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1. Introduction 
Under-actuated robot manipulator is a kinematic 

chain wherein total degree of the freedom of the 
mechanism is more than actuators. Under actuated 
manipulators are advantageous from the minimalism 
viewpoint in robotics where a task is performed with less 
energy consuming actuations. In fact dynamic of the 
mechanism is exploited instead of fighting it [1][2]. 
Moreover, studies on under-actuated can be beneficial in 
building of fault tolerant mechanisms, as when some 
joints of a fully actuated manipulator fail, the task can be 
continued before need for repairing them. 

Control of under-actuated manipulators is a 
challenging issue because of their nonlinear 
characteristics and the lake of global controllability. 
Fortunately, It was proven that these manipulators have 
small-time locally controllability on an open subset of 
their zero velocity section, which allow them to follow 
any path in this subset [3]. This fact makes adaptive 
controllers as suitable choice for under-actuated 
manipulators.    

Among different controllers, PID controllers are the 
most popular ones due to their simple implementation and 
high reliability. Moreover, in most cases model-free 
methods are available for tuning of PID parameters. As a 
result PID controllers have been extensively used in 
industries. Nevertheless, in time variant systems where 
the controller parameters should be adjusted according to 
variations in system dynamics, achieving good control 
performance is difficult.  

Designing good performance adaptive PID 
controllers have been a challenging issue in recent years.  
In adaptive PID controllers, controller parameters should 
be tuned according to changes in system dynamics. 
Different structures have been introduced for adaptive 
PID controller. Three main categories of such structures 
include conventional adaptive PID controllers [4]-[6], 
fuzzy adaptive PID controllers [7]-[9] and evolutionary 
based adaptive PID controllers [10]-[12]. Conventional 
adaptive controllers exhibit low performance behavior, 
fuzzy adaptive PID controllers require prior knowledge of 
the system to be adequately tuned and evolutionary based 
adaptive PID-controllers are not appropriate for fast 
dynamic systems because of their required training time. 

Neural network based adaptive controllers those 
employ supervised learning methods (ex. [10]) can be 
categorized in evolutionary adaptive controllers. As 
mentioned earlier, training process of these controllers 
need a period of time to be converged, which makes these 
controllers unsuitable for online instant applications. 
Unlike supervised learning approaches, there is no 
reference pattern in reinforcement learning methods.  
Reinforcement learning, which has origin in behaviorist 
psychology, adopts a test and verification method where 
the learning agent interacts with its environment and 
learns from the consequence of its actions [13][14]. As 
there is no reference to which convergence of algorithm 
is anticipated, the results of reinforcement learning can be 
instantly utilized, hence this learning approach can be 
employed in online and real time applications.  
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Fig. 1. Two-DoF under-actuated manipulator. First joint is 
active and the second one is passive 

 
Actor-critic learning is one of the variants of 

reinforcement learning which provides a systematic 
method for simultaneously obtaining optimal action and 
expected value in real time [15][16]. Actor critic 
approach has been successfully used in different tasks 
related to robotics [17]-[20]. In this paper we employ an 
actor critic learning neural network based adaptive PID 
controller for motion control of a 2R under actuated robot 
whose second joint is passive (See Fig. 1). Parameters of 
the controller are tuned on-line and the controller adapts 
itself with variations of system dynamics. 

The proposed method is a model-free intelligent 
approach, hence, the performance of the controller is 
compared with one of the recently published works that 
has the same approach of using a model-free intelligent 
technique[38]. 

 
2. Relate works to Control of Under-

actuated Manipulators 
There are lots of works reported in the framework of 

control of under-actuated manipulators. Arai and his 
colleagues [21][22] presented a control strategy based on 
holding of brakes on the passive joint in a 3-DoF under-
actuated manipulator. They afterwards proposed a 
methodology to stabilize the trajectories of passive 
joint [23]. In [24] a measure of the dynamic coupling 
between the active and the passive joints was exploited as 
a cost function of an optimal control strategy that was 
applied to control of under-actuated manipulator. For a 
gravity-assisted under-actuated manipulator, a nonlinear 
closed loop control law that is guaranteed to be stable in 
positioning one unactuated joint at a time was presented 
in [25] where a Lyapunov function is introduced to prove 
the convergence of that control scheme. A robust 
adaptive control scheme for an under-actuated free-flying 
space robot is devised in [26]. In [27] a feedback 
linearization decoupling dynamic control scheme for one-
passive joint under-actuated  manipulators is proposed. 
Fuzzy sliding mode control was employed in [28] to 
control a 3R under-actuated manipulator. A motion 
planning method for a 3R under-actuated manipulator 
was presented by Lynch et al [29] and subsequently 
kinematical controllability of under-actuated systems was 

illustrated [30]. A controller was designed for a class of 
under-actuated manipulators to render the closed-loop 
equilibrium at the origin globally attractive [31]. De Luca 
and his colleagues used nilpotent approximations to 
control an under-actuated 2R manipulator [32][33] and 
performed a simple test to show that a planar 2R 
manipulator does not satisfy STLC conditions; therefore 
it will show spinning motion while steering from a certain 
configuration [34]. A point-to-point control method for a 
2R planar under-actuated manipulator was introduced 
in [35] where passive link is firstly moved into its desired 
position, then the second link is moved into its desired 
position keeping the passive link at rest. A fuzzy 
controller for an under-actuated manipulator was 
developed in [36] whose member functions are optimized 
using genetic algorithm. Xin et. al. devised an energy 
based swing-up controller that uses a new Lyapunov 
function based on that transformation for n-link revolute 
planar robot with any one of the joint being a passive 
joint [37]. Akbarimajd and Kia have proposed neural 
network based nonlinear autoregressive moving average 
controller to stabilize a 2-DoF passive manipulator [38].  

As review of above literature shows, different 
approaches have been proposed in order to control 
passive manipulators. However, as our proposed method 
is a neural network based intelligent and model-free 
method, to evaluate performance of our method, it would 
be fair to compare it with a similar one. Among recent 
works in this area [38] is also neural network based 
intelligent and model-free method. Therefore we will 
compare the results of the controller with that work. 
Details will be provided in next sections. 

 
3. Reinforcement learning Adaptive PID 

controller  
3.1 Control structure  

Fig. 2 shows schematic diagram of employed 
adaptive PID controller in which learning approach is 
based on reinforcement learning actor-critic idea. The 
controller is incremental PID controller with 
coefficients )](),(),([)( tktktktK DPI= . In Fig. 1, bold 
thick lines show vector signals and thin lines show scalar 
signals. )(tyd  and )(ty  are desired and real outputs of 
the system. Error signal e(t) in converted to state vector 

)(tx via a state convertor block. Actor critic learning 
process in encircled inside dashed line. Illustrated 
learning process includes three basic components of 
an actor-critic learning: an actor, a critic and 
Stochastic Action Mediator (SAM). Actor is used 
for estimation of policy function and realizes a 
mapping from current state to prior PID parameters 

)](),(),([)( tktktktK DPI ′′′=′ those will not directly 
contribute in control process.  
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SAM is used to generate real PID coefficients 
)(tK based on prior PID parameters )(tK ′  suggested by 

the actor and estimated signal )(tV . The critic receives 
state and immediate external reinforcement signal (say 
immediate reward) from the environment and produces 
error signal )(ttdδ and estimation value function )(tV . 

)(ttdδ  is directly prepared for the actor and the critic and 
it is behaved as a basis of updating parameters of the 
actor and the critic. )(tV is sent to SAM and is employed 
to modify output of the vector. 

Effect of the error signal and its variations on 
performance of control should be simultaneously 
considered in designing of external reinforcement signal 

)(tr . Thus, )(tr is defined as: 
 

)()()( trtrtr ece βα +=                 (1) 
 

where α and β  are weighting factors and: 
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and ε determines tolerable error band. 
 
 
 

 
Fig. 3.  RBF network employed for learning of actor-critic 

 
 

3.2 Actor critic learning based on RBF  
RBF is a multilayered feed forward neural network. 

Structure of RBF is shown in Fig. 2. A RBF network is 
employed for implementation of learning processes of 
value function of the critic and the policy function of the 
actor. Layeres of the network and their role is described 
as the sequel. In input layer each neuron is a system state 
variable ix and state vector 3)( Rt ∈x is directly 
supplied to the next layer known as hidden layer. In 
hidden layer, the kernel function of each neuron is 
selected to be Gaussian function where output of jth 
neuron is given as: 
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Fig. 2. Structure of actor-critic learning adaptive PID controller 
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where jμ  is center vector and jσ is width scalar of jth 
neuron and h is the size of the hidden layer. Finally 
output layer is composed of two parts including actor part 
and critic part. mth output of the actor part can be 
calculated as: 
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Then real PID parameters are obtained as: 

 
))(,0()()( tntt Vk σ+′= KK            (6) 

 

where kn is Gaussian noise with 
)(21

1)( tVV e
t

+
=σ . 

When )(tV is large kn is small and vice versa and this 
provides a good tradeoff between exploration and 
exploitation.  

In actor-critic learning the actor learns the policy 
function and the critic learns the value function using TD-
error )(tTDδ which by itself is calculated as: 

 
)1()()()( −−+= tVtVtrtTD γδ       (7) 

 
where 10 << γ  is discount factor. Performance index of 
the learning system is defined as: 
 

)(
2
1)( 2 ttE TDδ=                         (8) 

 
Weights of network )(twmj , )(tv j  and )(tijµ  are 
updated to minimize above index and through a gradient 
descent method and chain rule (for details see [39]). 
 
 
3.3 Controller design 

The Based on discussions of previous sections, 
stages of designing of adaptive PID controller can be 
illustrated as the following: 
Step 1. Arbitrarily set initial values for parameters of the 

learning system including Aαγεβα ,,,, and 
network parameters including 

)0(),0(),0(),0(,,, ijjmjjcc vwa µσηη µ  

Step 2. Read real output )(ty and calculate e(t), ∆e(t), 
∆2e(t)    

Step 3. Receive immediate reward )(tr   
Step 4. Obtain outcome of actor )(tK ′ and value function 

of critic )(tV . 
Step 5. Calculate real parameters of PID controller )(tK  

and accordingly find control signal )(tu   
Step 6. Apply )(tu to the system and get output 

)1( +ty  and )1( +tr for next time step. 
Step 7. Calculate )1( +′ tK and )1( +tV  
Step 8. Calculate TD error )(tTDδ   
Step 9. Update weights of the actor and the critic 
Step 10. Update weights of RBF network. 
Step 11. If the final time is not achieved, go to Step 2. 

 
 

4. NARMA-L2 Controller  
In this section we briefly introduce NARMA-L2 

controller that have been used in [38] to control passive 
manipulator of Fig. 1.    NARMA-L2 is one of the most 
appropriate architectures for prediction and control of 
time variant nonlinear systems. This control technique is 
based on input output linearization. Block diagram of 
NARMA-L2 controller is shown in Fig. 4. There are two 
basic steps in NARMA-L2 including identification step 
and controller design step.  

In identification step, the following nonlinear 
autoregressive moving average model is adopted for the 
system:  
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Fig. 4. NARMA-L2 Controller 
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where u(k) and y(k) are the system input and output 
respectively and d is the relative degree. The positive 
integers m and n are respectively the number of measured 
delayed values of inputs and outputs. f̂ and ĝ  are 
approximated by two MLP neural networks (see Fig. 4 ). 

In controller design step, using (9) the control rule is 
given by: 
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The control rule (10) is not realizable since input 
computation of u(k) requires the output signal y(k). A 
more practical form can be represented as the following 
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Rule (11) is realizable for d>1 . For more details about 
this controller see for example [38]. 
 
 
 

5. Simulation Results and Discussion 
In order to design proposed adaptive PID controller 

for under-actuated manipulator of Fig. 1, control signal u 
and system output y should be determined. For this 
manipulator, control signal would the torque applied to 
the base joint. Output signal should be selected according 
to control goal. Namely the output signal could be YCoG or 
XCoG of the second link or a function of these coordinates. 
Design of a regulator for an appropriate selection of 
output function, renders CoG of the passive link stay in a 
specific area.  

A model of 2R planar under-actuated manipulator 
was constructed using SimMechanics in SIMULINK. 
Links are similar with the parameters masses m1=m2=2kg, 
moments of inertia I1=I2=0.1N.m. and length l1=l2=0.2m. 
The output is selected as y coordinate of the CoG of the 
second link, i.e. y=YCoG. Input is torque applied to the 
active joint i.e. u=T1. We also assumed that the joints are 
frictionless.  

Using abovementioned input-output pair of signals 
both the proposed controller and NARMA-L2 controller 
are designed. The results are devised and compared at the 
sequel. 

 
5.1 Tracking test  

In tracking simulation, the manipulator is initialized 
at fully extended configuration which means joint angles 
are  θ1=0 and θ2=0. In this configuration YCoG=0.0. We 
applied a square wave reference trajectory for YCoG as it 
is shown in Fig. 4. The reference signal is 0.5m for first 1 
second then it switches down to 0 at t=1sec. The system 
is simulated with both the proposed controller and 
NARMA-L2 controller of [38]. Fig 5 shows snapshots of 
simulations with the prposed controller. Fig. 6 shows 
output of the system (YCoG) with the proposed controller 
and NARMA-L2 of [38]. With both controllers the 
system can track the reference. However, the 
performance of the proposed controller is better that the 
controller of [38] in terms of transient response. The 
evidence is that transient time corresponding to the 
proposed controller and controller of [38] are ts=2.7sec 
and ts=5sec respectively. Moreover, the response of the 
proposed controller has no overshoot where the overshoot 
of NARMA-L2 is about 11%. It is noteworthy that these 
values are calculated after t=1sec after learning time of 
the controller. In the first second the controller learns the 
plant and its performance is not very good (however it is 
still better that NARMA-L2) which is usual event in 
adaptive controllers. 

 
5.2 Disturbance rejection test  

In this set of simulations, we also assumed that the 
robot is in the fully extended configuration. Simulation 
starts and the robot remains in this state until t=1sec. At 
time t=1sec a pulse disturbance with 0.15sec in time 
duration and 0.25N.m in amplitude – as shown in Fig. 7 – 
is added to the control signal. In fact, a disturbance torque 
is inserted to the active joint. 
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Fig. 6. Tracking simulation of the proposed Adaptive-PID 
controller and NARMA-L2 controller 

 

 
As a result the passive joint deviates from its initial 
position but the proposed controller and controller of [38] 
both restore YCoG back to zero. Over again, time response 
of the proposed controller is better than NARMA-L2. In 
next simulation we increased the magnitude of the 
disturbance to 0.35N.m. From Fig. 8 it is evident that the 
system with NARMA-L2 controller has become unstable. 
The proposed controller can reject disturbances with 
magnitudes less 0.35N.m while this limit for controller 
of [38] is 0.3N.m. Actually, the proposed controller is 
better disturbance rejection performance than that of [38] 
in terms of both response time and disturbance tolerable 
limit. 
 

Fig. 5. Snapshots of tracking simulation 
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Fig. 7. Disturbance simulation of the proposed Adaptive-
PID controller and NARMA-L2 controller (top) by a 

disturbance with magnitude 0.25N.m (bottom). Both systems 
can restore the response.   

0 1 2 3 4 5 6 7 8
-0.1

-0.05

0

0.05

0.1

Y
C

o
G

 (
m

et
er

s)

 

 

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

time (sec.)

D
is

tu
rb

an
ce

 T
or

qu
e 

(N
.m

)

Adaptive PID
NARMA-L2

 
Fig. 8. Disturbance simulation of the proposed Adaptive-
PID controller and NARMA-L2 controller (top) by a 

disturbance with magnitude 0.35N.m (bottom). NARMA-L2 
is unstable.   

 
 

Above simulation results verify that the proposed 
adaptive PID controller has stabilized the mechanism and 
it is robust to external disturbances and its performance is 
better than NARMA-L2 controller. 

  
6. Summary 

An adaptive PID controller tuned by an actor-critic 
reinforcement learning was successfully employed in a 
under actuated manipulator. It was illustrated that the 
controller has good performance in one coordinate 
tracking. The controller could resist against pulse 
disturbances. Simulations in MATLAB/SIMULNK and 
comparisons with NARMA-L2 controller verified these 
arguments. 

 By extending the idea for multivariable controllers, 
the controller will be able to perform full coordinate 
tracking.  
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