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1. Introduction 

The ectromyogram (EMG) is a biological electric signal that manifests around the muscle when a contraction is 

performed. Since the EMG signal directly relates to the body movement, it can be harvested with electrodes and the 

corresponding signals can be used by a machine to replicate the human motion. However, the EMG signal is small and 

easily corrupted with noise from both the environment and within the body. Thus, there are a number of issues to using 

the EMG as a control signal. Over the years, researchers have continued to debate the relevance of EMG as a control 

signal. Artemiadis [1] and Jiang et al [2] acknowledged that the high performance of EMG control as reported in 

researches does not necessarily translates into practical consumer devices, citing the difficulties of EMG control and went 

as far as to suggest input fusion with inertial sensors. Concurring to that, Farina and Aszmann [3] suggested that EMG 

devices lack sensory feedback. 

The attributes of a commercially viable machine input signal lies in its ease of use. Kumari et al. [4] highlighted some 

requirements of a wearable interface; which in the list includes comfort, aesthetics and convenience. EMG classification 

systems can reach very high accuracy rates of over 90%  [5–7]. However, the success of these experiments owe it to the 

clinical setup with precise placement of electrodes and restricted gestures. In reality, there are some issues in practical 

applications. The EMG classifier would require user dependent per session retraining [8]. Performance will also suffer if 

the forearm rotates slightly during the course  [9]. Furthermore, even for a single user there is little compatibility for 

Abstract: The surface electromyogram (EMG) contains information directly related to muscle contraction and 

modern classification techniques can obtain near-zero error when identifying various gestures over the forearm. 

However, good results come at a compromise over the ease of use. Once the EMG classifier trained on a user is 

changed, the accuracy rate will be greatly reduced. Furthermore, changing the position of the forearm also causes 

drop in accuracy rate. Acknowledging the limitations of EMG classification, this study aims to investigate the EMG 

signals based on the gestures, and evaluate if there are any gestures which are inherently robust to these variations. 

The EMG of forearm gestures have been classified in the combined influence user independence, rotation 

independence and hand exchange independence. Experiment results on 20 participants indicated that truly 

independent classification can be achieved for most forearm gestures (up to 100%) in some arm positions. Hand 

exchange is also not feasible as the study has shown that the data field for both hands are fairly different. Out of the 

nine gestures under study, only the wrist extension was found to be truly independent of all the influences. 
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switching between the left and right hand without retraining [10]. The EMG is also susceptible to deterioration if there is 

strong power line interference (PLI) and electromagnetic (EMI) radiation present in the operating environment [11].  

It is obvious that the electrodes must be placed accurately over specific muscles. Thus it is clearly impractical for the 

general users who are not clinically trained.  Moreover, the EMG signal characteristics change because of noise [12] and 

EMG fluctuations due to physiological changes throughout the day [13], [14]. Next, the EMG classifier will usually 

require retraining on each session [15], [16]. Considering the limitations of the EMG classification, the classification 

accuracy is realistically limited by the ease of use, robustness to variations and the number of classifiable gestures. The 

relationship of these three factors are illustrated in Fig. 1. It is obvious that the actual accuracy is a compromise between 

these three factors: simple systems will work best with few classifiable gestures, while truly robust systems will be have 

to be complicated. At the same time, the more gestures to classify will require limitations to the allowable rotation in the 

forearm.  

Acknowledging the shortcomings of a practical systems, some researchers have work towards providing robustness 

towards those variations. In [17], they introduced a novel method called averaged root mean square curve AUC-RMS, 

which is based on the peak value of the EMG. It achieved 96.3 % accuracy for three simple hand gestures over 10 subjects. 

In spite of the excellent results, the sample size was relatively small and only three gestures were studied, and has not 

been tested with more complex gestures. On the other hand, in [18] the forearm gestures of 25 subjects was classified 

with as accuracy as low as 49 %  for 25 gestures.  

The forearm is a highly articulated limb, which is actuated by many muscles, and these muscles shift during rotation 

[19], where classification accuracy can drop from 77 % to 63 % . Processing techniques introduces by [20]  improved 

classification rate.  On hand exchange, [10] have demonstrated that the two hands produce fairly different data field, even 

for the same user. Therefore the two hands should be trained separately. While these methods studied the effect of EMG 

variations, they did not account for the combined effect of the issues. 

Therefore this study narrows the research gap by presenting combined issues of user, rotation, hand swap and noise 

onto the EMG classification accuracy, and make recommendations based on the classifiable gestures. By acknowledging 

the limitations of EMG in practical application, the objective of this study is to identify gestures which are robust towards 

these variations.  

 

 
Fig. 1 - The practical limitations of an EMG system is a trade-off between usability, performance and 

robustness. A simple system should be made to recognize less gestures and a highly robust system should not be 

expected to be simple in implementation 

 

2. Methodology 

The experiment is divided into two stages. The objective of the first stage is to acquire the EMG signals for user 

independece, rotation and hand independence. The process was repeated on the right hand. In the second stage, the EMG 

signals were decomposed into the peak EMG feature followed by classification with linear discriminant analysis. 

Prior attaching electrodes, the subject skin was cleaned with alcohol but not shaved. Then, six pairs of electrodes 

were placed evenly around the lower forearm of the left hand. The Six electrode pairs were placed with equal distance, 

de around the lower forearm, at about 30 mm below the elbow. A brief schematic of the electrode placement relative to 

the body can be found xxx. With the arm at neutral position, placing began with CH2 placed directly below the elbow, 

on the posterior side of the forearm. The other channels are then placed at de = 
1

6
 × circumference. With the electrodes 

placed, the electrodes were connected to the EMG amplifier with shielded cables.  

The subjects were asked to perform nine gestures, which in sequence are flex (FLX), extend (EXT), abduct (ABD), 

adduct (ADD), open (OPN), close (CLS), finger (FIN), OK (OKE) and thumb (TMB). The nine gestures are shown in  
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Fig. 3. Subjects performed the gestures with the left hand in neutral position, followed by supination and pronation. 

The subjects performed nine gestures in successions and the EMG was recorded into six individual channels. The 

electrode locations are shown in Fig 4 (a) and (b). 

To investigate if the lower forearm muscles are immune to muscle shift due to pronation and supination, the gestures 

were also performed with the hand in pronation and supination. All gestures and their positions are listed in Table 1. 

The gestures were performed in a succession sequence. Subjects were asked to perform the gestures beginning with 

the wrist flexion and ending with the thumb gesture. The gestures were performed at a contraction which the subject is 

comfortable with, having no load was applied. In Fig 4 (c), (d) and (e), the three positions of neutral, pronation and 

supination are shown. Due to the weight of the cable, a sleeve was worn over the electrodes to keep in place.  

 
Fig. 2 - General view of the electrode placement viewed from the top. The six channels are placed on a uniform 

distance around the circumference of the forearm directly below the elbow 

 

     
Rest Flex Extend Abduct Adduct 

    

 

Open Close Thumb OK  
 

Fig. 3 - Gestures performed for classification. There are six wrist gestures: FLX, EXT, ABD, ADD, OPN and 

CLS; and three finger gestures: FIN, TMB, and OKE. The gestures were recorded in sequence with the arm 

down in natural position 

 

To avoid error due to wrongly performed gestures, the gesture sequence was recorded at least three times per position. 

In each sequence, individual gestures would last about 1.5 to 2 s, followed by a period of rest of equal time span. Each 

sequence of nine gestures lasted between 30-40 s.Due to the duration of the procedure, the subjects were given the choice 

to either stand or sit. The photograph shown in Fig 4 (f) shows a subject practicing the gesture sequence prior to actual 

recording. 

2.1 Subject Demographics 

In this study, 20 subjects which consisted of 10 male and 10 female subjects were selected. Prior to the procedures, 

the subjects have signed the consent form. The subject demography ranges from age 24-42 with mean age of 30. The 

subjects BMI range from 15 to 32 with a mean of 23, with 55% having a normal BMI class. No subjects reported any 

accident and pain associated with the wrist and finger. However, two subjects one male and female, reported having mild 

essential tremor. All subjects in this study are right handed. 
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           (a)                     (b)                    (c)               (d)                 (e)                              (f) 

Fig 4 -  The positions of the electrodes (a) front view (b) rear view, arm position (c) neutral (d) supination (e) 

pronation (f) general view of procedure during recording. 

 

Table 1 - The gestures and the positions they are performed in  

nine gestures were performed in three positions on both hands 

 

Gesture Position Hand 

Flex 

Extend 

Abduct 

Adduct 

Open 

Close 

Thumb 

Finger 

OKE 

FLX 

EXT 

ABD 

ADD 

OPN 

CLS 

TMB 

FIN 

OKE 

Neutral 

Pronated 

Supinated 

DN 

DP 

DS 

Left 

Right 

LH 

RH 

 

2.2 Equipment Used 

An EMG amplifier was developed specifically for this experiment. The EMG amplifier is based on INA121P 

instrumentation amplifier and has an effective CMRR of 78.64 dB and adjustable gain of 250. Basic filtering incorporated 

into the design consists of a band pass filter with the range of 18.97 Hz to 709 Hz. Further details on our design can be 

found in [21] and [22]. Ag-Cl wet electrodes were used in this experiment. Each channel consists of two electrodes. To 

further reduce noise, a reference electrode is necessary and was attached to an electrically inactive part of the body; in 

this case the bone of the elbow. Further isolation from the common-mode noise was done with a shielded cable which 

connected the EMG amplifier to the electrodes.   

The data was acquired with the National Instruments NI-cDAQ 9178 data acquisition unit with the NI9205 module, 

sampled at 5 kHz and Labview as the user interface. Subsequent conditioning, feature reduction and classification was 

performed with the Matlab 2010 software.  

3.  Results 

  Shown in Fig. 5 (a), are the raw EMG output of the gestures performed by subject F01. The channels exhibit low 

baseline noise with the exception for CH5 and to a lesser degree in CH6, which was due to ECG contamination. The 

similarity in CH1 and CH2 indicate co-activation in the region covered by the two channels, possibly due to overlapping 

muscles. On the gesture detection, CH1 shows better separation for the ABD and CLS gestures. In comparison, CH3 and 

CH4 shows a different pattern with more significance in the FLX, ADD, CLS FIN and TMB. Despite the ECG 

interference in CH5, the recorded pattern evidently reflect those of CH4 with the exception of a slightly higher amplitude 

in the OPN gesture. The EXT and OPN gestures were most significant in CH6. Therefore, the six channels setup can 

provide enough information to detect unique EMG patterns for each gesture.  

The stochastic, time-varying nature of the raw EMG signal is computationally complex to analyze. Therefore 

simplification is necessary. For this purpose, the linear envelop was produced by rectifying the signal by applying a 

modulus to the EMG signal defined as x(t) where:  
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𝑥(𝑡)𝑟𝑒𝑐𝑡 = | 𝑥(𝑡)| 
 

 
Fig. 5 - Sample results of subject F01 EMG acquisition for the FLX gesture, showing (a) the raw EMG output 

for CH1 to CH6, (b) linear envelope output and (c) PCA reduced features for flex and extend of the six channels. 

The flex and extend gestures produce distinct for a single subject. However, variations will increase with the size 

of the subject pool 

 

The rectified waveform was then applied with a second-order Butterworth filter with a cutoff frequency of 10 Hz to 

extract the linear envelope feature. These gestures produce very distinct patterns. However, variations will be introduced 

as the subject pool increases. In Fig. 5 (b), the processed FLX gesture shows a simplified EMG pattern of the  muscle 

contraction: typically observed as a rapid rise in EMG amplitude, followed by a gradual fall as the muscle contract. 

Consistent to the raw EMG data, CH3 and CH4 peaked at a significantly higher amplitude compared to other channels. 

The linear envelop feature is then processed with principle component analysis (PCA) to reduce the dimensionality 

of the time varying EMG waveform. PCA is an orthogonal linear  

transformation that de-correlates multivariate data and projects it onto a new coordinate system such that the greatest 

variance in the data lies on the first coordinate while the least variance in the data tends to lie on the last coordinate [23]. 

This results a decomposition into a series of principle components (PC). In this example, the first PC accounts for 85% 

of the variance while the second PC accounts for 7%. Fig. 5 (c) shows the PCA plot of the first two PCs where PC1 is 

projected on the x-axis and PC2 is projected on the y-axis. The combination of these two PCs will account for 92% of the 

variance.  

The objective of using PCA is to compress the data by removing repetitive data while extracting only the significant 

variation. A reduced dataset will allow quicker and more accurate classification. The LDA is a supervised classifier, 

whereby classes must be pre-defined before training is done. LDA works on the principles of Bayes’ Theorem which 

estimates the probability of the data belonging to each class. With the input class as x(k), probability of the output class 

(k) is given by,  

 

𝑃(𝑌 = 𝑥|𝑋 = 𝑥) =
(𝑃𝐼𝑘 . 𝑓𝑘(𝑥))

∑(𝑃𝐼𝐼 . 𝑓𝐼(𝑥))
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PIk refers to the base probability of each class (k) observed in the training data, defined as:  

 

𝑃𝐼𝑘 =
𝑛𝑘

𝑛
 

 

The LDA assumes the probability of x belonging to a class is, f(x) is Gaussian. Therefore, the discriminant function 

Dk(x) is given as: 

 

𝐷𝑘(𝑥) = 𝑥 (
𝜇𝑘

𝜎2
) − (

𝜇𝑘

2𝜎2
) + ln (𝑃𝐼𝑘) 

 

Dk(x) is the discriminate function for class k, given input x.  

 

Fig. 6 shows the average 20 subject time domain features of each gesture across each channel, in pronation and 

supination and a comparison between both hands. Although a mean pattern can be established for each gesture, the 

variations, shown as standard deviation in the inset is high. Generally, the wrist gestures would produce higher variations 

compared to the finger gestures (FIN, OKE, TMB). The variations are due mainly to physiological issues, and how much 

force the subject exerts when performing the gestures.  

Table 2 shows the classification results of the user independence test. The overall classification results for the user 

independence classification test. The data here is trained and tested against itself. The classifier was trained with only 

one gesture data per subject. There was no per subject retraining. In the DN position, LH classification results are good, 

obtaining up to 100 % accuracy for the gestures, with the exception of OPN and CLS. Classification accuracy drop when 

classified in pronation and supination. However for the RH, classification results were observed to be lower. Despite the 

non-retraining and wide variation of data from various users, the DN position provided good classification results. This 

is a strong indication that user independence is possible in the DN position.  

Table 3 shows the results of the rotation independence test. In this test, training data was taken from the DN position 

and the test data was taken from the DP and DS position. Classification accuracy dropped for most gestures, especially 

in the DS position. Again, the performance of the left hand does not reflect in the right hand. The classification result of 

the right hand has no correlation to the left hand. The accuracy is maintained in the LH EXT, ABD and FIN gestures 

while the RH does not show the same obvious pattern. 

 

Table 2 - Cross user classification accuracy: The LH classification results do not reflect to the right hand. Only 

the DN gestures are consistent 

 

 LH, % RH, % 

 DN DP DS DN DP DS 

FLX 75 80 75 90 75 65 

EXT 90 95 70 90 80 100 

ABD 90 100 80 55 55 95 

ADD 75 85 70 60 60 65 

OPN 60 75 55 50 45 45 

CLS 35 45 65 65 65 55 

FIN 80 65 70 90 85 70 

OKE 95 85 65 45 50 45 

TMB 75 75 75 90 60 80 

Mean accuracy 75 78 69 71 64 69 

 
The switch from DN to DP in the LH result a significant classification rate drop, most significantly in FIN and CLS 

with a difference of -30 % and -5 % respectively. On average, the mean accuracy dropped from 75 % to 70 %. For DN-

DS gesture, the classification rate was further reduced to 47 %. With the exception of EXT, ABD and ADD, all gesture 

was classified at 50 % and below with the CLS at only 5 %. For the RH, shifting from DN to DP and DS caused the mean 

classification to drop from 71 % to 70 % and 69 % respectively. Only the EXT gesture maintained consistency across the 

rotation. Unlike the LH, All gestures experience considerable drop in classification accuracy.  

Based on the results, it can be concluded that the rotation affects the EMG signals. The signals in neutral, pronation 

and supination are distinct and must be classified as separate classes.  

 

(3) 

 

 

 

 

(4) 



Zinvi Fu et al., Int. J. of Integrated Engineering Vol. 13 No. 1 (2021) p. 120-129 

 
126 

Table 3 - Classification attempt of DS and DP with DN as training data. The classifier was trained with DN 

gestures and tested with DP and DS. It can be observed that rotation affects most of the signals with the most 

acceptable result being the EXT gesture. Again, the accuracy of the right hand is lower than the left hand 

 

 LH, % RH, % 

 DN-DN DN-DP DN-DS DN-DN DN-DP DN-DS 

FLX 75 70 50 90 90 65 

EXT 90 80 60 90 90 100 

ABD 90 90 45 55 55 95 

ADD 75 75 65 60 60 65 

OPN 60 65 45 50 50 45 

CLS 35 30 5 65 65 55 

FIN 80 50 25 90 65 70 

OKE 95 90 60 45 90 45 

TMB 75 75 65 90 45 80 

Mean 
accuracy 75 70 47 71 70 69 

 

Table 4 shows the results of the hand swap independence. The training data is taken from one hand and tested on the 

other. With the classifier trained with LH data, it was tested with data from the RH, and vice versa. The goal of this 

procedure is to determine if the EMG interface trained with one hand is compatible with the other. The results show that 

average classification was below 50% for the LH trained, tested with RH signals. On the other hand, RH trained tested 

with LH signals was marginally better with just above 50%. Among all the gestures, the EXT was the most compatible 

across the hands with an average of 78% on the LH and 85% on the RH, followed by FLX with an average of 58% and 

72% for LH and RH respectively. The average was calculated by taking the mean of the signal in all three rotation 

position. 

 

Table 4 - Results of classification attempt during swap of opposite hands. Classification accuracy deteriorates 

for most gestures, with the exception of EXT. Therefore the LH and RH signals are different and cannot be 

exchanged 

 

  
LH trained, tested with 
RH data, % 

RH trained, tested with 
LH data, % 

  DN DP DS DN DP DS 

FLX 50 70 55 60 90 65 

EXT 80 75 80 90 85 80 

ABD 45 45 80 55 70 80 

ADD 55 60 50 60 65 60 

OPN 20 20 15 45 35 20 

CLS 20 25 10 35 45 20 

FIN 50 70 40 40 55 50 

OKE 50 15 15 70 25 20 

TMB 70 30 65 60 75 60 

Mean 
Accuracy 49 46 46 57 61 51 

 

4. Discussion and Conclusion 

Due to the attempt to perform zero-retraining, the classification results of all gestures were lower compared to that 

of individually trained results. This is due to the wide range of subjects with various physiological differences. 

Remarkably, there is a strong indication of user independence in the DN position of the left hand. Unfortunately this 

trend does not transcend to the right hand. We also note that all subjects were right-handed, which may have affected the 

outcome of the left-right hand discrepancies.  

Our results show that only the EXT gesture is reliably classifiable across all the variations: 20 subjects, all three 

rotations and both hands. The experiment has most notably shown that the gestures trained in DN position are distinctively 

different from those of DP and DS positions. The OPN and CLS gestures was notably the most difficult to classify. 
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(a) 

 

 
(b) 

 

Fig. 6 - The 20-subject mean feature extracted gestures of the left hand (a) and (b) right hand across the 

channels during normal (blue trace), rotation (orange trace) and supination (green trace). The mean amplitude 

readings in the channels are different across the left and right hand. The inset shows the standard deviation, SD 

which indicates the variation of the EMG amplitude measured across the six channels for the given gesture 

 

 

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4
Mean FLX

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 
 DN, SD=0.19
 DP, SD=0.20
 DS, SD=0.14

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4
Mean EXT

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 
 DN, SD=0.38
 DP, SD=0.31
 DS, SD=0.15

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2
Mean ABD

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 
 DN, SD=0.09
 DP, SD=0.08
 DS, SD=0.24

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25
Mean ADD

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 
 DN, SD=0.11
 DP, SD=0.10
 DS, SD=0.12

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2
Mean OPN

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 
 DN, SD=0.10
 DP, SD=0.12
 DS, SD=0.07

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2
Mean CLS

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 
 DN, SD=0.15
 DP, SD=0.15
 DS, SD=0.07

1 2 3 4 5 6
0

0.02

0.04

0.06

0.08
Mean FIN

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 

 DN, SD=0.05
 DP, SD=0.05
 DS, SD=0.04

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2
Mean OKE

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 
 DN, SD=0.05
 DP, SD=0.05
 DS, SD=0.06

1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1
Mean TMB

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 
 DN, SD=0.06
 DP, SD=0.09
 DS, SD=0.05

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2
Mean FLX

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 

 DN, SD=0.15
 DP, SD=0.14
 DS, SD=0.17

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2
Mean EXT

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 
 DN, SD=0.12
 DP, SD=0.11
 DS, SD=0.13

1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1
Mean ABD

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 
 DN, SD=0.05
 DP, SD=0.06
 DS, SD=0.07

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25
Mean ADD

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 
 DN, SD=0.10
 DP, SD=0.11
 DS, SD=0.10

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2
Mean OPN

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 
 DN, SD=0.08
 DP, SD=0.08
 DS, SD=0.09

1 2 3 4 5 6
0.02

0.04

0.06

0.08

0.1

0.12

0.14
Mean CLS

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 
 DN, SD=0.09
 DP, SD=0.07
 DS, SD=0.06

1 2 3 4 5 6
0.01

0.02

0.03

0.04

0.05

0.06
Mean FIN

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 

 DN, SD=0.05
 DP, SD=0.05
 DS, SD=0.06

1 2 3 4 5 6
0

0.05

0.1

0.15

0.2
Mean OKE

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 
 DN, SD=0.08
 DP, SD=0.09
 DS, SD=0.10

1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1
Mean TMB

E
M

G
 a

m
p
lit

u
d
e
, 

V

Channels

 

 
 DN, SD=0.04
 DP, SD=0.06
 DS, SD=0.04



Zinvi Fu et al., Int. J. of Integrated Engineering Vol. 13 No. 1 (2021) p. 120-129 

 
128 

Matsubara et. al  [24] reported similarly low classification accuracy of these gestures,  however their proposed feature 

extraction method could increase the classification accuracy from 20% to 60% for the CLS gesture. The works of 

Khushaba et. al [25] has shown similar trends where classification accuracy is affected by the forearm orientation. Cheng 

et. al [26] also reported poor classification results ranging from 20% to 60% when the forearm is tested with untrained 

data. In a similar fashion, Jochumsen et. al [27] acknowledged that intra-class classification accuracies was high, but 

decreased when more arm positions were added to the training set.   

Likewise, the same issues also apply to the LH and RH swap. Therefore in an actual EMG interface, these positions 

must be accounted for trained separately. In [10], the accuracy among eight subjects registered above 80%. However the 

classification accuracy dropped to about 25% when performed with test data from the opposite hand. In agreement to the 

mentioned works, it can be established that the forearm EMG is not hand independent due to the different data 

distribution. Therefore, the classifier must be made aware of the features extracted from all positions from both hands 

which unfortunately, is a tedious process to both the user and classifier.  

As per objective, we have shown that the major wrist gestures FLX, EXT, ABD and ADD in the DN position had 

higher classification accuracy. Therefore we recommend these gestures to be considered in the design of zero-retraining 

EMG. In contrast, the EMG datafield of the finger gestures varies considerably during wrist rotation and hand exchange. 

The three gestures which are particularly difficult to classify (OPN, CLS, TMB) can be excluded to improve the overall 

classification accuracy, since the classifier will not be subjected to confusion due to these gestures. 

5. Suggestion for Future Works 

Our work has shown strong evidence that the gestures in the DN position of the non-dominant hand to have the 

highest degree of robustness. The procedures were done in the simplest methods from electrode placement to 

classification, with the intention of mimicking the most careless setup in a practical application. At the hardware front-

end, the only conditioning was the 10 – 1000 Hz bandpass filter. We also did not perform normalization on the signals. 

With some additional conditioning like normalization and digital filtering, better results may be achievable.  
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