

INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING VOL. 13 NO. 5 (2021) 137-145

© Universiti Tun Hussein Onn Malaysia Publisher’s Office

IJIE

Journal homepage: http://penerbit.uthm.edu.my/ojs/index.php/ijie

The International
Journal of
Integrated

Engineering
 ISSN : 2229-838X e-ISSN : 2600-7916

*Corresponding author: pathiah@upm.edu.my
2021 UTHM Publisher. All rights reserved.
penerbit.uthm.edu.my/ojs/index.php/ijie

137

Verifying the Correctness of UML Statechart Outpatient
Clinic Based on Common Modeling Language and SMV

Pathiah Abdul Samat1, Muhammad Amsyar Azwarrudin1, Norhayati Mohd
Ali,1 Novia Admodisastro1

1Dept. of Software Engineering and Information System, Faculty of Computer Science and Information Technology,
 Universiti Putra Malaysia, 43400 Serdang, MALAYSIA

DOI: https://doi.org/10.30880/ijie.2021.13.05.015
Received 1 May 2021; Accepted 30 May 2021; Available online 31 July 2021

1. Introduction
UML is a standardized general purpose modelling language, which uses graphical notations, such as statechart

diagram [1]. Statechart diagram is use to model the dynamic behavior of a system [2], [3] and [4]. In recent years, there
a numbers of health care system that are modelled using statechart to represent the dynamic behavior of its system.
Example of the statechart of health care system discussed in [5] and [6]. However, the statechart model must verify to
ensuring its correctness or in other word, the property of statechart model is satisfied. In software engineering,
correctness is defined as the obedience to the specifications that stated how we depend on the software and how its
reaction when it is employ with correctly. However, the correctness of software design tendency to failure, if
specification of software is ambiguous. Based on [7], the behavior of statechart is analyze with respect to some
correctness specification expressed by temporal logics formula. In this paper, we use CML [8] to modeled statechart to
formal language of SMV [9] and express the properties in temporal logic as Computational Tree Logic (CTL) [10].

Software verification is important tasks in software model, if we not verify the software model, the bug might be
present in the model and errors will occur in the source codes. As a result, the system tendency to failure. We often read
of incidents where some malfunction caused from fault in hardware or software system. The most tragic example of
such a fault is the destruction of the Ariane 5 rocket [11], due to floating-point overflow; one bug and one crash [12].
Based on Ariane 5 rocket tragedy, the need for trustworthy hardware and software system is critical. As increasing
number of such systems are being used in our lives, it is important that their properties is properly verified. Practically,
it is impossible to shut down a malfunctioning system in order to restore safety; where in reality we are very much
dependent on such systems for both their continuous operation and proper functioning. The lesson learned from this
tragedy is that the system or software must go through the process of verification and validation during its design for
ensuring on their correctness. One of the automatic software verifications is model checking technique.

Abstract: Unified-modelling language (UML) is a standard general purpose modelling language, which is widely,
used in system design of banking, biological, plantation and healthcare. Recently, there are many systems of
healthcare are modeled using behavioral diagram such as UML statechart for design purposes. However, the
behavior of healthcare statechart is rarely verified to ensure it is behaving as we needed. In software engineering, a
software should be verified before it is transform to the further phases. In this paper, a statechart of outpatient
clinic is verified to ensuring the correctness of its design. Therefore, to achieve our objective, we have applied
Common Modeling Language (CML) and SMV model checker for verification formal system modeling and
specification of property of statechart outpatient clinic. The result shows that the statechart of outpatient clinic is
behave as required and the statechart is allowable to transform to the next phase.

Keywords: Formal verification, CML, model checking, temporal logic, UML statechart

http://penerbit.uthm.edu.my/ojs/index.php/ijie

Pathiah A. Samat et al., International Journal of Integrated Engineering Vol. 13 No. 5 (2021) p. 137-145

138

The numerous researchers use model checking to tackle the correctness of statechart problem [13] and [14]. In
health care system, there are a number of researcher apply model checking to verify the correctness of statechart [15],
[16] and [17]. A framework has developed to verify the clinical guideline using UML statechart and SPIN model
checker [15]. This framework verifies specific requirement in the guideline to check whether it is present semantic
error and inconsistencies. Another researcher proposed to constructing the models in the Refinement Calculus of Object
Systems (rCOS) and then verifying Trustable Medical System (TMS) in the real time the safety properties by tool
UPPAAL [16]. They use rCOS to develop TMS because it supports both static structural and dynamic behavioral
refinement of object-oriented system and can effectively reduce the complexity of system by separating concerns. The
healthcare workflow also can be verify using Alloy specification [17]. This approach transforms the healthcare
workflow metamodel to Alloy specification and verify using Alloy Analyzer.

This paper is organized as follows: The following section discuss the materials and methods of research. Then the
results and discussion are present in section 3. Finally, the conclusion and direction for future research are discuss in
section 4.

2. Material and Method

UML Statechart is valuable diagram, which is able to representing the behavioral of state machine. The most
important, statechart can react to external environment of a system through events, which triggered by a transition.
UML statecharts [18] are hierarchical automata associated with objects (class instances) to model their behavior. The
valuable innovation of statechart can assist in modeling the life cycle of objects behavioral in graphically. In exact
terms, statecharts, consisting of states and transitions, convey how objects behave through time because its surrounding
can affect the reaction to an event. Statechart that was proposed by [19] is an extension of the finite state machine
(FSM) which has features like concurrency, hierarchy, and communication.

Model checking is a popular automatic technique used to check the specification of finite state machine system
[20],[21] and [22]. Model checking requires two input: formal modeling and formal specification. Both of the inputs
must be written in language of model checker. The model checker will execute verification process, once both of input
ready written in its language. Most of model checker tools produced either ‘yes’ to mean – model satisfied the
specification or ‘no’ to mean – model not satisfied the specification.

2.1 Common Modeling Language

Common Modeling Language (CML) was propose by [23] as intermediate language to translate statechart model
to input language of model checker.

Definition 1: Formally, Common Modeling Language is defined as CML=<S, S0, Sc, G, T, C, R, Root> where:
• S is a finite set of states, where each state, s is as one of the two state types: {AND, OR}
• S0 is a set of initial states (S0 S). S0 forms a valid initial transition relation.
• Sc is a set of states that forms a valid state configuration.
• G is a finite set of triggers
• T is a finite set of transition relation, T = S x G x S`.
• C: S, S is the state function. If s` C(s), then s` is an immediate descendant of s. The function C describes a

component state of the model.
• R is a relation between components.

Translation from CML to I-SMV is define to describe the translation from CML to SMV's language.
Definition 2: Let I-SMV be the input language of SMV that consists of four tuples:

 <M, V, N, Y>
In which:
M= A set of finite modules
V = A set of finite state variables
N = A set of next states
Y = Relation between one module to another

I-SMV represented as modular. The parent module is represented as main module. Another module represents as sub
module. Module, M consists finite state variables, V. The next operator, N represent the evolving states from one to
another state. A set parameter represents the relation, Y from one module to another module. A set of rules will use to
represent the translation from CML to I-SMV.

There are many CML in a finite state machine. Each of CML represent as level, L. Therefore, level L, in CML is
mapping to module M. The set of states, S and triggers, G corresponding to V as state variables, V. The transition, T

Pathiah A. Samat et al., International Journal of Integrated Engineering Vol. 13 No. 5 (2021) p. 137-145

139

corresponding to N as next state. Lastly, the relation between levels, R corresponds to the relation between modules, Y.
In this study, there are four rules that mapping from CML to I-SMV. The rules from CML to I-SMV are defined as
follows:

• Rule 1 (module): Let Lev is the set of levels in CML. Each Levi ∈ Lev modeled as module declaration in I-SMV
as follows:

Module Levi(argi ,…,arg i+1)

If Levi ∈ Lev does not exist, then the execution must be terminated. In I-SMV, argi is reference to the actual
parameter of a module in the main module.

• Rule 2 (Variable): Let St be the set of states and Gr is the set of triggers in CML. Sti ∈ St is declared inside a
module as follows:

Sti : s1..s n+1; if St is integer type
Sti : {s1,..,sn}; if St is enumerated type
Sti : {}; if St is boolean type

Gri∈ Gr is declared inside a module as follows:

Gri : g1..gn+1; if Gr is integer type
Gri : {g1,..,gn}; if Gr is enumerated type
Gri : {}; if Gr is boolean type

Rule 2 is used, if and only if the represented module exists and either St≠{} or Gr≠{}.

• Rule 3 (state change): Let Tr be the set of transitions. In CML, the state changes might occur with or without a

trigger, Gr. This implies that the state changes is between the source state, Ss and target state, St with or without
trigger. The state changes in I-SMV defines as follows:

next (St):=
 case{
 Tri : St; if gr ∈ Gr, Gr ≠ {}
 Trj : Ss; if gr ∈ Gr, Gr = {}
 default: St;
 };

The different between Tri and Trj are Tri caused by triggered transition whereas Trj caused by null-triggered
transition.

• Rule 4 (Relation between modules): Let Ra , Rb, be state variables for Leva and Levb. Let Rc and Rd be state
variables for Levcg. The relation between those levels define as follows:

Module main()
St-Levc : Levc(St-Leva .Ra , St-Levb .Rb);
St-Leva : Leva(St-Levc .Rc);
St-Levb: Levb(St-Levc .Rd);

St-Levc, St-Leva, and St-Levb are state variables in the main module. In I-SMV the arguments to a module define
by state variable of destination message followed by state variable of source destination message.

2.2 Verifying UML Statechart of Outpatient Clinic
This subsection describe a case study by employing the method above. This case study employ the statechart of

Outpatient clinic. Based on translation rules from CML to SMV, motivate us to provide automatic translation tool that
utilized the statechart of outpatient clinic to input language of SMV. Fig 1, shows our automatic translation
architecture.

Pathiah A. Samat et al., International Journal of Integrated Engineering Vol. 13 No. 5 (2021) p. 137-145

140

Fig. 1 - Automatic translation architecture

Based on Fig. 1, the verification process of state machines problem starts by expressing their behavior using UML
statechart diagrams. To embark on modeling process, outpatient clinic has modeled a statechart under version Altova
UModel. Fig. 2, illustrates the statechart of outpatient clinic. Based on Fig. 2, statechart of patient states in the example
of surgical care service. There is one orthogonal state named as Active and two simple states which representing as
Waiting and Consultation. Following the referral to clinic, the initial sub-states called “Pending” of parallel states
“Appointment” and “Diagnostic tests” will activated.

Fig. 2 - Statechart of outpatient clinic

When the event “make booking” fired and if there are available slots in the clinic, the patient considered to have

the appointment booked. The statechart of outpatient clinic state has drawn using Altova. The following important
properties need to verify for ensuring the correctness of statechart outpatient clinic:
i. All patients will serve for consultation if they are completed booked appointment and sample for diagnosis test has

taken.
ii. All patients which are not in waiting list are strictly not allowed to make booking for appointment.
iii. All patients which always missed booked appointment and diagnosis test, they are still allowed for consultation.

We also define the property of statechart in reverse relation to check whether it reject or accept unusual behavior.

The property is define as “All patients will always immediately entertain for consultation although he/she not making
appointment and diagnosis test”. Altova can produce XMI file and the file act as input to prototype system. With UML
of version Altova, the diagram saved in XMI file. A special Java codes generated by using Netbeans IDE to read the
XMI file. The methods such as DOM parser used to parse the required tag names into a set of tables by using a package
named as ARCH. The tag names are <region>, <subvertex>, <transition> and <trigger> including the corresponding
attributes. During the runtime, elements of XMI is transformed to textual CML by using data structure called as
collection. There are five steps to transform the elements to textual CML:
i. Every element from the same component of both tables is group into COMPONENT in textual CML.
ii. For every Type which equal to uml:state in ExtrinsicObject, a list of states are created in textual CML under the

STATE.
iii. For every Type equal to uml:trigger in the ExtrinsicObject, lists of trigger is created in textual CML under the

TRIGGER n + 1.

Pathiah A. Samat et al., International Journal of Integrated Engineering Vol. 13 No. 5 (2021) p. 137-145

141

iv. For every Type equal to uml:transition in Transition and if parent of uml:trigger equal to id of uml:transition, a set
of transition are created in textual CML by getting source and trigger name together with target. The set of
transition are group under TRANSITION.

v. For every component, if parent of uml:region equal to id of uml:state, a list of links are created in textual CML.
The corresponding component is said successor-component and its parent component is said predecessor-
component. The links can be formed into two types:
o Successor-component: receive message from predecessor-component.
o Predecessor-component: receive message from successor-componenti and successor-component i+1.

When all steps implemented, the output will used as guidance to model state machine and states transition of a
system component. Fig. 3 shows the pseudocode of single textual CML.

Fig. 3 - Pseudocode of single textual CML

The second pseudocode is used to implementing the relationship between single textual CML. Fig. 4, shows the

pseudocode of relationship between components in textual CML.

Fig. 4 - Pseudocode of relationship between components in textual CML

The output of above pseudocode used to steer users in modeling the synchronization of system components. On the

other hand, the output produced will used as message passing or sharing between the systems component. In overall,
elements of XMI such STATE, TRIGGER, TRANSITION and REGION are useful to build the structure of CML. The
detail usage of pseudocodes above will described in the next section.

3. Result and Discussion

This section focusses to verify the behavior of statechart of outpatient clinic with its properties. There are two
important tasks; first, modeling statechart into SMV language, second expressing properties in temporal logic formula.
For this purpose, we transform the textual CML into SMV. Fig. 5 and Fig. 6, show the textual of CML and input
language of SMV, respectively. Based on Fig. 5, the textual of CML is obtain from exporting and parsing the XMI of
statechart by using five steps of transformation, which described in previous page. In implementation, we apply the

Pathiah A. Samat et al., International Journal of Integrated Engineering Vol. 13 No. 5 (2021) p. 137-145

142

pseudocodes describe in Fig. 3 and Fig. 4 to perform the transformation. As shown in Fig. 5, textual of CML will role
as template of SMV language. Each of segment in textual of CML will mapping to SMV language.

Fig. 5 - Textual of CML

Fig. 6, shows the output of transformation from textual of CML to input language of SMV using translation rules,

which previously describe in page 2 and 3. Subsequently, the textual of CML is transform to input language of SMV
for verification purpose. Based on the Fig. 6, AJ-1, AJ-2, AJ-3 from textual of CML represent the module in SMV.
There are three modules in SMV language; MODULE AJ-1, MODULE AJ-2 and MODULE AJ-3. STATE and
TRIGGER from textual of CML represent variable in SMV. TRANSITION from textual of CML represent next in
SMV. Lastly REFINEMENT from textual of CML represent main in SMV.

Fig. 6 - Input language of SMV

Eventually, SMV model checker runs the verification process. In this step, the statechart of outpatient clinic will

go through the verification process to ensure whether its behaviors are behave correctly when we give correctness
properties. For this purpose, we expressed the properties of outpatient clinic as shown in Table 1.

Pathiah A. Samat et al., International Journal of Integrated Engineering Vol. 13 No. 5 (2021) p. 137-145

143

Table 1- Properties of outpatient clinic in CTL
No Description of property

Property in CTL

1 All patients will entertained for consultation if they are
completely booked an appointment and sample for diagnosis
test has taken

AG(ai_2.state=Booked) &
(aj_3.sate=SampleTaken)→
AF!(aj_1.state=Consultation))

2 All patients which are not in waiting list are strictly not allowed
to make booking for appointment

AG(!(ai_1.state=Waiting) →
EX!(aj_1.state=Booked))

3 All patients will always immediately entertained for consultation
room although he/she not making appointment and diagnosis
test
(Reverse Relation)

AG(!(ai_2.state=Booked &
aj_3.sate=SampleTaken)→
AX(aj_1.state=Consultation))

4 All patients which already booked appointment and completed
diagnosis test not necessary entertained for consultation

AG(!(ai_1.state=Active) →
EF(aj_1.state=Consultation))

Based on Table 1, we specify the properties in AGp, AXp, EXp, EFp and AFp. In SMV, all four temporal logics

are express in CTL as below:
i. AGp express that along all paths property p holds globally,
ii. AXp express that always the property p holds in the second state of the path,
iii. AFp express that along all paths property p holds at some state in the future,
iv. EFp express that there exists a path where property p holds at some state in the future and
v. EXp express that there exists a path where property p holds at second state immediately.

Fig. 7 shows the output of verification. The verification result shows that property 1 and 4 are verify TRUE and
property 2 and 3 are verify FALSE.

Fig. 7 - Result of SMV Verification

Based on Fig. 7, we formalize the property with correctly and vice versa to see whether the statechart gives the

correct reaction according to the specifications. The property 1 is verify TRUE because it says that always when the
patients have booked the appointment and diagnostic test, they will entertained for consultation. The property 2 is verify
FALSE because Booked is not satisfied exactly in the second state. The result shows that the execution of sequence stop

1

2

3

4

Pathiah A. Samat et al., International Journal of Integrated Engineering Vol. 13 No. 5 (2021) p. 137-145

144

at second state and not continue the rest of the states along the path. The property 3 also verify FALSE second state is
not Consultation and stop execute the rest of states. The property 4 is verify TRUE because although patient always
missed booked the appointment and diagnostic test, there exist in the future he/she will entertained for consultation.
Temporal logic not stated exactly the time of satisfied, but it shows that once condition fulfill, the premise is satisfy
either in the future or some or exactly second state.

4. Conclusion

This paper concentrated in providing an approach to verify the correctness of statechart model. As mentioned
previously, correctness is defined as the obedience to the specifications and how software reacts when it is employing the
correctness specification or property. The statechart used in this paper is outpatient clinic. It found that our approach
successfully verifies the behavior of statechart of outpatient clinic based on the correctness property which precisely
express in temporal logic. It means that, the behavior of statechart react, as we required when we employ the precise
specification. It also proves that the statechart is safely design without any defect for next phase of software engineering.
Therefore, we believe that our approach is useful in assisting people in using model checkers. Our approach is also
beneficial in reducing the difficult tasks in using model checking such as formal modeling and formulizing the properties
of a system.

In this paper, our approach only tackle verification of single orthogonal statechart. In future research, we focus to
enhance our approach by providing verification of multiple orthogonal statecharts, which able to handle bigger scope
behavioral of system.

Acknowledgement
This research sponsored by Ministry of Education Malaysia (MOE) and Universiti Putra Malaysia (UPM) via the

Fundamental Research Grant Scheme - FRGS/1/2019/ICT01/UPM/02/01, Vot No: 5540288.

References
[1] Pooley, R., & King, P. (1999). The unified modelling language and performance engineering. IEE Proceedings-

Software, 146(1), 2-10
[2] M. Sharbaf, B. Zamani and B. T. Ladani, "Towards automatic generation of formal specifications for UML

consistency verification," 2015 2nd International Conference on Knowledge-Based Engineering and Innovation
(KBEI), Tehran, 2015, pp. 860-865

[3] Samat, P. A., Zin, A. M., & Shukur, Z. (2011). Analysis of the model checkers' input languages for modeling traffic
light systems. Journal of Computer Science, 7(2), 225-233

[4] Zou, Y. (2013). Verification of UML State Diagrams using a Model Checker (Doctoral dissertation, University of
Wisconsin-La Crosse)

[5] Iwona, G. (2020). Formal Verification of Control Modules in Cyber-Physical Systems. Sencors Open Access
Journal, 20(18), pp 51-54

[6] Butler, K. A, Mercer, e., Ali, B, Tao, C. (2015). Model Checking for Verification of Interactive Health IT System.
AMIA Annual Symposium Proceeding Archive 2015, pp 349-358

[7] Alireza, S., Amir, M.R, Nima, J.N, and Reza, R. (2019). A Symbolic Model Checking approach in formal
verification of distributed system, Human Centric Computing and Information Sciences, 9(4), 1-27

[8] Samat, P. A & Zin, A. M (2012). Common Modeling Language for Model Checkers, Journal of Computer
Science,8(1):99-106

[9] Souri, A., Rahmani, A.M., Navimipour, N.J. et al. 2019. A symbolic model checking approach in formal
verification of distributed systems. Hum. Cent. Comput. Inf. Sci. 9, 4 (2019)

[10] Kochaleema, K.H. and Santhoshkumar, G. 2019. Methodology for Integrating Computational Tree Logic Model
Checking in Unified Modelling Language Artefacts: A Case Study of an Embedded Controller, Defense Science
Journal, 69(1):58-64

[11] Jacques-Louis Lions et al. (1996). Ariane 5 Flight 501 Failure Report by the Inquiry Board. Technical report,
European Space Agency, Paris, France.[9]

[12] Gerald, L. & Victor, C. 1999. Analyzing Mode Confusion via Model Checking, Lecture Note in Computer Science,
1680: 120-135

[13] Bahig, G., & El-Kadi, A. (2017). Formal Verification of Automotive Design in Compliance With ISO 26262 Design
Verification Guidelines. IEEE Access, 5, 4505-4516

[14] Ba, T. N., & Arora, R. (2018, November). Towards Developing a Repository of Logical Errors Observed in Parallel
Code for Teaching Code Correctness. In 2018 IEEE/ACM Workshop on Education for High-Performance
Computing (EduHPC) (pp. 69-77). IEEE

Pathiah A. Samat et al., International Journal of Integrated Engineering Vol. 13 No. 5 (2021) p. 137-145

145

[15] Gopalakrishnan, G., Hovland, P. D., Iancu, C., Krishnamoorthy, S., Laguna, I., Lethin, R. A. & Solar-Lezama, A.
(2017). Report of the HPC Correctness Summit, Jan 25--26, 2017, Washington, DC. arXiv preprint
arXiv:1705.07478

[16] Perez, B., Porres, I. (2010). Authoring and Verification of Clinical Guidelines: A model-driven approach, Journal of
Biomedical Informatics,43(4), 520-536

[17] Xiong, X., Liu, J., Ding, Z. (2010). Design and Verification of a Trustable Medical System, Electronic Note
Theoretical in Computer Science,77-92

[18] Wang, X., Rutle, A.(2014). Model Checking Healthcare Workflows using Alloy, Procedia Computer Science 37 (
2014) 481 – 488

[19] Douglass, B. P. 2000. Real-Time UML developing efficient objects for embedded systems. Addison-Wesley
[20] Harel, D. & Kugler, H. (2004). The RHAPSODY Semantics of Statecharts (or, On the Executable Core of the

UML). In Integration of Software Specification Techniques for Application in Engineering. Lecture Notes in
Computer Science, 3147: 325-354

[21] Clarke Jr, E. M., Grumberg, O., Kroening, D., Peled, D., & Veith, H. (2018). Model checking. MIT press.
[22] Berard, B., Bidoit, M., Finkel, A. & Laroussinie, F. 2013. Systems and Software Verification: Model-checking

Techniques and Tools, Springer-Verlag
[23] Razali, R. & Garratt, P. 2010. Usability Requirements of Formal Verification Tools: A Survey. J. Comput. Sci., 6:

1189-1198
[24] Samat, P. A., & Zin, A. M. (2012). CMGT: Support Tool for Using Model Checking. Australian Journal of Basic

and Applied Sciences, 6(13): 63-73

