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1. Introduction 

Upper limb motor dysfunction is one of the most relevant functions impaired by stroke, can lead to limitations of 

function and dramatically reduce the quality of life of stroke patients [1–4]. Due to the motor dysfunction, upper limb 

disability has subsequent effects on independence in daily activities, destination for discharge, return to work, quality of 

Abstract: The Multiple Linear Regression (MLR) is a predictive model that was commonly used to predict the 

clinical score of stroke patients. However, the performance of the predictive model slightly depends on the method 

of feature selection on the data as input predictor to the model. Therefore, appropriate feature selection method needs 

to be investigated in order to give an optimum performance of the prediction. This paper aims (i) to develop predictive 

model for Motor Assessment Scale (MAS) prediction of stroke patients, (ii) to establish relationship between 

kinematic variables and MAS score using a predictive model, (iii) to evaluate the prediction performance of a 

predictive model based on root mean squared error (RMSE) and coefficient of determination R2. Three types of 

feature selection methods involve in this study which are the combination of all kinematic variables, the combination 

of the best four or less kinematic variables, and the combination of kinematic variables based on p < 0.05. The 

prediction performance of MLR model between two assessment devices (iRest and ReHAD) has been compared. As 

the result, MLR model for ReHAD with the combination of kinematic variables that has p < 0.05 as input predictor 

has the best performance with Draw I (RMSEte = 1.9228, R2 = 0.8623), Draw Diamond (RMSEte = 2.6136, R2 = 

0.7477), and Draw Circle (RMSEte = 2.1756, R2 = 0.8268). These finding suggest that the relationship between 

kinematic variables and MAS score of stoke patients is strong, and the MLR model with feature selection of 

kinematic variables that has p < 0.05 is able to predict the MAS score of stroke patients using the kinematic variables 

extracted from the assessment device. 
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life and mood [5–7]. It is important that stroke patient to undergo the upper limb rehabilitation to recover from upper 

limb disability. The intention of the upper limb rehabilitation is to improve the functional use of the arm in order to enable 

the person to carry out productive activities in real life. Improved motor function also contributes to the patients’ 

satisfaction, independence and improve quality of life [8]. 

Various types of clinical scales such as Fugl-Mayer (FMA) [9,10], Manual Muscle Test (MMT) [11,12], or Motor 

Assessment Scale (MAS) [13,14] are commonly used by physiotherapist to evaluate motor function of stroke patients 

during the rehabilitation program. However, the evaluation of the motor function using conventional clinical scales is 

challenging due to the time and limitation of resources [15]. In addition, the scoring systems are often subjective, lack 

reliability and heavily dependent on the ability of the skilled physiotherapist to provide only rough motor function 

estimates [13,16]. Nowadays, various types of upper limb assessment device for stroke rehabilitation have been 

developed to assist physiotherapists during rehabilitation program [17–23]. These upper limb assessment devices provide 

precise measurement of patient’s motor sensory performance which can have a beneficial impact on the rehabilitation 

outcome [15,24]. Kinematic variables evaluated by the assessment device have been used as independent variables in 

multivariate analysis for predicting the patient’s clinical score [15].   

The extraction the relevant part of information for a large dataset to predict the clinical scale of stroke patients can 

be performed with different types of multivariate analysis methods. The Multiple Linear Regression (MLR) approach is 

commonly used method to obtain a linear input output model for a given dataset [25]. However, the performance of the 

predictive model slightly depends on the feature selection method used. Therefore, appropriate feature selection method 

needs to be investigated in order to give an optimum performance of the prediction. The main objective of this study is 

to compare the prediction performance between two assessment devices (iRest and ReHAD) using MLR analysis. This 

paper aims (i) to develop predictive model for MAS score prediction of stroke patients, (ii) to establish relationship 

between kinematic variables and MAS score using a predictive model, (iii) to evaluate the predictive accuracy of a 

predictive model based on root mean squared error (RMSE) and coefficient of determination R2. 

 

2. Research Method 

The data collection is conducted following the ethical approval granted by the Universiti Tun Hussein Onn Malaysia 

(UTHM) Research Ethics Committee. Subjects have been selected by the occupational therapists in SOCSO Tun Razak 

Rehabilitation Centre, based on the inclusion criteria of the study which the upper limb stroke patients with a MAS score 

of 3 and above. All subjects received conventional physiotherapy daily. Each subject’s motor sensory function was 

evaluated at the end of the study using the MAS. Subjects participated in a 30-minutes robotic assessment, including 10 

minutes for each assessment module. The robotic assessment start with Draw I, Draw Diamond and Draw Circle module 

in sequences, where the set-up of the experiment was the same as the previous study [16,26]. The grasping system for 

iRest was used to measure hand opening and closing movement while the grasping system for ReHAD was used to 

measure the hand grip force. Subjects were asked to grasp the handle of the assessment device and their affected hands 

were covered by Velcro band.  

General idea of the research methodology shows in Fig. 1. The raw data from the assessment device will be processed 

through feature extraction stage. Twelve kinematic variables will be produced as the output of the feature extraction 

stage. After that, MLR multivariate calibration will be used for modelling the data and generate prediction of MAS score 

for each stroke patients. 

 

 

 

 

 

 

Fig. 1 - The flows of MAS score prediction 

 

2.1 Data Collection 

The raw data were extracted from the developed assessment devices (iRest and ReHAD). The number of 50 stroke 

patients (36 male and 14 female) that has upper limb disability participated to perform robotic assessment process in this 

study. The data for each patient has been extracted from the assessment device including time, position, and grip force. 

All stoke patients required to perform the assessment task for three trials. Total of 150 data set had been produced after 

the assessment process for 50 stroke patients. 

 

2.2 Feature Extraction 

Feature extraction is the process of reducing the dimensions of the raw data collected with the assessment device 

without compromising the data information that has been collected. Raw data taken from the assessment device will be 

processed and evaluated as kinematic variables. A systematic review shows there are various types of kinematic variables 

that have been used as indicators to assess patient motor performance [24]. In this study, the kinematic variables have 
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been calculated using MATLAB software. Twelve kinematic variables were extracted from the rehabilitation device: 

Total movement time, reaction time, stability time, mean velocity, time to peak velocity, peak velocity, path ratio, hit-

wall score, number of peaks speed, trajectory error, target reached, and grasping. All the calculation for the kinematic 

variables were referred from the previous study [16]. 

 

2.3 Feature Selection 

Feature selection is the process of selecting the combination of predictor variables that most contributes to the 

forecast model. This study uses three types of feature selection methods in order to observe the best input combination 

to the MLR model. The first method is to use all kinematic variables as the input predictor.  

Several study shows that four kinematic variables were high enough to result a good predictive performance of a 

regression model [16,27]. In addition, a study conducted using MIT-Manus used twenty kinematic variables as an 

independent variable in MLR model, but only four kinematic variables were retained and resulting the best performance 

of prediction [28]. Therefore, selection of the best four or less combination of the kinematic variables has been selected 

as the second feature selection method in order to evaluate the performance of the linear regression model for predicting 

the clinical scores.  

A study used univariate regression to identify the kinematic variables with p-value lower than 0.2 for the multiple 

regression model [29]. However, the study only retained the kinematic value with p < 0.05 for the final models as it has 

more significant contribution to the regression model. Therefore, selection of the kinematic variables with p < 0.05 has 

been selected as the third feature selection method in order to evaluate the performance of the linear regression model for 

predicting the clinical scores. 

 

2.4 Multiple Linear Regression 

Multiple Linear Regression (MLR) approaches is the basic and simple method for experimental and data processing 

in analytical data [30]. MLR is a powerful statistical tool finding relationships between one dependent and multiple 

independent variables [31–33]. In MLR, the dependent variables y is linearly correlated to multiple independent variables 

x1, x2, …, xn. The multiple linear regression model as in Eq. (1) as follow: 

 

             (1) 

 

where, y is dependent variable, x is independent variables, β0 is bias, β1, β2, …, βn are the coefficient of independent 

variables. These parameters are estimated by training the samples. Most analysis to predict the upper limb assessment in 

stroke rehabilitation using MLR shows strong correlation with the clinical scales [13,27,32]. 

 

2.5 Validation 

Each stroke patients required to perform three trials for each assessment module. Two of the trials will be used as 

the training data set while the other trial will be holded out as the unseen validation data set for the MLR validation.  The 

root mean square error of training (RMSEtr), root mean square error of testing (RMSEte) and coefficient of determination 

of prediction has been used to represent prediction accuracy capacity of developed model. The RMSEtr was calculated in 

Eq. (2) as follow:  

 

   

            (2) 

 

 

Where ŷtr represent the predicted assessment score from training data set, ytr denote the reference clinical score from 

training data set, n represent the total number of training samples. The root mean squared error of testing (RMSEte) was 

used to measures the accuracy of the predictions of the predictive model with new unseen of data set can be computed in 

Eq. (3) as follow: 

 

 

          (3) 

 

Where ŷte represent the predicted 

assessment score from testing data set, yte denote the reference clinical score from testing data set, n represent the total 

number of testing samples. The coefficient of determination of prediction used was interpreted as the proportion of 

variance in the prediction of the reference value of regression analysis is defined as in Eq. (4).  
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              (4) 

 

 

 

Where y̅ represent the mean of reference data, ŷi denote the predicted assessment score and yi denote the reference 

clinical score. The R2 of the predictive models were measured to describe the relationship between robotic assessment 

score and clinical assessment score. 

 

3. Results and Discussion 

The results were discussed in this section including the selection of kinematic variables combination as the predictor 

for MLR predictive model based on feature selection method. The performance result of all MLR predictive model for 

all assessment modules were discussed at the end of this section. 

3.1 Feature Selection 

This sub-section shows the result of feature selection method including the combination of four or less kinematic 

variables, and the combination of kinematic variables selected based on p-value below 0.05. 

 

3.1.1 Combination of Four or Less Kinematic Variables 

The best combination of kinematic variables was determined using leave one out cross validation (LOOCV) 

approach. One data point was released in turn, the remaining data were used to fit the predictive model. The error between 

the predicted value of the unused data point and the actual value was calculated as root mean square error of LOOCV 

(RMSEcv). The combination that produced the least RMSEcv value was selected using an exhaustive search of all possible 

combinations. The RMSEcv for the predictive model derived from LOOCV process tabulated in Table 1 and Table 2 for 

iRest and ReHAD respectively. The results show the combination of the best four or less kinematic variables in predicting 

the MAS score based on the RMSEcv value.  

 

Table 1 - RMSEcv values from different combination of kinematic variables for iRest 

Comb. of 

variables 

Draw I Draw Diamond Draw Circle 

Kinematic 

variables 

RMSEcv Kinematic 

variables 

RMSEcv Kinematic 

variables 

RMSEcv 

4 Movement time, 

Path ratio, 

Grasping, 

Target Reached 

2.6986 Movement time, 

Reaction time, 

Grasping, 

Target Reached 

2.8920 Reaction time, 

Hit wall score, 

Grasping, 

Target Reached 

2.7821 

3 Movement time, 

Grasping, 

Target Reached 

2.7141 Movement time, 

Grasping, 

Target Reached 

2.9299 Hit wall score, 

Grasping, 

Target Reached 

2.8108 

2 Grasping, 

Target Reached 

2.8131 Grasping, 

Target Reached 

3.0068 Grasping, 

Target Reached 

2.8613 

1 Grasping 3.3311 Grasping 3.2365 Grasping 3.0283 

 

Table 2 - RMSEcv values from different combination of kinematic variables for ReHAD 

Comb. of 

variables 

Draw I Draw Diamond Draw Circle 

Kinematic 

variables 

RMSEcv Kinematic 

variables 

RMSEcv Kinematic 

variables 

RMSEcv 

4 Peak velocity, 

Hit wall score, 

Grasping, 

Target Reached 

2.0012 Stability time, 

Hit wall score, 

Grasping, 

Trajectory error 

2.4512 Movement time, 

Stability time, 

Hit wall score, 

Grasping 

2.2718 

3 Mean velocity, 

Hit wall score, 

Grasping 

2.1485 Stability time, 

Grasping, 

Trajectory error 

2.5441 Stability time, 

Peak velocity, 

Grasping 

2.3540 

2 Hit wall score, 

Grasping 

2.2963 Stability time, 

Grasping 

2.6544 Stability time, 

Peak velocity 

2.6018 

1 Stability time 2.6744 Stability time 2.7577 Stability time 2.8069 

 

Based on iRest result in Table 1, The minimum RMSEcv value was 2.6986 for Draw I model with a combination of 

four kinematic variables (Movement time, Path ratio, Grasping, and Target Reached), 2.8920 for Draw Diamond model 

with a combination of four kinematic variables (Movement time, Reaction time, Grasping, and Target Reached), and 
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2.7821 for Draw Circle model with a combination of four kinematic variables (Reaction time, Hit wall score, Grasping, 

and Target Reached). The results show that combination of four kinematic variables has the lowest RMSEcv value 

compare to the other lower combination. Therefore, combination of four kinematic variables was selected as a predictor 

in generating the prediction model for iRest due to the lowest value of RMSEcv.  

Table 2 shows the result for ReHAD. The lowest RMSEcv value was 2.0012 for Draw I model with a combination 

of four kinematic variables (Peak velocity, Hit wall score, Grasping, and Target Reached), 2.4512 for Draw Diamond 

model with a combination of four kinematic variables (Stability time, Hit wall score, Grasping, and Trajectory error), 

and 2.2718 for Draw Circle model with a combination of four kinematic variables (Movement time, Stability time, Hit 

wall score, and Grasping). The results show that combination of four kinematic variables has the lowest RMSEcv value 

compare to the other lower combination. Therefore, combination of four kinematic variables was selected as a predictor 

in generating the prediction model for ReHAD due to the lowest value of RMSEcv.  

 

3.1.2 Combination of Kinematic Variables (p < 0.05) 

Pearson's Linear Correlation Coefficient was used to determine the correlation between pairs of all independent 

variables and dependent variables. The kinematic variables below 0.05 were selected as the input combination of 

regression model. Table 3 shows the p-value of each kinematic variables for three assessment modules.  

 

Table 3 - P-value of each kinematic variable for iRest 

Kinematic variables Draw I Draw Diamond Draw Circle 

Movement time  0.0052 0.6899 0.8108 

Stability time  9.9921e-17 3.2560e-21 4.0749e-27 

Reaction time  0.8907 6.5480e-06 2.1203e-04 

Mean velocity  1.3625e-11 5.5884e-05 2.8844e-04 

Peak velocity  0.0026 0.0171 0.2223 

Time to peak velocity  0.9393 0.0037 2.0323e-05 

Hit wall score  0.6261 0.0132 0.3965 

Path ratio  1.4117e-07 4.8212e-08 7.7082e-07 

Smoothness  0.1035 0.0151 0.0497 

Grasping  1.6467e-35 1.9265e-37 7.6301e-42 

Trajectory error  0.0332 0.2467 0.4547 

Target Reached  7.7094e-25 2.8849e-15 4.7848e-16 

 

Table 4 - P-value of each kinematic variable for ReHAD 

Kinematic variables Draw I Draw Diamond Draw Circle 

Movement time  7.1707e-28 8.7223e-09 1.0076e-05 

Stability time  4.6872e-45 4.3427e-43 6.3080e-42 

Reaction time  0.0015 0.0013 0.0652 

Mean velocity  2.6448e-29 3.3948e-10 4.6993e-08 

Peak velocity  0.2649 1.1231e-05 4.1691e-08 

Time to peak velocity  0.0197 0.0026 2.8253e-05 

Hit wall score  7.0459e-18 0.0186 0.0022 

Path ratio  1.0887e-06 1.4114e-04 2.3391e-05 

Smoothness  0.4554 2.6759e-07 5.8290e-11 

Grasping  1.6791e-36 1.3784e-29 1.1655e-35 

Trajectory error  0.0915 0.2016 0.1582 

Target Reached  1.1630e-11 0.0011 0.0015 

 

Table 3 shows the result for iRest. Eight kinematic variables (Movement time, Stability time, Mean velocity, Peak 

velocity, Path ratio, Grasping, Trajectory error, and Target reached) were selected for Draw I module. All kinematic 

variables were selected for Draw Diamond module except for two kinematic variables (Movement time and Trajectory 

error). Besides, four kinematic variables (Movement time, Peak velocity, Hit wall score, and Trajectory error) were 

excluded from the combination of kinematic variables for Draw Circle module due to p > 0.05. Based on Table 4, all 

kinematic variables were selected for Draw I module except three kinematic variables (Peak velocity, Smoothness, and 

Trajectory error). Meanwhile, only Trajectory error was excluded from the combination of kinematic variables for Draw 

Diamond module, two kinematic variables (Reaction time and Trajectory error) were excluded from the combination of 

kinematic variables for Draw Circle module. Trajectory error was the only single kinematic variables that were ignored 

from the kinematic variable’s combination for ReHAD assessment modules. Based on Table 3 and Table 4, the number 

of selected kinematic variables for ReHAD is higher compared to the iRest in each assessment modules due to most of 

the kinematic variables exceed the specified inclusion criteria (p < 0.05). 
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3.2 Performance prediction of MLR model 

The performance of the MLR predictive models were observed from the value of RMSEte and R2. The performance 

of the MLR predictive model shown in Table 5 and Table 6 for iRest and ReHAD respectively. 

 

Table 5 - The performance of MLR model for iRest 

Features selection Module 
Training Testing 

RMSEtr 𝐑𝐭𝐫
𝟐  RMSEte 𝐑𝐭𝐞

𝟐  

All kinematic variables Draw I 2.4846 0.8001 2.6232 0.7921 

Draw D 2.6755 0.7683 2.8553 0.7374 

Draw C 2.3388 0.8228 3.2943 0.6642 

Best 4 combination Draw I 2.5763 0.7852 2.6379 0.7758 

Draw D 2.7717 0.7513 2.8968 0.7312 

Draw C 2.4422 0.8069 3.1015 0.6934 

p_value < 0.05 Draw I 2.5253 0.7935 2.5952 0.7882 

Draw D 2.7072 0.7627 2.8945 0.7305 

Draw C 2.7325 0.7583 2.7544 0.7550 

 

Table 6 - The performance of MLR model for ReHAD 

Features selection Module 
Training Testing 

RMSEtr 𝐑𝐭𝐫
𝟐  RMSEte 𝐑𝐭𝐞

𝟐  

All kinematic variables Draw I 1.4948 0.9166 2.1968 0.8221 

Draw D 1.9117 0.8636 2.5538 0.7592 

Draw C 2.0198 0.8477 2.1606 0.8276 

Best 4 combination Draw I 1.9273 0.8614 1.9591 0.8571 

Draw D 2.2883 0.8046 2.5173 0.7672 

Draw C 2.1082 0.8341 2.3366 0.7997 

p_value < 0.05 Draw I 1.8975 0.8656 1.9228 0.8623 

Draw D 2.0603 0.8416 2.6136 0.7477 

Draw C 2.0404 0.8446 2.1756 0.8268 

 

Based on Table 5, the results show that all feature selection method has RMSEte value below 3.3 for each assessment 

module using iRest. The first feature selection method where all kinematic variables involved in regression analysis, 

Draw I modules score the best prediction result (RMSEte = 2.6232, R2 = 0.7921) compared to the other two modules. 

Draw C has improved the prediction performance (RMSEte = 3.1015, R2 = 0.6934) in the second feature selection method 

where only the best four kinematic variables were selected. However, prediction performance of Draw I and Draw D 

modules were decreased compare to the first feature selection method. The third feature selection method where only the 

kinematic variable that has p-value < 0.05 were retained for the regression analysis, Draw I modules shows the best 

prediction performance (RMSEte = 2.5952, R2 = 0.7882) followed by Draw C and Draw D modules. The performance of 

MLR model for the iRest shows that Draw I modules has the excellent performance for all feature selection method 

involved.  

Based on Table 6, Draw C module scores the excellent prediction performance (RMSEte = 2.1968, R2 = 0.8221) as 

compared to the other two modules for the first feature selection method where all kinematic variables involved in 

regression analysis. Besides, Draw D module has the worst prediction performance due to higher value of RMSEte and 

lower value of R2. The second feature selection method where only the best four kinematic variables were selected as the 

input for MLR model, Draw I module has the best prediction result (RMSEte = 1.9591, R2 = 0.8571) followed by Draw 

C and Draw D modules. In addition, the performance of Draw I module has increased by 10.82% of RMSEte value and 

4.26% of R2 value compared to the first feature selection method. The third feature selection method where only the 

kinematic variable that has p-value < 0.05 were retained for the regression analysis, Draw I modules shows the best 

prediction performance (RMSEte = 1.9228, R2 = 0.8623) followed by Draw C and Draw D modules. The performance of 

MLR model for ReHAD shows that Draw I modules has the admirable performance with two out of three feature selection 

method involved in the MLR analysis.  
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       (a) 

 
      (b) 

 
      (c) 

 

Fig. 2 - Predicted MAS score versus MAS score using ReHAD with feature selection of (p < 0.05) of the 

kinematic variables for (a) Draw I module, (b) Draw D module and (c) Draw C module.  

 

Since the main objective of this paper is to compare the performance of MLR model for both assessment devices, 

the MLR model for ReHAD device resulted a better performance compared to the MLR model for iRest device.  This is 

proven by the lower value of RMSEte and higher value of R2. Furthermore, the third feature selection method where only 

the kinematic variable that has p-value below than 0.05 were retained for the regression analysis shows the magnificent 

performance compared to the other two feature selection methods. The results indicate that MLR model for ReHAD with 

third feature selection method has more robustness in testing new unseen test sets samples of kinematic variables. Fig. 2 

shows the correlation between predicted MAS score and MAS score for ReHAD with feature selection of kinematic 

variables (p < 0.05) as the input predictor to MLR model. The predicted MAS score and MAS score values showed 

statistically significant (p < 0.05) correlations in all cases. In addition, the training and the validation model for all 

assessment modules showed that the predicted MAS score were positively correlated with the MAS score. However, 

MLR model is going to be ineffective for the system with nonlinear data due to limitation of MLR as linear predictive 

model. The performance of the prediction should be improved by including non-linear or hybrid predictive model in the 

future.  

 

4. Conclusion 

A study has been conducted using two assessment devices which are iRest and ReHAD in order to predict the clinical 

scale score using Multiple Linear Regression (MLR). To sum, MLR is promising to predict the motor assessment scale 

(MAS) score from the extracted kinematic variables of stroke patients. The results show MLR model for ReHAD has a 

better performance of prediction compared to iRest. In addition, optimization in feature selection method is crucial to 

improve the prediction performance. Finding also shows that feature selection of kinematic variables that has p-value 

below than 0.05 as input variables for the MLR model give excellent performance of prediction.  
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