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1. Introduction 
Efficient system architecture design for medical 

image compression has received a lot of attention [1]-[3] 
due to the more widespread use of three-dimensional    
(3-D) imaging modalities, such as magnetic resonance 
imaging (MRI), computed tomography (CT), positron 
emission tomography (PET), and ultrasound (US) that 
have generated a massive amount of volumetric data.  

In these fields, both efficient storage and 
transmission of data through high-bandwidth digital 
communication lines are of crucial importance [2], [4]. 
Despite their advantages, most 3-D medical imaging 
algorithms are computationally intensive with matrix 
transformation as the most fundamental operation 
involved in the transform-based methods. Therefore, 
there is a real need for high-performance systems, whilst 
keeping architectures flexible to allow for quick 
upgradeability with real-time applications [5]. Moreover, 
in order to obtain efficient solutions for large medical 
volumes data, an efficient implementation of these 
operations is of significant importance. 

Reconfigurable hardware, in the form of              
field programmable gate arrays (FPGAs) appears            
as viable system building block in the construction          
of  high-performance systems at an economical price.                                                                                                                                 

Consequently, FPGAs seem an ideal candidate to harness 
and exploit their inherent advantages such as massive 
parallelism capabilities, multimillion gate counts, and 
special low-power packages [6], [7].  

 The aim of this paper is to develop an efficient 
reconfigurable architecture for Daubechies wavelet 
transform using pipelined direct mapping. An evaluation 
of these architectures in terms of area, power 
consumption, maximum frequency and latency are also 
carried out. Finally, this research is expected to propose a 
novel architecture of 3-D DWT using various wavelet 
filters and different design strategies that can be further 
applied as an intellectual property (IP) core for 
compression systems specifically in telemedicine 
applications. 

The rest of the paper is organised as follows. An 
overview of the related work is given in Section 2. 
Section 3 explains the mathematical background for 
Daubechies. Section 4 exposes the proposed architecture 
of 3-D Daubechies. Experimental results and an analysis 
of the area, power consumption, maximum frequency as 
well as latency are presented in Section 5. Section 6 
discusses the resulting outcomes. Finally, concluding 
remarks and further potential ideas to be explored are 
given in Section 7. 

 

Abstract: This paper presents an efficient architecture for three-dimensional (3-D) Daubechies with  
transpose-based method for medical image compression. Daubechies 4-tap (Daub4) and Daubechies 6-tap (Daub6) 
are selected with pipelined direct mapping design technique. Due to the separability property of the  
multi-dimensional Daubechies, the proposed architectures have been implemented using a cascade of three N-point 
one-dimensional (1-D) Daub4/Daub6 and two transpose memories for a 3-D volume of N*N*N suitable for  
real-time 3-D medical imaging applications. The architectures were synthesised using VHDL and implemented on 
Altera®Cyclone II (EP2C35F672C6) field programmable gate array (FPGA). An in depth evaluation in terms of 
area, power consumption, maximum frequency and latency are discussed in this paper. 
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2. Related Works 
A close examination of the algorithms used in     

real-time medical image processing applications reveals 
that many of the fundamental actions involve matrix or 
vector operations [1]-[4]. Most of these operations are 
matrix transforms including fast Fourier transform (FFT), 
discrete wavelet transform (DWT) and some recently 
developed transforms such as finite Radon, curvelet and 
ridgelet transforms which are used in two dimensional  
(2-D) or three dimensional     (3-D) medical imaging [8]. 

Unfortunately, computational complexity for the 
matrix transform algorithms is in the order from          
O(N × logN) for FFT to O(N2 × J) for the curvelet 
transform (where N is the transform size and J is the 
maximum transform resolution level) are computationally 
intensive for large size problems. For that reason, 
efficient implementations for these operations are of 
interest not only because matrix transforms are important 
in their own right, but because they automatically lead to 
efficient solutions to deal with massive medical volumes. 

Since the aim of this research is on the 
implementation of 3-D medical image processing 
application using FPGA, a survey of the past, current and 
future works are concentrates on previously published 
FPGA implementation. In addition, the performances 
evaluations including area occupied, maximum 
frequency, power consumption and latency are 
considered during validate the proposed work with the 
existing works. Despite its complexity, there has recently 
been an interest in 3-D DWT implementation on various 
platforms. However, the previous and existing literature 
indicates that the works still in its infancy as algorithm 
development and software simulation.  

An efficient architecture for 3-D Haar wavelet 
transform (HWT) using dynamic partial reconfigurable 
(DPR) is presented in [4]. HWT was selected to be 
implemented in this architecture because it is the simplest 
wavelet transform due to its simplistic algorithm. The 
proposed architecture was designed using pipelined direct 
mapping technique. Experimentally, the results indicated 
that using DPR mechanism the area and power 
consumption can be reduced although the number of 
input, N is larger. Interestingly, the proposed pipelined 
architecture has gives an overview of the operation 
system using Haar wavelet filter. 

In [8], a wavelet-based compression scheme with an 
adaptive prediction (WCAP) is proposed. The proposed 
scheme applies a separable 3-D wavelet transform with 
high-pass and low-pass filter to a set of image that will 
produce a smooth signal and detailed signal respectively. 
Moreover, the CT, MRI and US are selected as image 
modalities with various pixel sizes and slice distances. 
This method consists of five stages which are correlation, 
lifting, predicting, quatising and adaptive arithmetic 
coding. Results obtained shows that the proposed method 
almost achieves the highest compression rates for CT, 
MRI and US. However, it is noted that the drawback of 
the scheme is the complex algorithm for compute the 
coefficients in each stage, thus will increase the area and 
memory required. 

Another issue on the image compression is presented 
in [9]. A 3-D DWT approach is proposed for performing 
3-D compression. A direct implementation of DWT is 
used for designing the first proposed architecture which 
consists of three set of filters. Each filter contains 
Multiply-Accumulate Cells (MACs) with latches for      
x-dimension and registers for y and z-dimension.  

On the other side, the second proposed architecture is 
designed using a single pair of filters and it based on 
processing block data operation. Comparing both 
architectures performance, the control for first 
architecture is simple since the data are operated in a  
row-column operation but problems in memory 
requirement and latency are occurred. Meanwhile, the 
second architecture requires a small amount of storage 
depending on the filter size but the control is more 
complex compared to the first architecture. This paper 
gives an overview to design the proposed architectures 
for 3-D DWT.   

 As can be seen from the existing implementation      
[8]–[11], there still remains a huge gap for further 
research in exploiting reconfigurable computing for 3-D 
medical image compression and two major limitations 
can be identified as follows: 
1. Medical image compression has not been 

intensively addressed in the existing 3-D DWT 
implementation. 

2. Image compression is one of the well establish 
research area. However, medical image compression 
especially dealing with 3-D modalities is considered 
as a pre-mature research area.  

 
3. Mathematical Background 

The Daubechies wavelet transform is defined in 
essentially the same way as the Haar wavelet transform 
by computing running averages and differences via scalar 
product. The difference between them is the way that the 
scaling signals and wavelets are defined [12]. 
Interestingly, Daubechies wavelet transform has 
properties of longer supports for the scaling signals and 
wavelets.  

One of the weaknesses of Daubechies wavelet 
transform is the edge problem that is discussed in the next 
subsection. Fortunately, the smaller number of wavelet 
tap can be used to avoid the edge problem. Thus, the 
Daubechies 4-tap (Daub4) and Daubechies 6-tap (Daub6) 
have been used in this study besides it is the most popular 
choice in medical imaging applications [12]. 

 
Daubechies 4-tap (Daub4) algorithm 
The Daub4 wavelet is the simplest wavelet among 

the Daubechies wavelet families. Generally, Daub4 have 
four scaling signals and wavelets coefficients as given in 
equation (1) and (2) respectively. 

0 1 2 3
1 3 3 3 3 3 1 3, , ,
4 2 4 2 4 2 4 2

h h h h+ + − −
= = = =                        (1) 

0 3 1 2 2 1 3 0, , ,g h g h g h g h= = − = = −                                    (2) 
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The 1-level Daub4 scaling signals and wavelets can 
be defined as follows: 
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
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The scaling and wavelet functions are calculated by 
taking the inner product of the coefficients and data input 
values. In the last iteration, data input of s[N] and s[N+1] 
are not exist (they are beyond the end of the array) and 
cause the edge problem. To handle this edge problem, the 
data set is treated as it is periodic. The process of 
Daubechies wavelet using both scaling and wavelet 
functions are given as follows. 
Step 1:  

 
 

 
   

Step 2:  

 Step 3:  
Move the low and high pass filters along this vector, two 
steps at a time: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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    ( )0.155,5.78,12.4,6.37, 0.837,0.966,0.871, 3.12= − −

Step 4: 
Keep the last half of the vector f1 fixed while low  and 
high pass filter the first half of the vector (periodically 
extend the first half of the vector f1): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1 1 1 1 1 12 , 3 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7f f f f f f f f f f f=%  

( )12.4,6.37,0.155,5.78,12.4,6.37, 0.837,0.966,0.871, 3.12= − −  
 
 
 
 
 
 
 
 
 
 

Step 5: 
Move the low and high pass filters along the first six 
elements of the vector, two steps at a time: 
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( )10.6,6.87, 5.70,6.02, 0.837,0.966,0.871, 3.12= − − −  
Step 6: 
Low and high pass filter the first quarter of the vector f2 
(periodically extend the first two elements): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 2 2 2 2 2 20 , 1 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7f f f f f f f f f f f=%

( )10.6,6.87,10.6,6.87, 5.70,6.02, 0.837,0.966,0.871, 3.12= − − −  
Step 7: 
Low and high pass filter on the first four elements of the 
vector: 
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( )12.4,2.66, 5.70,6.02, 0.837,0.966,0.871, 3.12= − − −  
 

Daubechies 6-tap (Daub6) algorithm 
The Daub6 wavelet is the most localised members 

among Daubechies wavelet families and it has six scaling 
signals and wavelets coefficients as given in equation (3) 
and (4) respectively, where 

1 10z =  and 
2 5 2 10z = + . 

1 2 1 2 1 2
0 1 2

1 2 1 2 1 2
3 4 5

1 5 3 10 2 2, ,
16 2 16 2 16 2

10 2 2 5 3 1, ,
16 2 16 2 16 2

z z z z z zh h h

z z z z z zh h h

+ + + + − +
= = =

− − + − + −
= = =

 

 
0 5 1 4 2 3 3 2 4 1 5 0, , , , ,g h g h g h g h g h g h= = − = = − = = −         (4) 

The 1-level Daub6 scaling signals and wavelets are 
defined in the same way as Daub4 wavelet and the last 
iteration to compute the scaling signals is described in 
Equation 5. Since the scaling signals have length six, it 
would send h2, h3, h4 and h5 beyond the end of the array. 

( )1
/2 2 3 4 5 0 1, , , ,0,0,...,0, ,NA h h h h h h=                                  (5) 

  
 
 
 
 
 
 

Consider the first row of a set of matrix: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 , 1 , 2 , 3 , 4 , 5 , 6 , 7f f f f f f f f f=

    ( )2,5,8,9,7, 4, 1,1= −  

Extend the signal periodically: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )6 , 7 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7f f f f f f f f f f f=%

   ( )1,1,2,5,8,9,7,4, 1,1= − −  

(3) 
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4. Proposed Systems Architecture and 
Implementation 
System Overview Applications 
Fig. 1(a) illustrates an application overview of the 

proposed medical image compression system including 
the transform, quantization and entropy coding blocks. In 
each block, buffers have been used for storing 
intermediate results to be processed. In the transform 
block, the input of 3-D images is transformed into 
wavelet coefficients. Then, the coefficients are quantised 
and finally coded to have the output bit stream. In this 
paper, the focus only concerns on the transform block and 
our goal is to propose an adaptive compression system for    
3-D medical images, where all the blocks are 
reconfigurable. 
 

System Architectures 
The proposed system for 3-D Daub4 and Daub6 with 

transpose-based computation are illustrated in Fig. 1(b). 
The whole chain to calculate the 3-D Daub4/Daub6 gets 
an input as a 3-D image with N×N×N point and outputs 
coefficients of the N×N×N point. To simplify the 
hardware design, both the 3-D Daub4 and Daub6 are 
divided into three 1-D Daub4/Daub6 calculation cascaded 
together with transpose modules in between. This is 
achieved by performing the first 1-D Daub4/Daub6 along 
the rows (columns) of the array followed by 1-D 

Daub4/Daub6 along the columns (rows) of the 
transformed array.  

The third 1-D Daub4/Daub6 are performed on 
corresponding pixels in each of the N sub-images that 
constitute the third dimension. All transpositions modules 
store the transposed coefficients into memory with a fetch 
unit module that reads back the coefficients for the next 
1-D Daub4/Daub6 calculation. 
 

Pipelined Direct Mapping 
Implementations 
The 1-D Daub6 and Daub4 flow diagram with        

N-inputs sample for pipelined direct mapping 
implementation are depicted in Fig. 2 and Fig. 3 
respectively. Both architectures include multipliers, 
shifters, registers and adders for their operation, with 
notation of ‘Mul.’, ‘Shift.’ and ‘Add.’ for multiplier, 
shifter and adder. The input to the 1-D Daub4/Daub6 is 
read row by row. Then, each of the input vector is 
processed to calculate the 1-D Daub4/Daub6 coefficients. 
The calculated 1-D Daub4/Daub6 coefficients are sent to 
the transpose module T1 to perform matrix transpose. 
After that, the same process of 1-D Daub4/Daub6 is 
repeated by taking the output of the transpose module T1 
as their input. The output coefficients of the second 1-D 
Daub4/Daub6 are sent to the transpose module T2. 
Finally, the third 1-D Daub4/Daub6 are performed on 
each N sub-images of the transpose 2-D coefficients.
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Fig. 1 Proposed system architectures 

(a) Compression system overview (b) Architecture for 3-D Daub4/Daub6 with transpose-based computation 
(c) Input data for sub-images for [I]z (d) Transpose matrix after T1 (e) Transpose matrix after T2. 
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N-inputs sample – for every single row
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Fig. 2 Proposed system architecture 1-D Daub6 flow diagram with N inputs sample  

for direct mapped architecture. 
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Fig. 3 Proposed system architecture 1-D Daub4 flow diagram with N inputs sample  

for direct mapped architecture. 
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5. Results and Analysis 
Altera® Quartus II design flow has been used as a 

design flow reference and the proposed two architectures 
have been implemented on the Cyclone II 
(EP2C35F672C6). To evaluate the performance of the 
proposed architectures, four parameters have been 
selected including the area (LEs), maximum frequency 
(MHz), power consumption (mW) and latency (ns).  

Table 1 lists the overall performance results for both 
proposed architectures for N = 4. As expected and 
considering their complex algorithm and edge problem, 
Daub6 utilise more LEs and total register to implement 
the proposed architecture. However, there is only 1% 
difference of area needed to implement the Daub4 
architecture compared to Daub6 architecture. On the 
other side, a latency express the delivery time taken for a 
packet of data become the first available output data in 
the pipeline system. Referring to the waveform illustrated 
in Fig. 4(a) and (b), both Daub4 and Daub6 architectures 
necessitate 130ns to transmit the packet of data for 
produce an output. Whilst, Daub6 architecture save 
power consumption with 94.68mW and yield better 
maximum frequency at 30.17 MHz. 

In summary, even though Daub6 required more area, 
it has higher vanishing moments that result in better 
signal approximation [13]. Thus, the proposed Daub6 
architecture provides significant results in terms of power 
consumption and maximum frequency.  

 
6. Discussions 

To analyse visually the proposed architectures, both 
chip floor plan are given in Fig. 5(a) and (b). The chip 
planner floor plan uses a gradient colour scheme in which 
the colour becomes darker as the utilisation of a resource 
increases. Effectively, it can be clearly seen that the 
Daub4 implementation requires less complicated 
mapping in comparison with Daub6.  

Concerning the higher vanishing moments of Daub6 
[13], the implementation of 3-D Daub6 with        
transpose-based method on Altera®Cyclone II 
(EP2C35F672C6) FPGA yielding 0.63% better maximum 
frequency and consumes less power by 42.95% than 
Daub4 as illustrated in Fig. 6.  

 

Altera® Quartus II PowerPlay Power Analysis tools 
are used for the purpose of power consumption estimation 
by read the verilog value change dump file (.vcd) and 
derives the toggle rate and static probability data. This 
.vcd file is created using ModelSim-Altera after the 
designs are synthesised and fitted to the target device. 

Comparative study for both proposed architectures 
shows an imperative conclusion concerning the higher 
vanishing moment of Daub6. Analysis for the 
performance achieved in terms of area utilised, maximum 
frequency, power consumption and latency have reveals 
that with Daub6, complex designs can be implemented on 
FPGA and hence carry out a better performance 
achievements.  
 
7. Conclusion 

Two architectures for 3-D Daub4 and Daub6 have 
been proposed in this paper based on transpose 
computation for transform block of medical image 
compression. Comparative study for both architectures 
have reveals that Daub4 wavelet filter provides better 
achievements in terms of area than Daub6 wavelet filter, 
whilst in terms of power consumption, Daub6 wavelet 
filter consumes less power and directly yields better 
maximum frequency.  

On-going research is focusing on the design and 
FPGA implementation of 3-D Daub4 and Daub6 using 
other arithmetic techniques such as distributed arithmetic 
(DA) and systolic design. Other wavelet filters such as 
Symlet, Coiflet and Biorthogonal as well as various 
transform size and real 3-D medical imaging modalities 
will be further explored to demonstrate the efficiency of 
the proposed architecture in medical imaging 
compression systems. 
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Table 1 Resources utilisation and overall proposed architectures performance on EP2C35F672C6 for N=4. 
 
 
 
 
 
 
 
 

 

Parameters Proposed 3-D architectures 
Daub4 Daub6 

Area (LEs) 1,978 (5%) 2,119 (6%) 
Total registers 916 1051 
Latency (ns) 130 130 
Power consumption (mW) 165.97 94.68 
Maximum frequency (MHz) 29.98 30.17 



                                                                                                     N. H. Ja’afar et al., Int. J. Of Integrated Engineering Vol. 4 No. 3 (2012) p. 26-34 
 

 

 7

 

 
  

Fig. 4 Modelsim-Altera simulation for proposed architectures  
(a) Daub4 (b) Daub6. 
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Fig. 5 Comparison of chip floor plan for N = 4 
(a) Daub4 (b) Daub6. 

 
 

 
Fig. 6 Performance of area, maximum frequency and power consumption for N = 4.
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