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1. Introduction 

In Sarawak, some of the major hydroelectric power (HEP) and water supply reservoirs include the Bakun HEP 

Reservoir, Murum HEP Reservoir, Batang Ai HEP Reservoir, Bengoh Reservoir, and Assyakirin Reservoir. Those 

inland freshwater reservoirs are endowed with immense commercial potential for water-based developments such as 

cage aquaculture, recreational, eco-tourism projects. An example of one of the most successful reservoir water-based 

development projects in Sarawak is the Tilapia Cage Culture Development Project at Batang Ai HEP reservoir by 

focusing only on the cage culture of Tilapia fish. As of December 2017, the number of cages of Tilapia cage culture at 

Batang Ai Reservoir approved by Jabatan Pertanian Sarawak, Unit Penguatkuasa Dan Pelesenan, Bahagian Perikanan 

Abstract: This paper quantifies the biochemical oxygen demand (BOD), nitrogen (N), phosphorus (P) and 

navigational carrying capacities of Bengoh Reservoir for potential fish cage culture and recreational developments. 

The pollutant degradation coefficients (k) and pollutant carrying capacities (tons/day) of the reservoir were 

determined. The computed pollutant degradation coefficients were primarily based on the hydrological information 

of the catchment, hydraulic and operational details of the dam, and the targeted water quality standards of the river-

connected Bengoh Reservoir. The maximum allowable pollutant loading rate (tons/year) defines the reservoir’s 

maximum Waste Assimilative Capacity (WAC) on specific pollutants (BOD, N and P), while in compliance to the 

targeted benchmark with the receivable pollutant loadings.  It was found that the current BOD, TN and TP loading 

rates are 0.308 ton/day, 0.119 ton/day and 0.114 ton/day, respectively. To comply with Class I Standards of the 

National Water Quality Standards of Malaysia (NWQSM), the Maximum Allowable Loading Rates of BOD can be 

as high as 92.24 tons/day as compared to the current loading rate of 0.308 ton/day, maximum TN loading of 116.63 

tons/day versus current 0.119 ton/day, and maximum TP loading  at 125.54 tons/day versus current 0.114 ton/day. 

It was also found that the maximum number 218 cages (225 fish/cage) of Tilapia would be allowed in Bengoh 

Reservoir so as to comply with Class I of NWQSM. Based on the peak level of the reservoir recreational types of 

use in demand and the mix of public and private access, the navigational carrying capacity of the reservoir was 

estimated to be about 130 boats. 
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Darat, Jalan Dusun Off Jalan Ong Tiang Swee, 93200 Kuching, Sarawak recorded a total of 11,406 cages and 9,073 

cages are currently in operation, all for the culture of Tilapia [1]. The estimated average production rate of Tilapia fish 

is approximately 1,100 tons/year, while the biochemical oxygen demand (BOD), chemical oxygen demand (COD), 

nitrogen (N) and phosphorus (P) levels of the reservoir are maintained well within the Class IIA Limits of the National 

Water Quality Standards of Malaysia (NWQSM) [1]. However, prior to the implementation of any additional or new 

development in the reservoir or catchment, it is of paramount important that the key pollutant degradation rates and 

maximum allowable pollutant loading rates be determined in order to maintain the targeted water quality.  

 

1.1 Fish Cage Culture – Potential Impacts on Water Quality  

Water-based development of a reservoir always brings about negative impacts on the water quality and cage 

aquaculture is of no exception. Cage aquaculture is generally associated with high organic loadings, excessive nutrient 

discharge, high demand of dissolved oxygen and production of chemical waste. Sediments are often deposited from 

feed waste (uneaten food and undigested food from fish by-product) and insoluble compound (dead fish). The potential 

increase in total nitrogen (TN) and total phosphorus (TP) would contribute nutrient enrichment. Accumulation of 

organic sediment and enrichment of nutrient in the water source enhance the production of aerobic bacteria in the water 

that elevate dissolved metabolic wastes and biochemical oxygen demand (BOD) in the water. Chemical waste and 

mineral supplements from the fish feed may also impact the water quality.  In order to ensure the sustainability of the 

cage aquaculture environment, key management strategies such as site selection, fallowing of site, evaluation of 

environment capacity, governmental regulations and codes of practice are essential to keep the concentration of several 

pollutants at the prescription level.  

 

1.1.1  Sediment  

Sediments beneath the cages are frequently subject to high organic loadings from waste feed and bio-deposits 

(faeces) from fish [2].  Studies [3]-[6] show that the bottom area below the cages could experience 2-20 times higher 

sedimentation rate than a reference area. High levels of organic enrichment observed beneath the cages would result in 

moderate impact within 50-m radius around the cages with respect to the levels of organic carbon, total carbon, total 

sulphur, sulphide, redox potential, total phosphorous and total nitrogen [4], [7].  Sara et al. [8] used stable isotope 

analysis for carbon and nitrogen and they found that an oligotrophic area, at 25m depth and a mean current of 10-

12cm/sec, the influence of carbon and nitrogen from farming waste could be detected within 1-km radius of the cage. 

The bio-deposits can have definite effects on sediment chemistry and macrobenthic invertebrates, as an increase in total 

volatile solids (TVS) and free sulphides in sediment is anticipated in the immediate vicinity of the cage farms [2]. The 

environmental impacts of waste feed and bio-deposits would be significantly minimized if the fish farms can fallow for 

a period of weeks or even years to allow the conditions to return to normal [2]. The water quality can be significantly 

improved by introducing oxygen injection system for cage farms [9], or to reduce fish density, regulate feeding, 

increase water exchange rate by installing current generators or to choose a well-flushed site [2].  

 

1.1.2  Dead fish as a waste  

Mortality often takes place in all types of cage culture. On average, the cage culture fish mortality rate can be as 

high as 10% as reported by [10]. The mortality rate of cage fishing can be attributed to an array of common factors that 

are preventable. Generally, dead fish must be removed from the cages daily by adopting proper procedure, even though 

dead fish is not estimated to be a problem to sediment enrichment [11], [12].  

 

1.1.3  Nitrogen (N) and phosphorus (P) 

Significant proportion of the phosphorous in the feed is released into the environment (66-88% in marine salmon 

cage); estimated that for 1kg of salmon produced, 7.8-12.2g of phosphorous are released into the marine environment 

[13]-[17]. Ammonia and ammonium are the most common types of nitrogen (N) waste that may include 65-90% of 

total nitrogen loss in fish, and  the total nitrogen loss in cage culture ranges from 72% to 79% of total input, Ruohonen 

[15] estimated that for 1kg of Atlantic salmon produced, 53.4g of nitrogen are released into the environment; and 

Storebakken et al. [16] found that nitrogen loss in Atlantic salmon amounts to 54% of total nitrogen intake and 82% of 

the waste was excreted in soluble form.  The released nutrients would be consumed by algae and the production 

depends on the location and time of the algae [11], [12]. Brooks and Mahnkan [11], [12] found that algal production in 

areas with dense fish population showed insignificant increase in algal production in marine coastal waters.  Other 

studies on the impacts of open marine waters from a Scottish loch with a large fish farm with very restricted water 

exchange to the open sea also show no evidence of measurable effects on phytoplankton density [6]. Feed loss can be 

significantly reduced, and thus the nutrients by the use of hydro-acoustics and video techniques, which detects the loss 

of feed [18], [19].  

 

1.1.4  Hydrogen sulfide (H2S) and dissolved oxygen (DO) 

Accumulation of organic sediment tends to produce ammonia and hydrogen sulphide gases when oxygen is 

depleted, and the gas can be reduced rapidly by oxygen, diffusion and sufficient mixing in water column.  
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Comparatively low dissolved oxygen levels have rarely been reported to be a problem in cage culture marine waters, 

whereby ambient dissolved oxygen could decrease by 0.3mg/L [20].  However, Brooks and Mahnken [11], [12] 

reported as much as 2mg/L decrease in dissolved oxygen (DO) level in water passing through a large, poorly flushed 

cage farm.  At high temperatures and peak biomass (fish) in the cages, the DO concentrations can reach critically low 

levels [21].  The DO concentrations can be significantly improved by introducing oxygen injection system for cage 

farms [9]. Other strategies are to reduce the number of cages in the area, reduce fish density, regulate feeding, increase 

water exchange rate by installing current generators [2].  

 

1.1.5  Chemical waste and chemotherapeutants 

Minerals and pigments are sometimes incorporated into the feed, and chemicals use in cage construction materials 

may include stabilizers, plasticizers, ultraviolet absorbents and antifoulants [18]. To fight disease or to reduce fish 

mortality rate, disinfectants and chemotherapeutants (such as the antibacterial, antifungal and the antiparasitic 

compounds) may be used to control pathogens and chemotherapeutants [18], [22], [2]. Significant reduction in the use 

of antibiotics can be achieved through selection of more favourable sites or localities and better management practices 

[2]. 

 

1.1.6  Copper (Cu) and zinc (Zn) 

Zinc (Zn) is an essential trace element for fish nutrition and is added to the feeds, as part of the mineral supplement 

that could be deposited in the sediment [18], [23], [11].  The sulphide in the sediment combines with both zinc and 

copper (Cu) to reduce their bioavailability to non-toxic levels. However, zinc level may return to its background level 

during chemical remediation, leaving no evidence of a long-term build-up while being converted to a more bio-

available form [10], [11]. Besides, accumulation of copper in sediments can be significantly reduced by washing cage 

nets on land [11], [12].  Solberg et al. [24] found that the use of copper-coating on either within or around the net-pens 

would not affect the quality of the seafood products. 

 

1.2 Navigational carrying capacity of reservoir 

To calculate the navigational carrying capacity of reservoir for recreational purposes, it is necessary to integrate 

reservoir’s uses and goals with respect to its characteristics. The navigational carrying capacity of reservoir can be 

determined once the peak level of recreational use, the types of use in demand, and mix of public and private access.  

The observation on the activities at various times during wet and dry seasons, including the number of boats on the 

reservoir, type of each boat (fishing, high-speed, personal, commercial, non-commercial, etc.). Moreover, the boat’s 

approximate speeds; stationary, no wake, or wake-producing speed should be recorded.  Usually, once the activities are 

captured at several points in time, it should provide a reasonably accurate picture of actual us age, and thus the 

navigational carrying capacity of reservoir.  

 

2. Materials and Methods  

2.1 Bengoh Reservoir and catchment land use 

The Bengoh Reservoir has a maximum reservoir coverage area of approximately 8.77 km2 at full supply level of 

80.0 mLSD [25]. The reservoir is located approximately 2.2 km west of Kampung Bengoh and about 1.2 km upstream 

from its confluence with Sungai Semadang. The catchment size of Sungai Sarawak Kiri is about 633 km2 [25]. The 

Bengoh Catchment measures approximately 127 km2 about one quarter the size of the Sungai Sarawak Kiri catchment 

(Fig. 1). The Bengoh Catchment hydrology and Bengoh Reservoir details are summarized in Table 1 [25].  

Fig. 1 shows the catchment land use characteristics of the Bengoh catchment [25]. The hills forests of the upper 

Bengoh Range are intact, but its adjacent lowland forests have been extensively cleared, mainly for shifting cultivation. 

A large part of the basin is now either farmland, secondary or regenerated forest or barren grounds. The shifting 

cultivation is widely practiced in the catchment by the local people.  Hill paddy and other mixed crops, such as tapioca 

and maize are cultivated on the hill slopes.  After one or two cycles of crops, the farmers move on to clear another plot 

of land, leaving the other plot under bush fallow. This system of farming eventually uses up a large area of land, thus 

explaining the sizeable area of land affected by shifting cultivation. There is minimal cultivation activity to the upper 

range of Bengoh Range; however, the hill forest to the south west of the catchment area had been logged selectively 

and under regeneration. The land use patterns/distribution of the area within the Bengoh Catchment mainly consists of 

shifting cultivation area (approximately 62%). It was estimated that approximately 22% consist of primary forest and 

another 14% regenerated forest [25].  

 

2.2 Pollutant Degradation Coefficients and Pollutant Carrying Capacities 

The pollutant degradation coefficient, k is also known as reaction coefficient (day-1 or d-1), which can be defined as 

the assimilative capacity of a water body or reservoir with respect to a particular pollutant. The pollutant degradation 

coefficient, k is known based on the estimated current load (CL), tons/year from water-based and land-based activities, 
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it is possible to estimate the amount of future load (FL), tons/year of that particular pollutant. The following 

expressions describe both the allocation of additional or allowable future load (tons/year), and the allocation of 

reducing future load (tons/year) in order to achieve the endpoint or maximum concentration level (MCL) of that 

particular pollutant [26].  

 

Table 1 - Hydrology and reservoir 

Hydrology of Bengoh Catchment 

Catchment Area 

Mean Annual Rainfall 

Mean Annual Inflow 

Flood Peak Flows:  

- 5 years 

- 10 years 

- 20 years 

Design Flood Inflow – PMF 

 

127 

3990 

284 

 

320 

365 

400 

2420 

 

km2 

mm 

Mm3/yr 

 

m3/s 

m3/s 

m3/s 

m3/s 

Bengoh Reservoir 

Full Supply Level 

Max. Design Flood Level 

Min. Normal Operating Level 

Storage at (NRL) 

Active storage (above 55.0) 

Reservoir Area (at FSL) 

Reservoir Area (at max. Flood) 

 

80.0 

85.2 

55.0 

144.1 

130.2 

8.77 

10.5 

 

m LSD 

m LSD 

m LSD 

Mm3 

Mm3 

km2 

km2 

 
 

 

 

 

Fig. 1 - Locality and land use of Bengoh Catchment (1.2418° N, 110.2417° E) 
 
 

CL FL=MCL  (1) 
 

In Eq. (2), pollutant degradation coefficient, k is determined based on the fraction of soluble pollutant remaining, 

where S is the actual water quality concentration and S0 is the estimated water quality concentration, which the 

estimation is based on the pollutant loading rates [27], [28]. 
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where, S/S0 = Fraction of soluble pollutant remaining, k = Reaction rate coefficient, d-1, θ = Hydraulic detention time, d 

Q = Flowrate, m3/d.  

The degradation rates of the BOD, N and P are affected by the reservoir and surrounding temperature. Therefore, it 

is essential to consider the temperature coefficient, as shown in Eq. (3), to identify the pollutant degradation 

coefficients [29].  
 

( 20)

20

TTk

k

Ø  (3) 

 

where, kT = Pollutant degradation coefficient at T℃, d-1, k20 = Pollutant degradation coefficient at 20℃, d-1, ∅ = 

Temperature-activity coefficient,  T = Temperature, ℃. 

The maximum allowable pollutant carrying capacity of Bengoh Reservoir can be determined by quantitative 

computational methods as shown in Eq. (4) and Eq. (5). The pollutant loading characteristics can be assumed to be 

steady-state loading in a completely mixed reservoir. The upper bound first estimate of the steady-state response to the 

pollutant loading into the reservoir would be expressed as followed [26]:  
 

Maximum Concentration Level (mg/L)
W

Q
  (4) 

 

where, W = Estimated steady-state pollutant loading into reservoir, kg/yr, Q = Flowrate, m3/d.  

It is noteworthy that the amount of pollutant loading while meeting the maximum concentration level (MCL) 

would vary substantially from season-to-season, or even day-to-day, as a function of rainfall amount, catchment runoff 

rate, reservoir volume/detention time, time related types-and-scales of land-based activities and so on. For reservoir 

with equilibrium of multi-year average inflowing water and outflowing water, it is desirable to adopt the uniform 

mixture model to calculate the pollutant carrying capacity. Based on the material balance equation, the pollutant 

carrying capacity of a river-connected reservoir can be expressed as [30]: 
 

 0L s s s outW C C V kC V C q     (5) 
 

where, WL = Pollutant carrying capacity of reservoir, kg/yr, Cs = Water quality target concentration (NQWSM Class I), 

mg/L, Co = Actual reservoir water quality concentration, mg/L, V = Average storage capacity of reservoir, m3, qout = 

Outflow rate of reservoir, m3/yr, k = Pollutant degradation coefficient, d-1. 

 

2.3 Navigational Carrying Capacity 

To determine the navigational or recreational carrying capacity of a reservoir, “Watercraft Census” were used to 

find out about the peak level of recreational use, types of use in demand, and mix of public and private access [31]. 

The census includes the observations at various times during wet and dry seasons.  Observers counted the number 

of boats on the reservoir, type of each boat (transportation – people and tourists, fishing, high-speed, personal, 

commercial, non-commercial, etc.). The boat’s approximate speed-stationary, no wake, or wake-producing speed were 

also recorded.  In this study, a census that captures activity at several points in time shall provide a reasonably accurate 

picture of actual us age, and thus the navigational carrying capacity of Bengoh Reservoir. To calculate the navigational 

carrying capacity of the reservoir, it is required to integrate reservoir uses and goals with respect to reservoir 

characteristics.   

Table 2 shows some of the useful reference figure related to the optimum boating density suggested by a group of 

researchers [32]-[36]. The estimated total reservoir surface area is approximately 8.77 km2 (about 880 ha).  In this case, 

with respect to Bengoh Reservoir surface area usage distribution, it would be rather conservative to allocate 10% (88 

ha) as wake zone, while the remaining 90% (792 ha) of the gross reservoir surface area can be utilized for navigational 

purposes. 

 

3. Results and Discussion  

3.1 Current Loading Rates of BOD, TN and TP 

In this research, the Class I designations of the National Water Quality Standards of Malaysia (NWQSM) was 

adopted as the Waste Assimilative Capacity (WAC) benchmark or target.  To estimate the pollutant losses in the 

surface runoffs, the catchment was categorized into six categories: settlements (population equivalent), reservoir (water 

body), primary forest, regenerated forest, shifting agriculture and pepper/rubber/sundry cultivation (Table 3).  The 

integrated pollutant losses of the individual categories in the surface runoffs (kg/ha.yr) of the BOD, TN and TP losses 
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in Bengoh Catchment amount to approximately 0.308 ton/day, 0.119 ton/day and 0.114 ton/day, respectively while the 

levels of BOD, TN and TP fall well within the Class I Standards of NWQSM (Table 4). 

 

Table 2 - Suggested optimum boating density 

References Boating Uses 
Suggested Density  
(Acres per Boat) 

[32] 

All uses combined – Cass Lake  

All uses combined – Orchard Lake  

All uses combined – Union Lake  

5 - 9 

4 - 9 

6 - 11 

[33] 
Water-skiing & all other uses  

Water-skiing only  

40 

15 - 20 

[34] 

Water-skiing & motorboat cruising  

Fishing  

Canoeing, kayaking, sailing  

All uses combined  

20 

10 

8 

10 

[35] All boating activities  25 

[36] All motorized uses  30 

 
 

Table 3 - Estimation BOD, TN and TP losses in surface runoff 

Population/ Land Use Area (ha) 

Estimated Pollutant Losses in Surface 
Runoff (kg/ha.yr) References 

BOD TN TP 

Settlements 1000 PE 14.6 0.755 0.715 [37], [38] 

Reservoir  877 2 - 3 3.50 0.15 [39] 

Primary forest  2,794 2 - 3 3.50 0.15 
[40], [39] 

Regenerated forest  1,778 2 - 3 3.50 0.15 

Shifting agriculture  7,620 10 2.93 3.60 [41], [42], [39] 

Pepper/ Rubber/ Sundry  508 10 2.26 24.51 [43], [39] 

 
 

Table 4 - Estimated current BOD, TN and TP loading rates 

Population/ Land Use 

Current Pollutant Loading Rates (kg/yr) 

BOD TN TP 

Settlements 14,600.00 755.00 715.00 

Reservoir 2,631.00 3,069.50 131.55 

Primary forest 8,382.00 9,779.00 419.10 

Regenerated forest 5,334.00 6,223.00 266.70 

Shifting agriculture  76,200.00 22,326.60 27,432.00 

Pepper/ Rubber/ Sundry  5,080.00 1,148.08 12,451.08 

Total (kg/yr) 112,227.00 43,301.18 41,415.43 

Total (tons/day) 0.308 0.119 0.114 

 

3.2 Reservoir Pollutant Degradation Coefficient and Carrying Capacities 

Based on Eq. (1) to Eq. (3), the pollutant degradation coefficients (day-1) and maximum allowable pollutant 

loading rates (tons/day) of Bengoh Reservoir were computed and determined as shown in Table 5.  It is shown that the 

degradation coefficients of BOD, TN and TP of the reservoir are 0.0025 d-1, 0.0028 d-1 and 0.0132 d-1, respectively. 

Once the functional hydrological information of the catchment, the hydraulic and operational details of the dam, and 

the targeted water quality parameters of the river-connected Bengoh Reservoir were known, the maximum allowable 

loading rates (tons/day) of the specific pollutants can be determined. As shown in Table 5, it is shown that the 
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Maximum Allowable Loading Rates of BOD can be as high as 92.24 tons/day as compared to the current loading rate 

of 0.308 ton/day; maximum TN loading at 116.63 tons/day versus current 0.119 ton/day, and maximum TP loading at 

125.54 tons/day versus current 0.114 ton/day. As indicated, the Bengoh Catchment and thus the Bengoh Reservoir are 

in a state of almost pristine environment, and currently with negligibly low pollutant loading rates. 

 

Table 5 - Degradation coefficient and maximum allowable loading rates of BOD, TN and TP 

Pollutant BOD TN TP 

Degradation Coefficient, k at 25˚C (day-1) 0.0025 0.0028 0.0132 

Current Pollutant Loading Rates (tons/day) 0.308 0.119 0.114 

Maximum Allowable Pollutant Loading 

(tons/day) 
92.240 116.630 125.540 

Allowable Additional Loading Rates to 

comply with Class I NWQSM (tons/day) 
91.930 116.510 125.430 

 

3.3 Excess Pollutant Loading Rates 

To quantitively determine the maximum allowable amount of caged Tilapia culture in Bengoh Reservoir, the mass 

balance of organics and nutrients for Tilapia fish must be readily available. Based on the data gathered during the joint 

study conducted by Universiti Malaysia Sarawak (UNIMAS) and Universiti Teknologi Malaysia (UTM) in 2017, Mass 

Balance of Organics and Nutrients of a Salmon Cage Farm Supplied with High Energy Feed [44], and field survey data 

on Batang Ai Tilapia cage culture conducted in June 2018, a “Modified Mass Balance of Organics and Nutrients for 

Tilapia” (Fig. 2) was developed for the estimation of additional amount of fish farming in Bengoh Reservoir.  

 

 

Fig. 2 - Modified mass balance of organics and nutrients of tilapia cage culture 

 

The key information adopted for the development of the Modified Mass Balance of Organics and Nutrients for 

Tilapia (Fig. 2) are outlined in the following paragraphs. The data gathered from Batang Ai cage fishing farm showed 

that for every 1 kg of fish produced, there would be about 20kg of waste generated from the fish feed and faeces [45].  

Study outcomes also showed that the Feed Consumption Ratio (FCR) = 1.15 with an estimated Feed Loss = 9%, Feed 

Consumption: Protein = 38%, Fats = 34%, Carbohydrate = 12%, 11g P/kg Energy, Energy = 24MJ/kg [9], [44].  Of a 

total 70kg of total nitrogen (TN), 41% would be incorporated in the fish, 40% dissolved in water and 18-19% being 

deposited in the sediment [32].  From a total amount of 12kg total phosphorous (TP), 33% would be retained by the 

fish, 16% dissolved in water and 50% solids settled/deposited as sediment. Approximately 16-25% of TP would 

dissolve in water, while 50% or more would be deposited in the sediment.   
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In this study, it was found that the allowable additional loading rates of BOD, TN and TP would be 91.93 tons/day, 

116.51 tons/day and 125.43 tons/day, respectively. Thus, should the Tilapia fishing farm be introduced to Bengoh 

Reservoir while maintaining Class I Standards of NWQSM, it was estimated that the maximum allowable number of 

cages would be approximately 218 cages, whereby each cage is expected to house approximately 225 fishes. 

 

Table 6 - Allowable additional loading rates and allowable number of cages 

Aspects BOD TN TP 

Allowable Additional Loading Rates (tons/day) 91.93 116.51 125.43 

Feed per pollutant factor (ton feed per ton 

pollutant/day) 

1.565 0.06 0.010 

Feed consumption in 150 days (ton/150days) 58.74 1,913.14 12,060.58 

Average daily feed consumption (ton/day) 0.392 12.75 80.40 

Daily feed consumption of a fish (g/fish.day) 8.00 8.00 8.00 

Estimated Allowable Number of fish 49,000 1,593,750 10,050,000 

Allowable Number of Cages (225 Fish/ Cages) 218 

Note:  Estimations based on field survey data gathered in Jan 2020:  

           Average Daily Feed Consumption = 8.00 kg/1000 Fish 

           Average Weight (Biomass) per Fish = 400g = 0.40 kg   

           Average Number of Days to Produce 400g/fish = 150 days 

 

3.4 Navigational Carrying Capacity 

To determine the navigational carrying capacity, one of the universal most widely used methods is to divide the 

usable surface by the optimum boating density.  In this study, the total reservoir surface area was estimated to be about 

880 hectares having 792 hectares (90% of total reservoir surface area) usable surface area. Table 7 below illustrates the 

estimation of navigational capacity of Bengoh Reservoir. It is estimated to be approximately 130 boats.  However, the 

navigational carrying capacity on usable surface area of the reservoir may require adjustments in view of the presence 

of multiple boat sizes, uses, and irregular shoreline. 

 

Table 7 - Estimated navigational carrying capacity 

Aspects 
Reservoir Navigational and  

Usage Characteristics 
References 

Reservoir-Use Mix 50% Idle Speed/Stationary 

50% Fast-Moving uses 

[31] 

Optimum Boating Density (0.5×10 acres/boat) + (0.5×20 acres/boat)  

= 15 acres/boat 

[32, [33], [34], [35], [36] 

Useable Reservoir Area 792 hectares ≈ 1,957 ac - 

Navigational Carrying 

Capacity 

1,957 ac/15 ac per boat  

= 130 boats 

- 

 

4. Conclusions 

From this study, the primary conclusions drawn are described in the following paragraphs. The estimated current 

loadings are 0.308 ton/day of BOD, 0.119 ton/day of TP and 0.114 ton/day of TN. To maintain the targeted Class I 

Standards of NWQSM, the Maximum Allowable Loading Rates of BOD, TN and TP are 92.24 tons/day, 116.63 

tons/day and 125.54 tons/day, respectively. With respect to water-based cage aquaculture development whereby each 

case would house about 225 Tilapia, the maximum allowable number was estimated to be 218 cages. The navigational 

carrying capacity of Bengoh Reservoir was estimated to be approximately 130 boats prior to adjustments by comparing 

with the navigational carrying capacity for the actual level of use. 
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