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1. Introduction 

Individual's activities and behavior are entirely controlled through brain waves [1]. The signals from the brain are 

conveyed to each organ of the body through the nervous system. Due to neuromuscular disorders including 

amyotrophic lateral sclerosis (ALS) and locked-in syndrome, the individuals' motor functions are lost [2]. In those 

instances, the individual cannot communicate with others utilizing any mode of intelligence or expression [3]. To 

come up with a clarification, researchers are attempting to discover a wide range of assistive appliances. The idea of 

BCI is extensively studying by researchers among those assistive appliances. In every BCI technology, the particular 

cognitive task has been interpreted into device command which can be utilized in the handling of assistive appliances 

[4][3]. Brain-operated wheelchair, domestic equipment controlling, robotic arm commanding, spelling technology, 

workload recognition, and authentication detection system are the widely adopted BCI applications [5] [6]. 

Non-invasive and invasive approaches have been employed to collect brain activity from the physically impaired 

people.  Two invasive procedures including, intracortical neuron recording and electrocorticography (ECoG) have 

been adopted in the BCI study [7]. Due to the risks of health hazers, the invasive modalities are comparatively less 
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used by the researchers. The EEG, MEG, NIRS, and fMRI are extensively adopted non-invasive architectures [8] [7]. 
The cognitive tasks are extracted in such a fashion that the thoughts of a physically impaired individual can interpret 

and regulate the BCI based assistive devices [9]. Those cognitive signals can be considered as the EEG control signals. 

The extensively adopted cognitive control signals in the BCI community are the SSVEP, P300, motor imagery and 

SCP [10] [7]. Because of the superior SNR together with quicker ITR, the intentness of SSVEP-based BCIs is 

progressing significantly [11].  

Every BCI system essentially consists of five components which are the brain activity capturing, noise removal, 

feature extraction and classification; finally, device command. All the components of BCI system has been illustrated 

in Fig. 1. Among those components, feature extraction and classification perform an essential character to boost up 

the inclusive accuracy of any BCI technology. A large number of feature extraction and classification approaches have 

employed to recognize the SSVEP responses over the last few years. 

 

 
Fig. 1 - Components of the BCI system 

 

Regarding the time-domain based EEG features, the aggregation of EEG samples weight has been utilized in 

articles [12] [13]. The spectral analysis approach has been investigated to extract the feature in the form of frequency-

domain from the SSVEP responses. Particularly, the periodogram architecture has been utilized to assess the spectral 

properties of the SSVEP based EEG in [14] [15] [16]. Other spectral based features-extraction methods including fast 

Fourier transform (FFT) [17] and Hilbert transform (HT) [18] have been employed in the purpose of targeted 

frequencies recognition from the single electrode EEG amplifier. An innovative method has been projected in [19], 

where the phase and frequency have been combined to add more target frequencies A power spectral density (PSD)-

based approach, known as the Welch method, has been employed in reference [20]. Here, authors have also 

investigated the time-frequency based feature extraction approaches known as spectrogram.  

Finally, several machine learning-based classification algorithms have been utilized for recognizing specific 

frequency of SSVEP responses. In reference to [20], machine learning-based classifiers including SVM, extreme 

learning machines (ELM) and linear discriminant analysis (LDA) have been utilized. The LDA as well as SVM are 

the extensively adopted classifiers to categorize SSVEP responses and in considerable number of studies including 

[20] [13] [21], have been utilized those classifiers. Besides, the adaptive network based fuzzy inference scheme has 

been utilized in [12]. Authors in [21], has been developed neural networks (NN) to categorize the SSVEP responses. 

In reference to [22], a statistic test has been employed to make the choice, while in [15] a group of precepts has been 

implemented on spectral features. 

This study exposes that the common-spatial pattern (CSP) has been employed for feature extraction from SSVEP 

responses and these features have been classified through the SVM. The present article has been prepared in 

subsequent segments i.e. section 2 presents methodology whereas results and discussion has been illustrated in section 

3; lastly, section 4 concludes with the conclusion. 

 

2. Methodology 

Generally, a BCI system consists of five essential components which are data capturing, data pre-processing, 

feature extraction, classification as well as device command. Compared to other three components, feature extraction 

and classification architecture are the most vital steps which may significantly contribute to increase the overall BCI 

performance. Fig.2 illustrates the complete flow chart of this study. This study has been conducted with the publicly 

available online dataset. The dataset consists of five classes EEG-SSVEP response. The first step of this study is the 

data pre-processing where the entire dataset has been filtered. A 5th order Butterworth bandpass filter has been 

designed to filter the data. The frequency range of this filter was 4Hz to 30Hz. The filtered data has been utilized to 

extract the feature. In this study, the feature has been extracted through the CSP. After extracting the feature, the entire 

dataset has been split into two groups: namely, training and testing dataset. The training and testing ratio were 75:25. 

The training dataset has been utilized to train the model. An SVM architecture has been utilized as the training model. 

Once the model is trained, the confusion matrix, classification accuracy, true positive and false negative rate are 

utilized to evaluate the performance of the trained model. The optimum performance has been achieved by randomly 

changing the classifier parameters. After obtaining optimum accuracy, the testing dataset are used to test the trained 

model. The overall performance of this study has been assessed with the testing performance.  
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The MATLAB environment (MATLAB 2019b) has been utilized to conduct the complete SSVEP data analysis 

phase. For classification purposes, Classifier Learner Apps (a built-in toolbox of MATLAB) has been employed to 

classify the SSVEP features using the machine learning algorithms.  

 

 
  

Fig. 2 - Complete methodology of the experiment 

 

2.1 Detailed Description of SSVEP Dataset 

In this study, the five-classes EEG-SSVEP data has been utilized. The dataset has been taken from MAMEM-

Dataset EEG SSVEP Dataset III [23]. Eleven subjects contributed to the data acquisition process. The number of 

males were 8 and the number of females were 3 among the subjects. The ages vary from 25 to 39 years. The individuals 

were normal in physical condition and did not have any mental or neuro-muscular disorders. Subjects can be 

categorized based on the hair length and thickness into 3 categories, short hair, regular hair, and thick hair, with 3 

belonging to the first category, 6 to the second and the remaining 4 to the third. Table 1 summarizes the demographic 

information about the participating subjects. 
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Table 1 - Descriptions of the participating subjects [23] 

Subject Age Gender Hair Type Handedness 

Subject-1 24 Male Regular Right-handed 

Subject-2 37 Male Regular Right-handed 

Subject-3 39 Male Thick Right-handed 

Subject-4 31 Male Short Right-handed 

Subject-5 27 Female Thick Left-handed 

Subject-6 28 Female Thick Right-handed 

Subject-7 26 Male Regular Right-handed 

Subject-8 31 Female Thick Right-handed 

Subject-9 29 Male Short Right-handed 

Subject-10 37 Male Regular Right-handed 

Subject-11 25 Male Regular Right-handed 

 

The visual stimuli have been shown upon a 22’’ LCD monitor by fixing the pixel resolution at 1680x1080 and 

refresh rate at 60 Hz. The EEG data were recorded in better grade by14 wireless electrodes where the sampling rate 

was 128 Hz. Fig. 3(a) illustrates the electrode positioning system of the the Emotiv Epoc. 

 

 
    (a)                                                     (b) 

 

Fig. 3 - (a) Electrode positioning system; (b) Experimental setup [23] 

 

The experimental stimuli consist of five violet boxes in number which have been flickered simultaneously in five 

dissimilar frequency (6.66, 7.50, 8.57, 10.00 and 12.00 Hz). Each of those flickering boxes had their individual 

frequency where they were showed for five seconds each simultaneously, denoted as trial, then a gap of five seconds 

without any visual stimulation before the further appearance of the flickering boxes. Before the occurrence of 

stimulation, the subjects had to focus on a box marked by a yellow mark (Fig. 3(b)). In the whole experiment, the 

background was black. The experiment was started with giving the subjects a period of 100 seconds for adaptation.  

Each subject conducted five identical sessions followed the adaptation period. Each session includes 25 trials and 

is divided into two parts by a 30-second resting period. The first part includes 12 trials, whereas the second is 13. The 

target in each trial is being selected in a random way in order to avoid habituation. The total number of trials of this 

dataset was 1375.  

 

2.2 Common-Spatial Pattern (CSP) 

Among the most widespread feature extraction techniques in EEG based BCIs, CSP is well-known approach 

which is employed in this study. As the spatial filters are provided by CSP technique, it enlarges the variance of one 

class whereas the variance of the other class is minimized simultaneously [24]. The differences between two classes 

can be done by standard CSP, an extension in the original method in [25] for multi-class paradigm. The one vs. rest 

approach is partitioning the k-class problem into a set of k binary classes while differentiating each class against the 

remaining classes. For an EEG trial, the normalized spatial covariance matrix is defined by the following equation: 
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   (1) 

 

Where, A symbolizes a trial wich is [Ch x S] matrix (Ch is the electrodes number and S is the samples number) 

and class  is the types of MI activity in the dataset. The trace ( )
T

trace AA  is the summation of diagonal 

components of matrix 
T

AA . The mean normalized covariance of each group is computed by performing mean over 

each class containing all trials. The following equation shows the compound spatial covariance: 
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Where, m is the whole quantity of class in the MI data. The covariance matrices of disjoint trials 
/

rC  to the all 

groups will be  

/

r kk classC C
    (3) 

Where, k= {1, 2, 3……m}. The composite covariance can be factorized as  

0 0

T

rC E E 
   (4) 

where,   denotes the diagonal matrix of eigenvalues of order N×N and 0E denotes the N×N matrix of 

Eigenvectors. Then, WR denotes a whitening transformation that balances the variances in eigenspace, has been 

computed by the following equation: 
1

2
0

T

WR E


    (5) 

The whitening matrix WR   has been utilized to transform the mean covariance matrices as  
T

W Wclassclass
Q R RC

 and 
/ T

W Wrk
Q CR R

   (6) 

Then, class
Q  and k

Q  exchange common eigenvectors. The sum of the corresponding eigenvalues for the two 

matrices must be identical to 1,  
T

class class classclass
Q P P   and 

/ T

class r classk
Q P P     (7) 
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Where, I signify identity matrix. Finally, a projection matrix can be computed by 

( )
T

TL
class WP R

   (9) 

Where, the columns  
1

L


 is the CSP and might be represented as time-invariant EEG source distribution vectors. 

By having the projection matrix, the decomposition of a trial S has been computed by the following Equation: 

X SL    (10) 

The variances of the initial as well as final rows of X are appropriate classification features because one is a 

constant value as the sum of the corresponding eigenvalues. Here, we have utilized the variances of the first and last 

rows as features whereas the variance has been computed as follows: 

 
2

1
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r

R R

Z

X X
V 
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 
   (11) 

Where, RX  denotes a row of X; Z is defined as the length of this row.  

  

2.3 Support Vector Machine (SVM) 

The SVM classifier generates a hyperplane to isolate the feature vectors into individual classes as illustrated in 

Fig. 4.  The SVM, in oppose to LDA, selects a hyperplane to maximize the margins which sets the distance between 

the nearest training samples as well as the hyperplanes [26] to the largest. Linear SVM is a classification that empowers 

classification using linear decision boundaries. To a significant number of synchronous BCI problems [27] this 

classifier has been applied successfully. Nevertheless, using the "kernel trick" nonlinear decision boundaries is 

efficient with a small increment of the classifier’s complexity. The common kernel used in BCI research is "kernel 
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trick". The corresponding SVM is called Gaussian SVM or RBF SVM. To obtain better results the RBF SVM is 

proved to be robust in BCI applications [27], [28]. In BCI applications, the SVM is commonly popular as the simpler 

algorithm. Additionally, it is robust in higher dimensional datasets that does not require large training datasets for 

better results even when the feature vectors are high in dimension [29]. Moreover, the execution speed  is not hindered 

by these favorable circumstances during the integration of the real-time BCIs [30]. Nonetheless, to increase the 

classification accuracy of SVM structure, an important role is played by several sorts of kernel function along with 

the regularization parameter C. The most used kernel functions of SVM are Gaussian radial basis function (RBF), 

polynomial, sigmoid and linear. The Gaussian RBF kernel function has been used in this research. At last, the few 

hyperparameters SVM possess which requires identification by hand are the regularization parameter C and the RBF 

width   when utilizing kernel 2. 

 

 
 

Fig. 4 - SVM find the optimal hyperplane for generalization [31] 

 

In the present study, the Gaussian or RBF kernel has been utilized which is given by the Equation (12) 
2

2
(x, y) exp( )

2
K

x y








   (12) 

Here, (x, y)K  is the kernel function and   is the RBF width. 

 

3. Results and Discussion 

Before performing the training session of the classifier, the training dataset has been marked with labels. In this 

study, 5 different flickering frequencies namely 6.66, 7.50, 8.57, 10.00 and 12.00 Hz have been utilized. During 

labeling, 6.66, 10.00, 8.57, 12.00 and 7.50 Hz has been denoted by 1, 2, 3, 4 and 5 respectively. The experimental 

datasets consist of total 1375 trials where class-1, class-2 and class-4 have 275 trials in each class. Class-3 and class-

5 consists of 330 and 220 trials respectively. After splitting the dataset into training and testing phase, the number of 

testing trials for class-1, class-2, class-3, class-4 and class-5 are 69, 68, 82, 69 and 55 respectively. These trials have 

been utilized to test the trained model. The confusion matrix (see Fig 5 a), true positive rate (TPR) as well as false-

negative rate (FNR) (see Fig 5 b) are represented by Fig. 5. It could be interpreted from the confusion matrix that the 

303 observations (out of 343 testing observations) have been identified precisely by the trained model. Hence, the 

classification accuracy is 88.3%. The reasons behind the lower classification accuracy are the flickering frequencies 

10.00 and 8.57 Hz that is class- 2 and class-3. In class-2 and class-3, the TPR are 81% and 82% respectively. Whereas, 

the FNR for class-2 and class-3 are 19% and 18% respectively which are very high. In class-1, class-4 and class-5, the 

TPR are 94%, 90% and 98% respectively which are very encouraging.  
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Fig. 5 - (a) Confusion matrix; (b) True positive and false negative rate 

 

The performance of the classifier can also be assessed through the area under curve (AUC) - receiver operating 

characteristics (ROC) in machine learning. The ROC is the probability curve while the AUC describes the level of 

separability. This metric demonstrates the model’s competence in distinguishing the groups. The value of AUC ranges 

from 0 to 1. The greater value of AUC signifies that the model could recognize the groups precisely. Fig. 6 illustrates 

the classifier performance with respect to the AUC-ROC. The AUC of class-1, class-4 and class-5 are 0.98, 0.99 and 

1.00 respectively which indicate the excellent classifier performance. However, the AUC of class-2 and class-3 are 

0.96 which indicates the lower classifier performance as compared to the other classes.  

 

 
Fig. 6 - AUC curve- ROC curve 

 

4. Conclusion 

In this study, five-classes EEG-SSVEP responses have been recognized. In order to do this, the features from 

SSVEP responses have been extracted through the CSP and the extracted feature has been classified by the extensively 

employed SVM based machine learning algorithm. To evaluate the classifier performance, some evaluation metrics 

including AUC-ROC, accuracy, confusion matrix, FNR and TPR have been computed. The obtained accuracy is very 

encouraging. However, there are some issues that need to be overcome. The conducted experiment utilized publicly 

available online dataset which has been captured from the healthy subjects. However, the fundamental motivation 
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behind the BCI technology is to help the physically impaired patients, the experimental data must be collected from 

those individuals who are the targeted consumers. From the findings of this study, it clear that the classification 

accuracy is not still sufficient in respect of the absolute BCIs. Therefore, the accuracy should be improved. In order 

to make real-life BCI applications, the classifier outcomes need to be converted into device commands and in the 

meantime, the entire operation should be performed in real-time. 
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