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1. Introduction 

Automatic personal recognition based on human vein patterns such as palm vein [1, 2], finger vein [3, 4] and dorsal 

hand vein [5] has attracted much attention in biometrics community among researchers. In terms of practical application, 

finger vein patterns possess several advantages in comparison to other human vein traits because adequate vein 

information can be obtained by using multiple fingers [4]. Besides, the size of the image acquisition device of the finger 

vein is relatively small and convenient for biometric applications [3]. 

A finger-based biometric system that utilizes physiological and behavioral features of a human finger is widely used 

in many applications for years in comparison to other human traits such as the face, iris, etc due to their high user 

acceptance [6]. The intrinsic feature of human finger such as finger vein has several desirable properties as a biometric 

identifier in comparison to other biometric characteristics. Finger vein holds the following merits [3]: (a) Contactless and 

user friendly: the contactless capture of finger vein image also ensures both convenience and cleanliness, thus users may 

find it less intrusive compared to iris scanning systems, i.e., being more user-friendly (b) Live-body identification: the 

finger-vein patterns can be identified only on fingers of living bodies with blood flow. (c) Immunity to counterfeit: finger-

Abstract: The k-nearest centroid neighbour kNCN classifier is one of the non-parametric classifiers which provide 

a powerful decision based on the geometrical surrounding neighbourhood. Essentially, the main challenge in the 

kNCN is due to slow classification time that utilizing all training samples to find each nearest centroid neighbour. In 

this work, an adaptive k-nearest centroid neighbour (akNCN) is proposed as an improvement to the kNCN classifier. 

Two new rules are introduced to adaptively select the neighbourhood size of the test sample. The neighbourhood 

size for the test sample is changed through the following ways: 1) The neighbourhood size, k will be adapted to j if 

the centroid distance of j-th nearest centroid neighbor is greater than the predefined boundary. 2) There is no need to 

look for further nearest centroid neighbours if the maximum number of samples of the same class is found among j-

th nearest centroid neighbour. Thus, the size of neighbourhood is adaptively changed to j. Experimental results on 

the Finger Vein USM (FV-USM) image database demonstrate the promising results in which the classification time 

of the akNCN classifier is significantly reduced to 51.56% in comparison to the closest competitors, kNCN and 

limited-kNCN. It also outperforms its competitors by achieving the best reduction ratio of 12.92% while maintaining 

the classification accuracy. 
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vein patterns are internal features embedded in the fingers, and it makes vein pattern duplication impossible in practice. 

Finger vein recognition is composed of four processes: 1) image capturing, 2) image preprocessing, 3) feature extraction 

and, 4) classification based on the extracted features. A representative of a meaningful feature set is extracted using 

various techniques and becomes the input to the classifier. Robust classifier does some strategies to determine the class 

of unknown identity into one of the pre-specified classes accurately [7]. In the settings of classification, two types of 

classifiers are commonly used in finger vein recognition: parametric-based and non-parametric based. The information 

of the underlying joint models of the data is necessary for parametric classifiers and certain parameters need to be 

estimated. Contrary to the parametric classifiers, the non-parametric classifiers are explicitly independent of the data’s 

underlying distributions and do not make any assumption about the shape of the classes [1]. Thus, the non-parametric 

classifiers have several advantages such as easy implementation, competitive performance and free from any parameter 

estimations. Besides, several recent researches related to the enhancement performance of non-parametric classifiers [8–

13] show the great potential non-parametric classifiers and there is abundant of room for future research. 

The 𝑘-nearest neighbour (kNN) has been well known and widely used in pattern classification because it is easy to 

implement in practice. It is independent of any parameter prediction at the learning stage and works well with a small set 

of samples. If a new sample is added to the original training set, the retraining is not necessary for the kNN [14]. However, 

the kNN suffers from three main drawbacks which are [15]: 1) the necessity of high storage requirements, 2) the low 

efficiency obtained during the computation of the decision rule, 3) it presents low tolerance to noise due to its assumption 

that all data are relevant. To solve the deficiency in the kNN, the kNCN was proposed by [16] which is based on the 

nearest centroid neighbourhood concept. The nearest centroid neighbourhood was first introduced in [17] to improve the 

nearest neighbourhood definition in the kNN classifier. The kNCN defines the neighbor based on two properties: 1) it 

must close to the input sample, and 2) it has symmetrical distribution. It has been proven by several works in the literature 

that the kNCN outperforms the kNN classifier [18–20]. 

Motivated by the kNCN classifier, an extension of the kNCN is proposed in this work called adaptive 𝑘-nearest 

centroid neighbor (akNCN). Despite good classification accuracy, the time spent by the kNCN to classify the test sample 

is quite slow due to its requirement to examine whole training samples to find nearest centroid neighbours. Therefore, 

the proposed akNCN classifier proposes a strategy to reduce the classification time in the kNCN. The idea is to stop the 

nearest centroid neighbour search iteration whenever it is clear that the centroid distance of the 𝑗-th NCN is too far from 

the input sample. The proposed adaptive k-nearest centroid neighbour (akNCN) classifier makes three key contributions 

to the current state: 

 The two rules introduced to allow the akNCN classifier to adaptively select the size of the neighbourhood for 

different test samples. Contrary to the kNCN classifier, in which the neighborhood size is not adaptively changed 

for an input sample and has a fixed value of neighbourhood size, 𝑘. 

 The classification time can be reduced by employing the two rules to adaptively select the neighbourhood size 

of the input sample. The neighbourhood size for each input sample is varied since it is adaptively adjusted 

through two rules introduced in the akNCN classifier. 

 The empirical comparison is made between the akNCN classifier and benchmark classifiers (kNCN and limited-

kNCN) using publicly available finger vein dataset [21].  

The remainder of this paper is organized as follows. Section 2 presents the previous works on the finger-vein 

recognition and the related kNCN-based classifiers. Section 3 explains the development of finger-vein recognition. 

Section 4 presents the proposed adaptive k-nearest centroid neighbour classifier.  Section 5 provides the experimental 

results from the proposed classifier and competing classifiers on the finger vein image database. The analysis and 

discussion on the performance of classifiers are reported in Section 5. Section 6 remarks the key conclusion from this 

paper. 

 

2. Related Work 

In this section, a concise explanation of the previous works done on finger vein recognition and the related 

classification schemes are presented. 

 

2.1 Finger Vein Recognition 

A considerable number of works on finger vein biometric recognition have been reported in the literature utilizing 

different strategies of feature extraction techniques and classification approaches. In this study, the main concern is on 

the classification strategies of finger vein recognition rather than the feature extraction techniques. The classification 

strategies proposed in the literature on finger vein recognition can be divided into two types: parametric and non-

parametric. 

Traditional neural networks are parametric types that consist of various kinds of architecture to be applied for data 

classification, pattern recognition, etc. Finger vein recognition based on the neural network with radial basis function was 

proposed by [22, 23] on a small set of finger vein database.  Another strategy of using neural networks on the finger vein 

database proposed in [24, 25] where they applied different models of a neural network such as back propagation and 
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convolutional for classification. For each work, the vein pattern features are extracted with Radon transform [22], PCA 

[23, 24], LDA [26] and convolutional neural network [25] prior classification step. 

Several works used non-parametric based classifiers such as SVM and kNN as an alternative to classify the extracted 

features of vein [26–33]. The SVM is well known for its ability to handle both linear and nonlinear cases of data 

distribution [34]. It has been proven in [26, 30, 32, 35] that the outstanding recognition accuracy could be achieved by 

using the SVM and selected kernel function. However, the successful application of SVM on finger vein recognition 

relies on the adjustment of the kernel parameters and thus, it requires a training procedure to determine those parameters.  

The implementation of the kNN is easier than the SVM because it is independent of any parameter prediction at the 

training set. Works in [27, 28, 36] explore the potential and usability of the kNN classifier which performs the 

classification on the extracted vein features based on a group of nearest neighbours. The study in [3, 37] implemented 

Hamming distance and Euclidean distance to calculate matching scores, respectively. The utilization of the non-

parametric classifier, for example, kNN in the biometric is very few and has not been explored much. It is noticeable that 

the recognition performance obtained using non-parametric classifier is comparable with the parametric types and has 

shown outstanding recognition performance.  Based on the outstanding recognition performance shown by previous 

works and its ease implementation, a novel parametric-based classifier rooted from the kNN is proposed in this work. 

 

2.2 Classification Schemes 

The k-nearest centroid neighbour (kNCN) is one of the non-parametric classifiers based on the centroid distance. It 

defines that the nearest neighbours of the test sample must follow these two criteria [16]: 1) it must close enough to the 

test sample, and 2) the distribution of nearest neighbour must symmetrical around the test sample. However, it is difficult 

to find neighbours in the feature space that fulfill these two properties equally. In the area of nearest centroid 

neighbourhood region, the location of selected some nearest centroid neighbours might too far from the test sample but 

there can be some training samples located closer to the test sample than the farthest distance centroid neighbour. This 

indicates the kNCN classifier is sensitive to atypical samples.  

Despite good classification performance offers by the kNCN classifier, it suffers from the slow classification time 

due to its requirement to check all training samples in the nearest centroid neighbour searching process [38]. To alleviate 

the disadvantage of the kNCN classifier, the limited-kNCN proposed in [18] is introduced to reduce the time consumes 

to look for nearest centroid neighbours by reducing the set of the training samples. There are two variants of a technique 

devised in [18]: limited-kNCN.v1 and limited-kNCN.v2. According to the rules, it needs to find a fraction of training 

samples and this value of the fraction is determined during the learning phase.  The first variant approach, limited-

kNCN.v1 set the m value as the maximum rank (based on the nearest distance) among the k-nearest centroid neighbours 

of all training samples with N is the total count of training samples. Thus, the desired fraction is calculated as 

 

𝑓𝑣1 =  𝑚 (𝑁 − 1)⁄  (1) 

However, the m value that based on the maximum rank is susceptible to the noisy samples because one of the k-

nearest centroid neighbours of training samples may have the largest rank according to the Euclidean distance or nearest 

neighbour’s rank. The second variant is known as limited-kNCN.v2 proposed mrobust to reduce the influence of atypical 

or noisy samples. The mrobus is defined as the optimum rank values such that 95% of training samples set their farthest 𝑘 

-nearest centroid neighbours not exceeding mrobus value. The fraction is computed as in Eq. 2. 

 

𝑓𝑣2 =  𝑚𝑟𝑜𝑏𝑢𝑠𝑡 (𝑁 − 1)⁄  

 

(2) 

The effort to calculate the exact amount of fraction to use is done during the learning phase with the kNCN rule. 

However, the use of training samples to obtain the fraction is suspicious as the training sample might not have the same 

distribution as the test sample. Nevertheless, the estimation of the fixed percentage of training samples does not count 

the data sparseness and variance of the distribution. It should be done appropriately by considering the characteristic of 

the data set. 

 

3. The Development of the Finger Vein Recognition 

This paper proposes a finger vein recognition which utilizing meaningful features possess by finger vein pattern for 

identification. The developed finger vein recognition as illustrated in Fig.1 consists of three main stages including image 

acquisition, preprocessing (the segmentation of the region of interest and feature extraction) and classification.   
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Fig.1 - The design of the finger vein recognition. 

 
The data acquisition process involves capturing raw vein images of the user’s hand using image acquisition devised 

developed by [21]  and the brief explanation detail on how it is working also can be found in [21]. Subsequently, it is 

followed by the preprocessing stage in which the region of interest (ROI) is segmented with the size 300×100 and 256 

grey levels. The segmented ROI image is rescaled into a smaller size with a resize ratio of 0.1 to eradicate the pixel noise. 

The Principle Component Analysis (PCA) is a traditional subspace-based algorithm for feature extraction and it has been 

used extensively in the context of various traits of biometric recognition, for examples: speech emotion recognition [39], 

face recognition [40], and finger recognition [3]. It is observed in [41] that the increment number of principle components 

yields a corresponding improvement in the classification performance. It means that the employment of PCA give a 

positive impact on the success of classification performance.  

The collection of finger vein images contains 5,904 ROI images taken from 123 individuals. The size of the captured 

image is 300×100 pixels and 256 grey levels. The collection of finger vein images is captured using the image acquisition 

device developed in [21] and 123 volunteered individuals took part to contribute the image fingers. Image of four different 

fingers (left index, left middle, right index and right middle) are captured for each subject. The process of capturing finger 

vein images involves two different sessions in which the images taken during the first session are considered as 

registration and the set of images of the second session is considered as a test image. The Finger Vein USM image 

database used in this work is available and can be freely downloaded at the website: http://drfendi.com. Finger vein 

images from FV-USM image database are selected to be used in the experiment since most of the pattern recognition 

established method had been evaluated by using this database [3, 42–46]. 

The main aim of this work is to effectively classify finger vein patterns by using a robust classifier and consequently, 

achieve outstanding recognition performance with reliable classification time. As an extension to the k -nearest centroid 

neighbour (kNCN) classifier, the adaptive k-nearest centroid neighbour (akNCN) classifier is devised to reduce the 

classification time while preserving the good classification accuracy.  

 

4. The Proposed Adaptive k-Nearest Centroid Neighbour Classifier 

The adaptive k-nearest centroid neighbor classifier is proposed to improve the classification time by adaptively 

adjusting the number of nearest centroid neighbors for each input sample, and at the same time maintains the good 

classification accuracy performance. Two rules are introduced in the akNCN classifier and these rules are devised such 

that the neighborhood size is dynamically selected by following the rules. Two rules of the proposed akNCN are described 

as below: 

Rule 1: The akNCN classifier searching process reaches a stable searching state only if  the 𝑗-th nearest centroid 

distance is more than a predefined boundary which is the product of multiplier, 𝑙𝑘 and  the distance of the first nearest 

centroid, 𝑦𝑛𝑐𝑛,1 to the test sample, 𝑥, 𝑑(𝑥, 𝑦𝑛𝑐𝑛,1). The neighborhood size, 𝑘 will be adapted to 𝑗 value and this rule is 

presented in Eq .3. 

𝑑(𝑥, 𝑦𝑖
𝑐) > 𝑙𝑘 × 𝑑(𝑥, 𝑦𝑛𝑐𝑛,1) 

 

(3) 

Where 𝑑(𝑥, 𝑦𝑗
𝑐) is the nearest centroid nearest distance between the test sample, 𝑥 and   𝑗-th centroid point, 𝑦𝑗

𝑐. The 

multiplier, 𝑙𝑘 is set to be greater or equal to 1 and the first nearest centroid distance is, 𝑑(𝑥, 𝑦𝑛𝑐𝑛,1).  

 

Rule 2: The akNCN classifier searching process reaches a stable searching state only if  the total number of samples 

per class, 𝑁𝑖 is found among the 𝑗 nearest centroid neighbours and the total number of samples per class for a competing 

class is less than  𝑁𝑖 − 1. In Rule 2, the neighborhood size, 𝑘 will be adapted to 𝑗 when these two conditions are met and 

it is defined as follows 

http://drfendi.com/
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(∀𝑁𝐶𝑁𝑗)(∃𝑇𝜔𝑖
)⋀(∃𝑇𝜔𝑖

′ ) (4) 

where 𝑁𝐶𝑁𝑗(𝑥) = {𝑛𝑐𝑛𝑥
𝑦

|𝑛𝑐𝑛𝑥
𝑦

∈ 𝑇}
𝑦=1

𝑗
 denotes the 𝑗  nearest centroid neighbors of the test sample, 𝑥 . 𝑇𝜔𝑖

=

{𝑦𝑦
𝑖 |𝑦𝑦

𝑖 ∈ 𝑇}
𝑦=1

𝑁𝑖
 denotes a class subset of 𝑇  from class 𝜔𝑖  with the number of training samples, 𝑁𝑖   and 𝑇𝜔𝑖

′ =

{𝑦𝑦
𝑖 |𝑦𝑦

𝑖 ∈ 𝑁𝐶𝑁𝑗}
𝑦=1

𝑁𝑖
′

 denotes a class subset of 𝑇′ from competing class, 𝜔𝑖 with the number of training samples, 𝑁𝑖
′ less 

than 𝑁𝑖 − 1. The rationale behind the second rule is that when the first majority of nearest centroid neighbours is found 

from the same class, then it is unnecessary to look further nearest centroid neighbours. It is more likely that the new 

coming sample is belonging to the first class found with majority count.  

 

5. Experiments 

The proposed akNCN classifier is developed to improve the existing kNCN classifier as an improved version of 

kNCN as presented in the previous section. Performance evaluation is performed between the developed akNCN and 

benchmark classifiers (kNCN and limited-kNCN) on the Finger Vein USM (FV-USM) image database. 

 

5.1 Determination the parameter of neighbourhood size,k 

The first experiment intends to find the optimum value of neighbourhood size, k for the original kNCN classifier 

[16] by exploring different values of 𝑘 from 3 to 21. The corresponding value of neighbourhood size, 𝑘 which resulting 

the best classification accuracy will be considered as an optimum value of 𝑘. The best value of 𝑘 which yields the highest 

classification accuracy will be used for the next experiment. Table 1 depicts the classification accuracy and classification 

time with different values of neighbourhood size, k. It can be observed that the classification accuracy of the kNCN is 

rapidly increased with the increment values of the 𝑘. The classification time of the kNCN classifier is 𝑂(𝑛𝑘) [18] where 

𝑛 and 𝑘 are representing the training samples and neighborhood size, 𝑘 respectively. In this case, it is expected that with 

a fixed value of 𝑛 and different values of 𝑘, classification time of the kNCN will gradually increase. This trend can be 

seen in Table 1 that the classification time is increasing when the neighbourhood size, 𝑘 becomes large. Bold values in 

Table 1 denote that the highest classification accuracy is achieved at 85.33% when 𝑘  =19 with the corresponding 

classification time 10,600 s. Thus, the neighbourhood size, 𝑘 = 19 is used for the subsequent experiments for the 

empirical performance comparisons. 

Table 1 - The classification accuracy(%) and classification time(s) of kNCN classifier with different values of k. 

Size of neighbourhood, 𝒌 Classification accuracy (%) Classification time (s) 

3 79.27 1,163.10 

5 81.54 2151.20 

7 82.89 3,862.00 

9 84.18 5,686.00 

11 84.35 6,782.00 

13 84.72 7,434.00 

15 84.79 7,861.70 

17 85.09 9,325.80 

19 85.33 10,600.00 

21 84.28 15,891.00 

 

5.2 Empirical Performance Comparison Between the akNCN.v1 and the Original kNCN 

Classifiers 

Different values of the multiplier, 𝑙𝑘 are explored from 0.5 to 5 with step 0.5 to select the best value such that the 

akNCN.v1classifier obtains the best classification accuracy. The maximum value of nearest centroid neighbours is set to 

19 which is equivalent to the optimum value of the size of the neighbourhood, 𝑘 for the original kNCN obtained from 

the previous experiment. Nevertheless, the adapted value of the neighbourhood size of the akNCN.v1 might be varying 

for each test sample and it is possibly less than a fixed setting value of 𝑘 in the original kNCN. According to the first rule 

introduced in Section 4, the neighbourhood size, 𝑘 is equal to 𝑗 if the  𝑗-th NCN centroid distance is found to be over a 

limit, and that limit is set as in Eq.3.  

The performance comparison is made with a competing classifier, original kNCN [16] to observe the effect of 

introducing the first rule in the proposed akNCN classifier to the classification accuracy and classification time. The best 

accuracy with its classification time obtained from the previous experiment for the kNCN classifier is chosen for a fair 

comparison. Fig. 2 shows that at first when 𝑙𝑘 < 1, the classification accuracy of the aKNCN.v1 is lower than the original 

kNCN. It then achieves the best classification accuracy at 85.64% when 𝑙𝑘 = 1 with 0.3% higher than the original kNCN 
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classifier. The classification accuracy of the akNCN.v1 nearly keeps stable with the original kNCN with an increasing 

value of multiplier value, 𝑙𝑘. A significant reduction in classification time can be observed in Fig. 3 resulting from the 

first rule introduced in the akNCN.v1 which indicates that the optimum value of neighbourhood size for each input sample 

can be adaptively selected by employing the first rule. The classification time which corresponds to the best accuracy at 

𝑙𝑘 = 1 provides approximately 41.21% reduction in comparison to the original kNCN. Thus, the optimum setting of the 

multiplier, 𝑙𝑘 in this experiment is attained as 1 to be used in the subsequent experiment. The results show that the first 

rule introduced in the akNCN.v1 can elevate the classification accuracy while significantly reduces the classification 

time. 

 
Fig. 2 - The classification accuracy of the akNCN.v1 classifier by changing the multiplier value, 𝒍𝒌 

 

 
Fig. 3 - The classification time of akNCN.v1 classifier by changing the multiplier value, 𝒍𝒌 

 

5.3 Empirical performance comparison between the akNCN.v2 and kNCN classifiers 

 

The third experiment aims to evaluate the effect of employing both rules explained in Section 4 to the classification 

accuracy and classification time of the akNCN.v2 classifier. Two parameters involve in this experiment are set as follows: 

1) the multiplier, 𝑙𝑘 is set to 1 (based on the best value obtained from the previous experiment) and, 2) the neighborhood 

size, 𝑘 is varying from 3 to 21 with steps 2. The size of neighborhood size, 𝑘 determines the maximum number of nearest 

centroid neighbors in the akNCN.v2 rule. Since the akNCN.v2 is employing both rules, the size of its neighborhood is 

adapted to a certain value once it met the rules and it could be less than a fixed setting value of  𝑘 . 

The classification accuracy of the akNCN.v2 and the original kNCN classifiers is illustrated in Fig. 4 and it is 

noticeable that the akNCN.v2 classifier performs better than the kNCN with an increase of 𝑘 . The classification 

differential between the aKNCN.v2 and kNCN is very significant especially when the value of 𝑘 greater than 7. The 

original kNCN classifier uses a fixed value of neighborhood size, 𝑘 to search nearest centroid neighbors and apply 

majority vote to decide the class. With a fixed parameter of 𝑘, there exist is a possibility that the kNCN classifier may 

select the samples located far away from the test sample and some of the training samples that have been considered as 

nearest centroid neighbors are from a wrong class which leads to misclassification. This explains the increment of 0.36% 

at 𝑘 = 19 in the classification accuracy when using the akNCN.v2 classifier in comparison to the kNCN classifier. The 

optimum value of 𝑘 which resulting in the best accuracy for the akNCN.v2 classifier is similar to the kNCN classifier 

with 0.3% higher than the original kNCN classifier. 
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Meanwhile, akNCN.v2 constantly achieves lower classification time than those of kNCN with the increment values 

of neighbourhood size, 𝑘 as shown in Figure 5. At the optimum value of 𝑘 = 19, the kNCN consumes 10,600 s to process 

2,952 finger vein images, while in contrast to the proposed akNCN.v2 only need 5153.5 s to process the same number of 

images. It means that the implementation of both rules in the akNCN.v2 yields 51.38% of the reduction in classification 

time while improving the classification accuracy. 

 

 
Fig. 4 - The classification accuracy of the akNCN.v2 classifier by changing the value of 𝒌 

 
Fig. 5 - The classification time of akNCN.v2 classifier by changing the value of 𝒌 

 

In the proposed akNCN.v2 classifier, the number of nearest centroid neighbours found for each test sample is 

varying. It is due to the implementation of both rules introduced in the proposed akNCN.v2 classifier that limiting the 

nearest centroid neighbour search under certain circumstances.  Fig. 6 shows the number of test samples with its 

corresponding nearest centroid neighbours using akNCN.v2 classifier when the neighbourhood size, 𝑘 is set to 19. In this 

experiment, a total 2,952 of test samples have a fixed number of nearest centroid neighbours (𝑘 = 19) if using the original 

kNCN classifier. In contrast to the proposed akNCN.v2 classifier, only 887 out of 2,952 test samples that have 

neighbourhood size, 𝑘 = 19 and this corresponds to 30% of the total size of test samples. Among the remaining 70% of 

test samples that are affected by the rules introduced in akNCN.v2 classifier, 783 of test samples have neighbourhood 

size, 𝑘 = 2. It is the first rule that effectively works on these 783 of test samples because the second rule requires a 

minimum of nearest centroid neighbours since the finger vein image database used has 6 samples per class. When the 

centroid distance of the 2nd nearest centroid neighbour is exceeding the boundary defined by the first rule, the number of 

nearest centroid neighbours found is limited to 2. Therefore, with only two nearest centroid neighbours to vote, the 

tiebreaker dictates that the membership of the input sample is decided based on the least accumulated Euclidean distance. 

Hence, the first nearest centroid neighbour is selected for the case 𝑘 = 2. This observation is highly interesting as the 

akNCN.v2 is similar to a 1-nearest neighbor (1-NN) solution for these 783 cases. 

 

 



Ng Tze Han et al., International Journal of Integrated Engineering Vol. 13 No. 1 (2021) p. 177-187 

 

 

 184 

 
 

Fig. 6 - The number of test samples with its corresponding total number 

of nearest centroid neighbors using akNCN.v2 classifier 

 

5.4 An Empirical Comparison of the akNCN, kNCN and Limited-kNCN Classifiers 

Further empirical comparison is made in terms of the classification accuracy and classification time with other 

training set reduction technique for the kNCN classifier proposed in [18]. The limited-kNCN has two variants [18]: 

limited-kNCN.v1 and limited-kNCN.v2. The first version, limited-KNCN.v1 introduced the 𝑚 value as the reduced 

number of training samples for nearest centroid neighbor search. It defines the 𝑚 value is the maximum rank of nearest 

neighbors to find the kNCN during the learning phase. For the second approach, the limited-kNCN.v2 defined the 𝑚𝑟𝑜𝑏𝑢𝑠𝑡 

value as the optimum rank of nearest neighbors belongs to 95% of training samples to find the kNCN during the learning 

phase. In this experiment, the values for 𝑚 and 𝑚𝑟𝑜𝑏𝑢𝑠𝑡 are obtained in the learning phase as 2808 and 1527, respectively. 

Meanwhile, the neighborhood size, 𝑘 is set to 19. 

Table 2 shows the detailed classification accuracy and classification time achieved by the proposed akNCN 

classifiers and competing classifiers. It also includes for each measure the ranking in parentheses according to its 

performance. In this performance comparison, the best classification accuracy with its corresponding classification time 

is chosen from the previous experiments for the kNCN and akNCN classifiers. It is noticeable that both variants of the 

proposed akNCN classifiers achieve slightly greater accuracy than the original kNCN classifier with approximately 

0.04% increment for each classifier. Furthermore, the proposed akNCN.v2 classifier is much faster than the akNCN.v1, 

limited-KNCN.v1, limited-kNCN.V2 and kNCN classifiers with the highest ranking. The result shows the effectiveness 

of the rules introduced in the aKNCN to adaptively select the neighborhood size for the input sample. On the other hand, 

the limited-KNCN.v1 classifier able to maintain the accuracy as the original kNCN while using only a fraction value, 𝑚 

of training samples during nearest centroid neighbors search. Even though the number of training samples has been 

reduced, the limited-kNCN.v1 suffers in classification time which takes 100.15% greater than the classification time 

required for the proposed akNCN.v2 classifier.  On the other hand, the 𝑚𝑟𝑜𝑏𝑢𝑠𝑡  introduced in the limited-kNCN.v2 

improves the classification time of the original kNCN tremendously with 44.17%. However, the accuracy of the limited-

kNCN.v2 is slightly lower than the original kNCN with a 48.3% reduction in the original training set. The idea of using  

𝑚𝑟𝑜𝑏𝑢𝑠𝑡 in the accuracy of the limited-kNCN.v2 is to make the classifier more robust against atypical data samples by 

taking the 95th percentile instead of the maximum value [18]. In this experiment, a large number of training samples that 

contain some useful information for a class decision might be removed, thus such reduction may degrade the classification 

accuracy of the limited-kNCN.v2. 
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Table 2 - Classification accuracy (%) and classification time (s) of the proposed akNCN classifiers and 
competing classifiers with the corresponding ranking in parentheses 

Classifier Classification accuracy (%) Classification time (s) 

Original kNCN [16] 

 (𝑘 = 19) 85.33 (3.5) 10,600 (5) 

akNCN.v1 

(𝑙𝑘 = 1) 85.64 (1.5) 6,321.90 (3) 

akNCN.v2 

(𝑙𝑘 = 1, 𝑘 = 19) 85.64 (1.5) 5,153.50 (1) 

Limited-kNCN.v1 [18] 

(𝑚 = 2808, 𝑘 = 19) 85.33 (3.5) 10,315 (4) 

Limited-kNCN.v2 [18] 

(𝑚𝑟𝑜𝑏𝑢𝑠𝑡 = 1527, 𝑘 = 19) 85.09 (5) 5,918 (2) 

 

6. Conclusion 

In this study, an adaptive nearest centroid neighbour technique is proposed for the finger vein image classification 

problem. The proposed technique has proposed two rules: the use of the adaptive selection in determining effective size 

of neighbourhood and the reduction of classification time. Experiments conducted on the Finger Vein USM (FV-USM) 

database by using the aKNCN classifier show that the proposed aKNCN classifier achieves significant speed 

improvement in the classification time and also better classification accuracy than other existing classifiers, the original 

kNCN [16]  and limited-kNCN classifiers [18]. In conclusion, the results demonstrate that the akNCN classifier can 

adaptively determine the effective number of neighbourhood size during classification task. 
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