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1. Introduction 

Image-Guided Radiation Therapy (IGRT) has played a crucial role in radiotherapy treatment delivery for cancer 

patients. This is especially true for treatments involving tumors located at sites such as lung and upper abdomen that are 

largely affected by involuntary internal motion. Motion such as that due to respiration are vividly visible from the lungs 

observed on projections acquired during a 1-minute Cone-Beam CT (CBCT) scan. A 3D image that is reconstructed 

Abstract: The absence of a ground truth for internal motion in clinical studies has always been a challenge to 

evaluate developed methods to extract respiratory motion especially during a 60-second cone-beam CT (CBCT) 

scan in Image-Guided Radiotherapy Treatment (IGRT). The unavailability of a gold standard has led this study to 

present a methodology to manually track respiratory motion on a clinically acquired CBCT projection data set over 

a 360° view angle. The tracked signal is then used as a reference to assess the performance of four data-driven 

methods in respiratory motion extraction, namely: the Amsterdam Shroud (AS), Local Principal Component 

Analysis (LPCA), Intensity Analysis (IA), and Fourier Transform (FT)-based methods that do not require 

additional equipment nor protocol to the existing treatment delivery. The assessment using this reference signal 

includes both quantitative and qualitative analysis. It is found out quantitatively that all four methods managed to 

extract respiratory signals that are highly correlated with the reference signal, with the LPCA method displaying 

the highest correlation coefficient value at 0.9108. Furthermore, the normalized root-mean-squared amplitude error 

of detected peaks and troughs within the signal from the LPCA method is also lowest at 1.6529 % compared to the 

other methods. This result is further supported by qualitative analysis via visual inspection of each extracted signal 

plotted with the reference signal on the same axes. 
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without taking this motion into account is considered to be a compromised averaged image that actually contains 

motion artefacts, thus reducing the accuracy of the treatment. However, the unavailability of a ground truth that 

represents a patient’s internal motion poses a challenge to clinically validate modern developed motion tracking 

algorithms [1].  

To overcome this, many researchers have adopted various methods such as tracking the respiratory signal on 

patients via strapping a bellows belt [2] or utilizing surface guided radiotherapy (SGRT) using optical cameras [3], [4] 

to detect variations in the patients’ chest and abdomen as a surrogate signal. Others also used manual tracking of visible 

moving features on raw projection data [4]-[8] thus producing a reference signal without using additional equipment or 

tampering with the existing treatment protocols. 

A methodology to evaluate extracted respiratory signals from clinical CBCT projection data is presented in this 

paper. Since it is difficult to define a gold standard ground truth for respiratory motion, a reference signal is manually 

tracked and extracted as a viable alternative. Using this reference signal, the performance of different data driven 

methods to extract respiratory signals from raw CBCT projection data are able to be evaluated. Qualitatively, each 

extracted signal is assessed by plotting it with the manually tracked reference signal on the same axes. The signals are 

also assessed quantitatively via calculating the correlation coefficient between each extracted signal and the reference 

signals. The normalized root-mean-squared error values of the signals’ peak and trough positions are also calculated to 

determine their accuracies.  

 

2. Methodology 

A set of projections from a CBCT scan with Half-Fan scan operating mode [9] of a curative lung cancer patient 

based on the low-dose thorax protocol is used. The projections were acquired using the Varian On-Board Imager (OBI, 

Varian Medical Systems, Palo Alto, CA), at the Oncology and Radiotherapy Department, Universiti Kebangsaan 

Malaysia (UKM) Medical Center. Approval by the UKM Research Ethics Committee with the ethics code: NN-2017-

118 was obtained prior to patient data acquisition. A total of 635 2D projections were recorded by the OBI between 

angles approximately 90° to −270° in a 360° anti-clockwise rotation around the patient over a 1-minute time span. A 

summary of the parameters used in acquiring the projection data is shown in Table 1 below.  

Table 1 - Varian On-Board Imager (OBI) parameters for low-dose thorax protocol 

OBI Parameters Values 

Operating mode Half-Fan 

Projection views, N 635 

Acquisition period, T (s) 60 

OBI start angle, 𝜃i (°) 89.52 

OBI stop angle, 𝜃e (°) -269.34 

Detectors lateral, u (pixels) 1024 

Detectors vertical, v (pixels) 768 

Detector lateral size (mm) 397.31 

Detector vertical size (mm) 297.98 

Detector lateral offset (mm) 148 

CTNC number range 273 to 284 

 

2.1 Reference Respiratory Signal 
The raw projection data are first normalized thus converting the intensity values to a more precise attenuation 

coefficient number, based on the CT Norm Chamber (CTNC) numbers [10] that is a unique feature in most Varian 

systems. Each projection is then edge enhanced and visualized in a ‘jet’ colormap scheme, where the coordinates on the 

2D projection view (u, v) corresponding to the apex one of the most prominent hemidiaphragm of the lung is identified 

and recorded. A straight horizontal line representing the longitudinal, v-coordinate and a vertical line representing the 

vertical, u-coordinate of the apex is then plotted on the projection, where the step in identifying the same 

hemidiaphragm apex is repeated on all of the available projections over the 360° view. An illustration of this process is 

depicted in Fig. 1. The coordinates for the apex of the same hemidiaphragm when the gantry rotates are shown for 

extreme conditions during breathing, i.e. (a) end-expiration at view angle, θ = −204.6° with identified (u, v) coordinates 

(183, 67), and (c) end-inspiration at view angle, θ = −41.8° with identified coordinates: (163, 114). Only the 

longitudinal, v-coordinate is considered as the final reference respiratory signal, thus reflecting the lung volume 

variation in the Superior-Inferior (SI) direction. 



Mohd Amin A T et al., Int. J. of Integrated Engineering Vol. 13 No. 5 (2021) p. 1-8 

 

 

 3 

To account for unwanted errors while the coordinates are identified, the steps are repeated 3 times for each set of 

projection data where an average signal is obtained, as shown in Fig. 1(b). This average signal is thus used as the 

reference respiratory signal. 

 

 
 

Fig. 1 - Manual respiratory signal tracking on raw and edge-enhanced projection images, the latter viewed in 

‘jet’ colormap scheme: (a) end-expiration phase, (b) the extracted respiratory signals, and (c) end-inspiration 

phase 

 

2.2 Data Driven Methods 
Four data-driven methods to directly extract respiratory signal from the acquired projection data are compared. A 

description of each method is given as follows: 

 

2.2.1 Amsterdam Shroud (AS) Method [2] 

Each edge enhanced 2D projection view is summed laterally, generating a column vector that consists the vertical 

intensities that corresponds to the Superior-Inferior (SI) condition of that particular projection view. Thus, when all of 

the vertical column vectors for all views are concatenated into a 2D image, the observed pattern represents the SI 

variation across the entire 360° projection views. The 2D image is known as the Amsterdam Shroud (AS) image, as 

shown Fig. 2. As suggested by literature, an improved version of the original AS method [11] can be achieved by 

improving the image quality of this 2D AS image, i.e. enhancing the edges features, such as incorporating an adaptive 

z-normalization filter. The AS method then works to extract the 1D signal that is contained within the 2D AS image. 

This includes comparing consecutive column vectors and identifying the amount of pixel shift that is present using the 

L2-minimization criterion. However, this method requires an additional band-pass filtering step since apart from the 

desired respiratory signal, the SI variation from the concatenated vector columns also includes other motions such as 

internal cardiac motion, and anisotropic intensity-attenuation variability on the projection data due to different angle 

views during gantry rotation. The band-pass filter is set within the range of 0.20 Hz to 0.33 Hz that corresponds to a 

typical person’s respiration rate at 12-20 respirations per minute [12]. 

 

2.2.2 Local Principal Component Analysis (LPCA) Method [8] 

In the original implementation of LPCA, a foreground AS image is first generated by removing the background 

image elements via a total variation, TV/L
1
 model from the 2D AS image. Then, PCA is employed locally via sliding a 
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window throughout the foreground-AS image with an adequate size of w = 55°. The window is slid sequentially for 

each projection view across the OBI view angles, in which the principal component eigenvectors for consecutive 

sliding windows are compared at each step. The most correlated pairs of eigenvectors are evaluated where the 

corresponding principal component coefficient is kept as the eventual extracted respiratory signal.  

 
 

Fig. 2 - Amsterdam Shroud (AS) image 

 

2.2.3 Intensity Analysis (IA) Method [13] 

This method provides an alternative to the 1D signal extraction step from the AS method. Instead of just summing 

along the lateral direction of each projection view, it extends the summation along the vertical direction of the AS 

image. Thus, the summation output of both lateral and vertical direction is a representation of intensity-attenuation 

pixel information for each projection view. These values when plotted across all of the view angles generates a 1D 

signal. However, a similar band-pass filter is also required to distinguish the desired respiratory signal from all other 

signals it contains.   

 

2.2.4 Fourier Transform (FT)-based Methods [7] 

In this method the Fourier Transform (FT) of each 2D projection is found. Both the magnitude (FT-m) and phase 

(FT-p) of the FT can be used to extract a respiratory signal. In the FT-magnitude (FT-m) method, the absolute values of 

the FT at the origin (0, 0) in Fourier space are kept, producing a signal similar to the IA method that is essentially the 

intensity-attenuation pixel or magnitude information for each projection view. On the other hand, the FT-phase (FT-p) 

method depends on the basic theory that any physical variation that occurs geometrically in Cartesian space would 

result to a phase shift in Fourier space. Thus, the first phase values (0, 1) in Fourier space that corresponds to the 

vertical SI variation in all of the projection data, are kept and plotted. Both approaches require a bandpass filter to 

discern the desired respiratory signal.  

A summary of the four aforementioned data-driven methods is shown in Fig. 3. 

 

 

 

Fig. 3 - Flowchart of the methodology used to extract the reference respiratory signal and implementation of 

four data driven methods 
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2.3 Extracted Signal Evaluation 
Using the manually tracked reference respiratory signal described earlier, all of the signals extracted from the AS, 

LPCA, IA, and FT-based data driven methods are respectively evaluated using quantitative and qualitative assessments.  

Quantitatively, the correlation between each of the extracted signals, s and the reference signal, r are evaluated 

based on the Pearson linear correlation coefficient, 𝜌 described by (1), where n is the projection view, n = 1, 2 … N. 

This is to gauge the overall correlation of each extracted signal with the reference, in which higher correlation is 

represented by values that are closer to 1.  

  
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2 2

n n

n n

s s r r

s s r r
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

 
 (1) 

Intuitively, a qualitative assessment is done by visualizing the extracted signals with respect to the reference signal 

on the same plot axes respectively. The extreme normalized signal amplitude values: −1 and 1, each represents the 

deepest end-inspiration and shallowest end-expiration conditions during breathing. 

Additionally, the peaks and troughs of the signals are detected based on a deflection point detection algorithm [14], 

in which the normalized root-mean-squared percentage error, e of the detected points between the extracted signals, ds 

and reference signal, dr respectively are also evaluated based on (2), where m = 1, 2 … M corresponds to the detected 

peaks and troughs for each signal. The errors are assessed based on the extracted signal’s phase, ep and normalized 

amplitude displacement error, ea. Both metrics reflect the accuracies of the extracted signals since one of the objectives 

of respiratory motion tracking is for the projection data to be sorted according to either phase and/or amplitude binning 

prior to 4D retrospective reconstruction, in which the occurrence accuracy of peaks and troughs are essential. Percent 

errors closer to 0% indicate a higher accuracy in the tracked peaks and troughs of an extracted signal.  

   

 
2

1

max min

m mdr ds
e

dr dr M







 (2) 

3. Results and Discussion 

The evaluated correlation coefficient values are as shown in Fig. 4. Generally all of the extracted respiratory 

signals using the data-driven methods display a high correlation with respect to the manually tracked reference signal, 

with the LPCA method being the highest. This indicates that preliminarily, all of the data-driven methods described in 

this study are able to extract respiratory signal from the acquired actual patient 2D projection data. Nonetheless, a 

detailed observation on the qualitative assessment of the extracted signals shown in Fig. 5 provides more insight on the 

actual performance of these methods. 

 

 
 

Fig. 4 - Correlation coefficient values, 𝜌 of the respiratory signals extracted using the data-driven methods 
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Fig. 5 - Extracted respiratory signals compared with (a) reference signal using (b) Amsterdam Shroud (AS) 

method, (c) Local Principal Component Analysis (LPCA) method, (d) Intensity Analysis (IA) method, (e) 

Fourier Transform-magnitude (FT-m) method, and (f) Fourier Transform-phase (FT-p) method 

 

As described in the Methodology section, the signals extracted from IA and FT-m methods should be similar, and 

both methods do yield the same results: both with the same correlation coefficient value at 0.8158, and also having the 

same pattern as shown in Fig. 5(d) and (e). However, during the OBI view angles ranging approximately between −90° 

to −270°, i.e. the second half of the 360° gantry rotation, the amplitudes are significantly inaccurate although the phase 

of the extracted signals correlate with the reference signal. Since both methods rely heavily on the total amount of 

intensity-attenuation values that is contained by each 2D projection image data, any distorted variation of total intensity 

values would affect the results. Here, since the Half-Fan (HF) operating mode is implemented for a thoracic/abdomen 

protocol, a significant distinction between the first and second half of the 360° gantry rotation would be the visibility of 

the beating heart. It is known that the anatomical location of the heart is closer to the left-lateral position of the patient. 

Therefore, due to the lateral shift of the detector in HF mode to achieve a larger field-of-view, the heart is only visible 

during the first half of the rotation. 

On the other hand, for the extracted respiratory signal using AS method, although having a higher correlation 

coefficient value at 0.8998, it can be observed in Fig. 5(b) that there exists potential phase inaccuracies and false peaks 

during the first half of the OBI view angles ranging between 90° to −90°. This may be due to the nature of the AS 

method that is significantly dependent on the quality of the oscillation features in the AS image shown in Fig. 2. During 

this period, the visibility of the beating heart actually affects the clarity of the amplitude variation of the diaphragm. 

The heart obscures the view of the diaphragm and other respiratory motion-affected organs hence exacerbating the 

performance to extract the respiratory signal. 

Apart from that, another disadvantage of the AS method is its vulnerability of having to use a bandpass filter to 

distinguish the desired respiratory signal from other motions that is contained within the AS image. In fact, this 

situation is also apparent on the other IA and FT-based methods where the bandpass filter is needed to decouple 

apparent motions from different sources (respiration and cardiac) and angular variation mentioned earlier. To avoid 

false extremes: both peaks and troughs, the parameters in the bandpass filter can be optimized to achieve a better signal 

performance of course with the expense robustness of the algorithm.  

Although the FT-p method displayed favorable results: with a correlation coefficient of 0.9050, and minimal 

amplitude discrepancies when compared to the reference signal as shown in Fig. 5(f), this method requires an additional 

step in determining the phase direction of the signal. The FT-p method utilizes the direction of the acquired signal by 

FT-m method, as shown in Fig. 3, since the latter method - similar to the IA method, is not susceptible to signal 

direction confusion.  
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Analyzing the problem at hand, one might be intrigued to eventually use Principal Component Analysis (PCA) to 

address the issue of distinguishing different motion signals from one another, since that is the main concept behind its 

application. The LPCA method used here managed to display superior performance in terms of highest correlation 

coefficient value at 0.9108 and is considered to be the best extracted signal with respect to the reference signal shown 

in Fig. 5(d).  

The deflection point detection algorithm [14] determined that there is a total of M = 25 peaks and troughs from the 

respiratory signal within the 1-minute period. An example of the algorithm detecting the peaks and troughs of both the 

extracted signal using LPCA method along with the manually extracted reference signal as shown in Fig. 6. Two 

metrics were evaluated to further support the current results, namely the normalized root-mean-squared percentage 

error for phase, ep and amplitude, ea differences as described in the Methodology section earlier. Fig. 6 displays the 

means in which both ep and ea are measured (m = 3 and m = 24 respectively, where m = 1, 2 … M) from the OBI view 

angle (°)- and normalized amplitude-axes. Locating the occurrences of these maxima and minima points is essential to 

the next step in dynamic reconstruction, where the projection views could be sorted into bins either via phase- and/or 

amplitude-binning [15]. The phase and amplitude NRMSE for all methods are as shown in Table 2. 

 

 
 

Fig. 6 - Identified peaks and troughs of the extracted signal using LPCA method with the reference signal 

 

Table 2 - % Normalized Root Mean Squared Error (NRMSE) values of the detected peaks and troughs 
occurrences between the extracted respiratory and reference signals 

% NRMSE AS LPCA IA FT-m FT-p 

Phase, ep (%) 0.0801 0.1134 0.0462 0.0462 0.0514 

Amplitude, ea (%) 2.9529 1.6529 3.5813 3.5813 2.3170 

 

Based on the values shown in Table 2, it can be seen that the LPCA method displayed the least amplitude error, ea 

at only 1.6529% compared to the other data-driven methods. However, the phase error, ep for the LPCA method is the 

highest at 0.1134%. Hence the best extraction method if phase-binning is to be used as the sorting method in 4D 

reconstruction is either the IA (or FT-m both of which are actually the same) method. Thus, the LPCA method would 

still be preferred if a decision is to be made by also optimally considering the performance of all of the data-driven 

methods based on the correlation assessment. The robustness of using the LPCA method is apparent, since it does not 

require the additional step of filtering the extracted signal.  

 

4. Conclusion 

The difficulty of defining a data driven gold standard ground truth for internal motion has posed a challenge to 

clinically validate developed methods and algorithms since to the knowledge of the authors there is no such standard to 

measure the respiratory signal. In this study, a methodology to manually track a reference respiratory signal from an 

acquired lung cancer patient CBCT projection data over a 360° view angle is described. The reference signal is then 

used to compare and evaluate four main data driven methods. All methods are able to extract the desired respiratory 

signal, with the LPCA method yielding the highest correlation value with the reference signal at 0.9108, and lowest 

normalized root-mean-squared amplitude error at 1.6529% thus indicating its robustness.  

 

Acknowledgement 



Mohd Amin A T et al., Int. J. of Integrated Engineering Vol. 13 No. 5 (2021) p. 1-8 

 

 

 8 

This research is funded by the Ministry of Education Malaysia and Universiti Kebangsaan Malaysia (UKM) under 

the grant number: FRGS/1/2019/TK04/UKM/02/5 and GGP-2019-004. 

References 

[1] Vergalasova, I., & Cai, J. (2020). A modern review of the uncertainties in volumetric imaging of respiratory-

induced target motion in lung radiotherapy, Med. Phys., 47, 10, e988 - e1008. 

[2] Chao, M., Wei, J., Li, T., Yuan, Y., Rosenzweig, K. E., & Lo, Y. C. (2016). Robust breathing signal extraction 

from cone beam CT projections based on adaptive and global optimization techniques, Phys. Med. Biol., 61, 8, 

3109-3126. 

[3] Akintonde, A., McClelland, J., Grimes, H., Moinuddin, S., Sharma, R. A., Rit, S., & Thielemans, K. (2017). Data 

Driven Cone Beam CT Motion Management for Radiotherapy Application, 2017 IEEE Nuclear Science 

Symposium and Medical Imaging Conference (NSS/MIC), 1-4. 

[4] Tsai, P., Yan,  G. Liu,  C., Hung, Y., Kahler, D., L., Park, J., Potter , N.,  Li,  J. G., & Lu, B. (2020) Tumor phase 

recognition using cone-beam computed tomography projections and external surrogate information, Med. Phys., 

47, 10, 5077-5089. 

[5] Wei, J., & Chao, M. (2018). A constrained linear regression optimization algorithm for diaphragm motion 

tracking with cone beam CT projections, Phys. Medica, 46, 7-15. 

[6] Zhang, L., Zhang, Y., Zhang, Y. Harris, W. B., Yin, F., Cai, J. & Ren, L. (2017). Markerless four-dimensional-

cone beam computed tomography projection-phase sorting using prior knowledge and patient motion modeling: A 

feasibility study, Cancer Transl. Med., 3, 6, 185-193, 2017. 

[7] Vergalasova, I., Cai, J., Giles, W., Segars, W. P., & Yin, F. F. (2013). Evaluation of the effect of respiratory and 

anatomical variables on a Fourier technique for markerless, self-sorted 4D-CBCT, Phys. Med. Biol., 58, 20, 7239-

7259. 

[8] Yan, H., Wang, X., Yin, W., Pan, T., Ahmad, M., Mou, X., Cerviño, L., Jia, X., & Jiang, S. B. (2013). Extracting 

respiratory signals from thoracic cone beam CT projections, Phys. Med. Biol., 58, 5, 1447-1464. 

[9] Mohd Amin, A. T., Abd. Rahni, A. A., Mokri, S. S. & Ahmad, R. (2017). Modeling the Varian On-Board Imager 

(OBI): Cone-beam CT (CBCT) operating modes, 2017 IEEE Int. Conf. Signal Image Process. Appl., 117-122. 

[10] Cropp, R. J. (2011). Implementation of respiratory-correlated cone-beam CT on Varian linac systems,” University 

of British Columbia. 

[11] Zijp, L., Sonke, J., & van Herk, M., (2004). Extraction of the respiratory signal from sequential thorax Cone-

Beam X-ray images,” Int. Conf. Use Comput. Radiat. Ther., 507-509. 

[12] Lindh, W. Q., Pooler, M., Tamparo, C. D., Dahl, B. M. & Morris, J. (2013). Delmar’s comprehensive medical 

assisting: administrative and clinical competencies (5th ed.). Cengage Learning. 

[13] Kavanagh, A., Evans, P. M., Hansen, V. N., & Webb, S. (2009). Obtaining breathing patterns from any sequential 

thoracic x-ray image set,” Phys. Med. Biol., vol. 54, no. 16, 4879-4888, 2009. 

[14] Samir, M., Golkar, E., & Abd. Rahni, A. A. (2015). Comparison between the Kinect
TM

 V1 and Kinect
TM

 V2 for 

Respiratory Motion Tracking, 2015 IEEE Int. Conf. Signal Image Process. Appl., 150-155. 

[15] O’Brien, R. T., Cooper, B. J., Kipritidis, J., Shieh, C. C., & Keall, P. J., (2014). Respiratory motion guided four 

dimensional cone beam computed tomography: Encompassing irregular breathing, Phys. Med. Biol., 59, 3, 579-

595. 


