 19.8615 23.1736 23.1903 23.2630 25.0859 

0.1 7.1162 10.8454 15.1495 16.4286 18.4260 19.9628 23.1941 23.1989 23.2630 25.0778 

0.2 7.1356 10.8809 15.1646 16.4669 18.4670 20.0797 23.2286 23.2431 23.2970 25.0842 

0.3 7.1539 10.9143 15.1786 16.5019 18.5053 20.1912 23.2609 23.2840 23.3277 25.0896 

FGM-II 10 5 

0 6.9001 10.3168 14.7825 15.5536 17.5537 19.1400 21.9402 22.0081 22.6278 24.6166 

0.1 6.9271 10.3696 14.8170 15.6231 17.6221 19.2876 22.0254 22.0906 22.6940 24.6580 

0.2 6.9519 10.4186 14.8483 15.6872 17.6873 19.4272 22.1040 22.1665 22.7544 24.6936 

0.3 6.9756 10.4639 14.8763 15.7460 17.7477 19.5592 22.1773 22.2360 22.8093 24.7232 

FGM-III 100 100 

0 6.8592 10.1772 14.7157 15.2486 17.3274 18.8808 21.4774 21.5043 22.5006 24.5196 

0.1 6.8888 10.2381 14.7578 15.3359 17.4120 19.0489 21.5905 21.6169 22.5825 24.5794 

0.2 6.9163 10.2942 14.7955 15.4157 17.4896 19.2052 21.6935 21.7177 22.6558 24.6279 

0.3 6.9416 10.3459 14.8289 15.4879 17.5618 19.3523 21.7867 21.8098 22.7215 24.6683 

 

6. Conclusions  

The free vibrational behaviour of 2D-FG fully clamped rectangular plate is reported in this work using 3D-FEM. 

The EMP of the FGM are obtained the using Voigt model in connection with the Power-law function. Convergence and 
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validation tests are presented to ensure the accuracy of the proposed model. From the convergence study, it is found that 

(18×18x18) mesh is suitable to obtain the NDF responses. The validation test reveals that the proposed model agrees well 

with previously reported results. The influence of thickness ratio, aspect ratio and boundary conditions of the 2D-FGM 

on NDF parameters presented also the results of the 2D-FGM plates are compared with the ceramic and metal rectangular 

plates. Finally, the impacts of thickness ratio, aspect ratio, and boundary conditions on NDF characteristics of 2D-FG 

plate are observed to be substantial. Following is some concluding remarks observed through parametric study;  

 

1. The plates with ceramic material reported the highest non-dimensional frequency parameters compare to the 

other materials because the ceramic material is having high stiffness. Moreover, the FGM-I is stiffer than FGM-

II. 

2. The natural frequency should be increased as the thickness ratio of the plate increases; however, the opposite 

trend is detected in the present study due to the exhibition of NDF characteristics. 

3. The non-dimensional frequency responses of BFGRP rise with increasing plate aspect ratio and mode number 

as expected. 

4. The highest frequency responses are observed for bi-directional FG graded plates with CCCC boundary 

conditions, while the lowest frequency responses are recorded for CFFF boundary conditions. The frequency 

responses rise as the BFGRP become more constrained  

5. The fundamental non-dimensional frequency of BFGRP declines with a rise in porosity volume fraction in even 

type of porosity, however it shows an increasing trend in uneven distribution of porosity. The FG plates with 

uneven porosity pattern are stiffer than plates with even porosity pattern. 

6. The developed 3D-FEM model for free vibrational analysis of multidirectional FG rectangular panels with and 

without porosities will be the reference for the continuation of research in this area. Also, this approach can be 

further extended for the irregular geometries however, the computational time and cost will be increased.  
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